－CHinese medical imaging

中华影像医学
 影像核医学卷
 主 编 周 前

人民卫生出版社

中华影像医学

总 主 编 吴恩㯖
总主编助理 贺能树张云亭白人驹
顾
问 刘玉清李果珍朱大成

人民卫生出版社

$$
-=4 \text { Exy }
$$

$$
\text { \}ry }
$$

$$
\begin{aligned}
& \begin{array}{cc}
\text { 4 }
\end{array} \\
& \text { (2) }
\end{aligned}
$$

$$
\begin{aligned}
& 3 x+2 x=4 \\
& 5=\frac{1}{6}+6=8 \\
& = \\
& =484-5-3 x=
\end{aligned}
$$

编

（奴设语音多序）

我国影像医学经过几十年的发展，在各个方面均取得了令人瞩目的成就，但就全国范围而言，仍缺乏－一本河水平，能立于世界之林的影像医学专著。因此，尽决出故一部总结我国影像医学成果，又反映当今国际影像医学发展最新动态的系列高级参考书，已成为我国影像医学界的重要任务。有鉴于此，人气卫生出攺社对此表示了极大的支持，芦委打我们组织全国力量编写这部《中华影像医学》。本书以系统为纲，闰的采取系统与技术相结合的方式进行编写，全书共分 13 卷：总论卷，呼吸系统卷，中枚神经系统卷，心的管系统卷，消化系统淃，肝胞胰脾畨，头频部卷，骨肌系统卷，泌永主殖系统券，乳腺巻，介入放射学卷，影像核医学卷及超洁诊断学卷。各漛独立成肌，陆续出敬：

本书编写人员组成的指导思想是团结全国力量，老中青学者想结合共同编写：因此凡被激请参加编写本书的人员，在影像医学某些领域内均是具有较高学术水平和一定知名度的专家学者。

本书主要反映当代影货学发展的新水平，对于已经或即将用于临床的各种成像技术，检查方法，新征象，新理论以及新治疗方法，将以我国自己资料为主加以较为洋尽的介绍：对于一些已被淘汰或即将废䒬的技术，方法，只作为历史发展长河中的一个阶段，仅为筒略叙述。

在叙述疾病的影像学表现时，注意共性与个性的关系，以便读者能正确把握疾病的影像学一一般规律。本书在以棠烈病，多发病的基础上，对少见，罕见病也作简明拒要的叙述，希望本书不仅是－•本影像医学的规落性读物，使之也具有影像学辞典之作用，以达实用性之目的。

本书为求文字简明，抢要，涌顸，叙述堅次结构合理，具有逻辑性，连贯性：名词术语力求规范化，做到前后统一，擗免口语化，使本书具有可读性。

总之，我们力求使本书内容具有科学性，先进性，权威性和实用性的特点，使之成为一部高层次，高品位和高水平的影像医学大型参㛈书。

但是，由于作者分敬，成书时间较紧。有些地区或单位的作者因故未能参与本书编写，以及我们编者水平有限等等原因，本书错误与纯瀮在所难免，望读者批评指正：

我们希望本书将随时代与技术的发展，定期或不定期修订再版，使之跻身于世界名著之列。

前

MEDICAL IMAGING

核医学显像在核医学中占有重要的地位。它在我国的出现虽只只考40年的历史，但是发展迅速，从 ${ }^{131}$ I 甲状腺扫描到 ${ }^{18}$ F－FDG PET 显像，无不紧跟医＂示发晨的步伐：

《中华影像医学核医学分眷》是在世纪之交编写的，既为庆祝中解？纪共和茞 50 华诞，又迎接 21 世纪的来临，因此，本书将以我国自己资料为主，总纪我迋＇核医学显像各方面的成就，反映当前的最新动态，同时也介绍国际发展趋向。

本书除要求科学性和先进性外，也注重实用性。所有作者都是在核医学界学术水平较高，有一一定知名度或在挦一领域内有特长的学者，但为了便于联系，交换意见，邀请的作者主要集中在京，沪两地，未能包括各个地区，这是我们深表歉意和不足之处。

本书属影像医学，书中图片所占篇幅不少于全书的三分之一，这些图片反映了编写单位的病例和经验，必将有助于读者的阅读和理解。

我们的愿望是能为我国核医学界提供—部对诊断工作确有价值的高级参考书：由于编者水平有限，也恳切盼望广大读者多提出批评或建议。

周 前

中华影像医学

分 卷 书 目

总论卷	主编	陈炽览	高元桂	
呼吸系统卷	主编	李铁一		
心血管系统卷	主编	戴汝平		
中枢神经系统卷	主编	吴恩惠	戴建平	张云亭
消化系统卷	主编	尚占中		
肝胆胰脾卷	主编	周康荣		
骨肌系统卷	主编	王云钊		
头颈部卷	主编	兰宝森		
乳腺卷	主编	鲍润贤		
介入放射学卷	主编	吴恩惠	贺能树	
影像核医学卷	主编	周 前		
超声诊断学卷	主编	王新房	张青萍	
泌尿生殖系统卷	主编	李松年		

目

M
第1篇 绪论（1）
第1章 概述 （3）
第1寺 定义 （3）
第2芐 发展史 （4）
第2章 原理和方法 （8）
第1节核显像的原理 （8）
第2节 方法 （9）
第3节 特点 （10）
第4节 与其他影像方法的比较 （10）
第3章 展望 （13）
第1节 相关新学的发瓩 （13）
第2节 放射性药物 （13）
第 3 节 放射性仪器 （13）
第 4 节 分子核医学 （14）
第2篇 亚像仪器和放射性约物（17）
第4章 显像仪器 （19）
第1节 γ 照相机 （19）
第2节 单光子发射计算机断昙 （23）
第 3 节 高能正电子发身济思成像 （28）
第5章 放射性药物 （33）
第3篇 脏器显像 （51）
第 6 章 心血管系统 （53）
第1节 解剖生理基础 （53）
第 2 节 心肌灌注显像 （54）
第3节核素心室显像 （62）
第4节 亲心炾梗死叟像 （68）
第5节心脏神经受体显像 （70）
第6节 核素显像测定心肌存浜 （71）
第7方 大血管核素显像 （76）
第8节 核素显像在心血酋痁沅创渗断中 的综合评价 （77）
第7章 呼吸系统 （82）
第1芀 解剖生理基础 （82）
第2示 肺灌注显像 （84）
第3糹 肺通气显像 （87）
第4雱 肺动脉血栓检塞阳性显像 （90）
第5节 临床应用 （91）

第 3 节 骨转移瘤 …．．．．．．．．．．．．．．．．．．．．．．．．（I60）
第 4 节 原发性骨肿燃 （166）
第 5 节 代谢性骨病……………．．．．．．．（172）
第 6 节 骨创伤及随核 （175）
第 7 节 畳血管性疾病………………（179）
第 8 节 占关埅疾病 （181）

第11章 内分泌系统 ……．．．．．．．．．．．．．．．．（184）
第1节 甲状腺显像…………………（184）
第2节 肾上腺显像……………．．．．．（197）
第3节 甲状旁腺显像………………（202）
第4节 垂体显像……．．．．．．．．．．．．．．．．．．．．（205）
第12章 泌尿生殖系统 …．．．．．．．．．．．．．．（208）
第1节 解剂生理基础…………．．．．．．．（208）
第 2 䒓 肾动态显像…………．．．．．．．．（208）
第3节 肾静态显像……．．．．．．．．．．．．．．．．（211）
第 4 节介，入试验 ……．．．．．．．．．．．．．．．．．．．．（212）
第 5 节 肾脏炎症或感染……………（213）
第6节 肾小球肾炎…………．．．．．．．．．．．（213）
第7节 肾肿瘤 …．．．．．．．．．．．．．．．．．．．．．．．．．．．（214）
第 8 节 肾血管泩高血压………．．．．．．．（215）
第9节 尿路梗阻…………．．．．．．．．．．．．．（216）
簌 10 节 泌尿系统先天畸㣏…………（217）
第 11 节 膀胱输泉管返流…………（219）
第12节 肾外伤……．．．．．．．．．．．．．．．．．．．．．．．（219）
第13节 槦尿病性肾病 ……………（219）
第14节 肾功能衣竭 …．．．．．．．．．．．．．．．．．．（220）
第 15 节 移植肾的亚估 ……．．．．．．．．．．（220）
第16节 阴䎛显像…………………．．（221）
第13章 血液及淋巴系统 …………（223）
第2节 脾显像 （227）
第 3 节 濑巴系统湿像 （228）
第14章 肿瘤 （240）
第1㱒 肿疾学基亚 （240）
第2节 肿瘤正电子发射断层 显像 （240）
 显炛 （243）
符 4 苦 ${ }^{67} \mathrm{Ca}$ 肿瘤显像 （247）
 显像 （248）
第 6 节 肿癌放射免疫显像 （250）
第 7 节 放射性核素标记抗肺瘤药物 显像 251）
第8节 放射性核素肿瘤显像
生展 （252）
第15章 炎症 （255）
節1节 炎佂的病理生理 （255）
第2节 ${ }^{67} \mathrm{Ga}$ 罡像 （255）
第 3 节 核素标记人非特异性両智 球蛋勾显像 256）
第4节核素标记白俋胞显像 （257）
桼 5 节 抗人糧细胞单克隆抗体 显像 （258）
第 6 考 发热待查及软组织感染 （259）
第7节 炎症性肠道瘰变 （260）
第8节 悁关节炎症性病变 （261）
第 9 节 免变缺階者感染 （263）
中英文索引 265）
英中文索引 （273）

第1 篇

；HINESE MEDICAL IMAGING

绪

论

第1章 概 述

核医学义称核子医学或原子医学，边有称为核素学．在我国属于一门独立的医学学科。由丁放射学りCT，MR，超声饮学和核医学り的核素显像部分同属影像研穴，因此核糸鼠像又是影像矤学的一部分。核医学是现代先进技术在医学应用中的体现，也是医学现代化的标志。对临床原学的诊断，治疗和研究产生重要影响。本章就核医学的定义及其发展作概要介绍。

第1节 定 义

核医学是研究核技术在医学州用的专门学科，分为基础医学应用和临床医学应用，分別称为实验核医学和临床核医学，它们的发展义与核药学和核仪器等密圳相关。

一，实验核医学

实验核医学（experimental ruclear med cine）是们用核素进行生物医基础研究以及探索生命本质的一门学科．并进一步认识人体正常的生化和生理过程。

1923年和1924年，Hevesy G．应用放射性铅和铋研究动植物体内的分布实验，提川丁小踪涼理的概念，可以说是实验核医学巾小踪实验的先驱。随后 Schoenheimer R．等用放射性核素替代化合物中的非放射性原子，得到所谓标记化合物来研究脂肪酸，氨基酸的体内代谢，192．1年他提出体内成分动态分布。提示了体内物质的动态代谢交换过程，揭示了核素示踪技术在生物原学研究中的重要作用。核支术的房法如示踪原理，物质转换，放射的显影，配基结会和受体分析，稳定性核素测足等，在生物学，生化学，生理学，微生物学，免疫学，药物学，约理学和病理生理学得到广泛应用，并进一步推进了学科的发茬和学科问的联系。实验核医学的基础技术已是基础医学研究中的重要手段，同时为临床核医学提供新方法，并促进临床核医学的发展。其中最为突他的例子是核药学：放射化学以及核电子学（nuclear electronics）的发展，为

临床提供示踪元素和放射悱：亚像剂以及火敏的核探测仪器，推进了临床核医学的发展。山此可见，面向21世纪的高科技时代，学科问的渗透以及相互促进使科学研究提高到丁一个新的水平。实验核医学在核医学领域内仍应发挥其重要作用。

二，临床核医学

临床核医学（clinical nuclear medicme）是研究放射性核素及其们关射线在临闲矣学け小閣用及其枼础理论的学科。1983年美国核医学学会给核医学的定义是：＂核医学是应用放射性和稳定性核素的核特性对人体进行解部学或生理学的诊断估价。把是应用开放吽放射源进行治疗的一门医学专业＂。由此叮见核原学与医学诊断和治疗疾病义系密切。也是临床研究的好方法，由于它的安全，有效，无痛和无创性，在临床上＂泛应用。

在方法学上，根据是否将放射性核素引人人体内而分成体内（in vivo）检查和体外（in vitro）检查两大类，前者义有功能和显像之分，由于疾病的病理过程以功能变化在前，结构变化在后。因此放射性核素的功能试验和血流测定对于疾病的 早 期诊断有重要价侑，如吸 ${ }^{133} \mathrm{I}$ 率测足，肾图和肾白流量，段局部血流量测定等。

显像检查是临床核医学的立要内容，又称影像核医学（nuclear medicinc imaging）。它是以放射性核素什脏器内分布异常为基础揭示疾病的功能和形态变化。与CT，MR 仅发现脏器的结构异常不同。核索显像（nuclear imaging）是以胇器对某一显像剂的摄取而显示其功能和结构的异常，故称以功能性显像（functional imaging），升能进行动态和是量观察，为疾病的诊断提供多；面的信息。某一特是的显像剂仅能显乐某一－特定脏器，不同于（ T ，MR在某一剖面能亚が多杉脏器。目前已有心，大血管，脑，田状腺，师状㫄腺，肾上腺，肺，肝胆，唾液腺，肾脏，宰丸，骨䯓，噜䏬，淋巴系统等几卜种亚象技术。近年来．由于正电子发射电子计算机断层仪（frsitron emission computed ！omography．

PET）和正电子药物的应用和发展，特刑是氟（1 ${ }^{1 \times} F 」$脱氧葡芴糖（ ${ }^{15} \mathrm{FFD(} \mathrm{\%)}$ 的肿瘤，心肌和脑 PE：像已从实验研究进人临床应用，核显像技术从功能性显像进入代谢或分子水平显像。

核素治疗的历史由米以久。从碘 $\mathrm{L}^{1+1} \mathrm{I}$ ！治疗中状腺功能九进㾏和磷 ${ }^{32} \mathrm{P}$ 〕治疗血液病开始，不断发展到放射性胶体体控和间质治疗，数贴治疗等。对于一些难治性疾病，核素治咛有其独特的治柠效
型甲状腺癌转移灶，${ }^{\prime \prime} \mathrm{P}$ 治为真吽红细胞增多病，至今仍然是临床上常用的有效方法。近年束，钐
移吽骨痛，核素的＂滑摸切除术＂治疗骨关少炎均为发展巾的有效疗決。

核医学显然受到 MR，（T 和超声等影像学科的挑战，但发展是主流，现在核匤学已向各系统发展，形成心血管核医学，神经核医学，肿瘤核医学，内分泌核医学，呼吸核医学，消化核医学，泌水生殖核医学，小儿核医学，骨和炎节核医学以及血液淋巴核医学等各个分支，对各个临宋医学学科产生重要的影响。

三，核 药 学

核约学（nuclear pharmacy）是研究药物的放射性标记，制备，应㸨及有人理论的学科。它是放射化学与医学，药学相结合用形成的一门新学科，也惪当今放射化学け卜分活跃的领域，对推动核区学发展的作用是不言而喻的。核药学的 王要内容有：用于核药物标引或制备的放射性核素的选择，分离，纯化，核药物的制备和鉴定，动力学和体内分伸，㕆量控制以及性能评价等。放射吽药物已从反应堆核素（ ${ }^{131} \mathrm{I}, ~{ }^{6} \mathrm{P}$ ）进人发生器和加速器药物，在很大程度上推动核显像技术从单光与显像进入正电子显像。核药学是核显像技术的重要基础和组成部分，两者相互依存相互促进。

四，核仪器和核电子学

核仪器主要用于核索及其有文射线的探测以及显示脏器内放射性核素的分有，也称为核成像仪器。核素的探测及脏器成像主要涉及 γ 光子或正电子的记水，转化，放大，定位和战像，有其饥子学上的特吽，又称核电子学，核电子学研究光子的转

化，放大，信噪比和炎敏度等内容。核仪器有 γ 开型测量仪，单光子发射计算机断㧁仪（single pho ton emission computed tomography，SPECT），企身扵描仪及 PET 等。核仪器与电子计算机的发展势是相 4 促进的，电子计算机已成为核成像仪㗉中最土要的组成部分。

第2节 发 展 史

一，国外发展史

1895 年德国物理学家 Röentgen 发现X 线，树立厂放射学的里程碑。同年法国物理学家 Henri Bocquercl 发现钟盐比能使胶片感光，并口确定了放射性（radioactivity）的概念。1898作他的学生 Marie Curie，Pierre Curie 夫妇对铀，针，钟和䋩进行了提取和研究，发现它们能发射比 X 线更強的妿一类射线 一 $\boldsymbol{\gamma}$ 射线。

1901 年 Becquerel 把镭放六，上衣口袋讲演后。发现腹部口袋下的皮伕出现红斑，由此产生了生物效应的概念。事实上Curic 夫人死于白血病也是生物效的的最早例证。1903年美国 Alexander Gra harn Bell 提出用镭治疗肿瘤。

1911年 Rutherfold 的著名电磁场实揄阐明厂 $\alpha, ~ \beta, ~ \gamma$ 射线的物理本质。随后许多测量设备的发明．诸如闪光镜（spintheriscope），云露室，金叶电于镜（gold leaf electroscope）和1928年的盖革计数器（Gciger－Mäller counter），为放射性物质的测量和应用奠定了物质基础。

1923年和1924年，Hevesy G．元后发表了用放射性铅和铋在植物和动物体内的测定，提出了放射性示踪原理，因此 Hevesy G．被公认为放射性核素在生物学上应用的先驱者。

1920年 Blumgart 用皬 C ，铋 $\mathrm{L}^{-2 / 4} \mathrm{Bi}$ 〕进行的臂循环试验是首次放射性核紊的临末应用。

1931年 Ernest O．Lawrence 和 John I，awrence发明加速器，人工放射性核素大量产生。1934年 Irenc Curie 和 Frederic Joliot 发现核埥击轻元素可转化为放射性元素，他们的化学分析发现轰击硼产生放射性氨 $\left[{ }^{13} \mathrm{~N}\right]$ ，铝转变为磷 $\left.\mathrm{L}^{-10} \mathrm{P}\right]$ 。

1935年 Hevesy G．应用 ${ }^{32} \mathrm{P}$ 在动物体内观察骨骼和脏器的摄取和排泄，发现骨骼形成是一个个动态

过程，骨骼不断摄取并排引磷，整个过程任正常小鼠为 2 个月。这是首次提出动物体内和人体内组分动态的概念。

1936 午 Juhn Lawrence 首先用＂？ P 治咛什血病。这是人厂放射性核系治疗䛈病的型始。

1931年 Enrico Ferrri 发时核友应堆，生产第一个硔的放射性核素。1937年 Herz 首先在兔体内进行碘＿${ }^{12 x} I$ 了半衰期（ I_{1} 2为 25 分钟）的闯状腺试验，以后被 ${ }^{15} \mathrm{I}$（ T_{12} 为 8.4 大）替代， 1942 年 Joveph

腺湶转移。

1946年7月14日，关国宁布放射性核素可以进行临床耑用，开创与核医学的新纪元。

1951年 Benedict Cassen 发明线性扫描机， 1958年 Hal O．Anger 发明 Anger 照相机。195．9年 Solomon A．Berson 和 Rosalyn S．Yalow 发明放射免疫分析等。对影像核医学㕲体外测定的发展都起到了很大的推动作用。
 ＂＂＂ Tc ）发生器的出现，70年代首光子断素仪的应用和 80 年代启期正耂子断考仪进人临床应出，使影像核医学在临床医学中的地位有了舄著提高。

日前普遍的观点认为，20世纪 10 年代为心血管核医学，80年代为神经核压学，90年代为肿瘤核医学，并由此进人脑化学和分子核医学（molecu－ lar nuclear medicine）的发展作代。核医学的发展必将对临床医学产生深远的影响，

二，国内发展史

我国核医学历经四十余年有曾较大的发展，放射性核素在医学研究，诊断和治疗上的不断推广和应用，使核医学在医学卫生事业中发挥着重要作用。

（一）实验核医学

1956年在军委卫生部领导下。在找国西安举办了最支的核素应用训练班，标志着我国核医学的诞生。学习班由军事医学利学院的丁德泮，中匡协和医学院的土世真等教授主持，学习班讲挼厂核素的基本原理，鎘射防护，核素示踪应用以及辖躬效该等内容，并重视实验技能如 $\mathrm{G}-\mathrm{M}$ 管和定标器的

蝉向质和脂肪代谢及合战等方法学的内容。学习班为我同垶养厂－批核系殹学应用的年轻技术肯户。为目后实验核医学在我国的发展打下了基础，19末什义举办 今第，期训绕班，实验烗医学的队俉有厂进 步的扩大，有力地促进 今我国放射性核素在生物学和医学各个领域中的发展。

15．56什以后，市国协利医学院生化系和上然实验生物仾究所相继建立厂全国最龸的生物笑学核素㢄成头洽室，这一步开展厂核素在生物和基础医学的研究•并继续培养了实验核医学利核药学的技术人才。到60年代，随着医学教学枚射医学新专业的发展。我国不少医学和烪约院校开设厂课
索在区药学的啡突下作。在液体刚㷧测量技术，细胞水半的放射自显影技术，标记化合物的制备，生化示踪技术的研究以及放射免疫分析技术等各个㡯西而展了大量工作。㷏取得」大批成果，

70年代辰期，作经历 「短暂的停滞之后，实验核医学与核药学以前所术有的䢓度重新活柾和发展起水。许多医学院校建立了专供实验做究用的实验核迕学基矿实验系以及相底的学业队伍。安验核医学是核素乍基㖄欧学中的应用。放射性核索的 m^{2}用渗透到牛化，药理，免疫，生理，病理生理，分于生：物学和生殖生理学等许多学科。并基本形战头验核医学的学科领域，包括液体闪炼测胿技术，放射白显影技术，体外分析技术（放射免疫行析和受体分析），标记化合物的合成，放射症乐踪剂的㡺用（物质代谢研究），药化动力学，稳定性核索的业用以及核絭在中医小苩学的城用等内容。核药学也行相应的发展，诸如政射性药物的制备，药代动今学研究，放射怍药物的体内分布和药效评估等研究均为核药学的主要内容。

纵观实验核医学的发展可以看到。在学科发艮的路途卢，学科的相瓦渗透，相互促进炈为重要，泪此在当前形势下，实验核医学如何继续结合医学：特別是渞床核医学的需要。进一步发最新技术，开群新道路，迎接新挑战，是1分霊要私迫坝的课题。

（二）临床核医学

如黑说1956年第一个核素有用训练班必找国实验核矤学在基砄医学豆用的升始•那么 1958 年化北京举办的放射性核素临床腐用洲练班是核医学

住：游床应用的起点。当时的泾棵教师们放射物理学的俆海超教授，放射生物学的陈义新教授，放射上生＂学的魏履新老抄，放狽性核系临床应用的叶根耀老师．带教实验的有陈仁塙和拊家骝老师。参加学小的有北京，！海和厂州等地的内科利放射科青年压师共 10 人，远过伐用简单的放射吽测量仪唯。如测 β 线的钟罩梨计数器，测量 γ 线的盖午计数器，64进隹的定制器以及应用苏联汼口的 ${ }^{101} \mathrm{I}$ 和
射泩核系临术以用的基本原狂。内容涉及用状㙞吸 ${ }^{131}$ ！率测定，＂P 测定血容哋和血智通透性，＂I 治疗开状腺功能元进症和＂P治疗血波病等。
州相继亦理，这就是核医学厉尘上所谓的＂京，
心海科技了生活版社出版了放射性核素任临朱渗断 1的単用的首批医内资料。1958年3月－11月前
学「作者，其け不少人战为核絭（后米称核原学）的创始人。1972年中国科学院放射医学研究所十开真教授又在叫川简阳举办了企国核素宣脳学习班。使核医学的队伍得绖坉固和戈＂心，专业队化的建立为核原学的发展党走了扎实的人才基酎。

我国临床核医学的发展可分为以下二个阶段：
1．初创的期（1958年～1966年）1958年以店，各医学院校附属矤院相继律立个核素空。在放

吽核系的监床应用。建立了叶状腺吸 ${ }^{1 / 1} 1$ 试騟，放射性肾图，甲状腺和肝砋扫蓷四大常规，代治疗方你，进一步开展了 ${ }^{311}$ I治疗车状腺胁能亢进症和中状腺癌转移灶。 ${ }^{* 2}$ P 治疗真性红细胞增多症，淋巴瘤和门血病，胶体 ${ }^{10 \times} \mathrm{A} .1$ 或 ${ }^{3!} \mathrm{P}$ 治疗胸腹腔转移性肿瘤，${ }^{[2} \mathrm{P}$ 敷贴汾少皮肤和服科疾病等项日，为临玙提供有效的无创治疗新方法，收得了业著成效。

2．缓慢发展阶段（1966年～1980年）又化大革合中，核医学发展也受到一定的挫折，但体 7 ）年代依然缓懮发展，特别是1972年举办的放射性核素应用展笕会，向了大群众首传放射性核素任医，农，厂等的立用以及对国民经济的重要意义。对核矤学的推厂应用及其发展起着重要影响。引进 －批同外 γ 照相机并在国内开始研制 γ 照相机。
 \therefore＂In）发牛器的相继做制成功，乐在临床上广泛高用，均为此阶段的核医学发展提供厂重要条伴。在核影像学应面，从静态的扫描显像进人动态的 γ 照相显像。不但缩短厂病人的检查时问，而且提高了诊断质量，使脏器蘊像的洰用为了进－步的扩大，从出状腺，肝脏和肾肶扩搌到脐，肺，脾，骨骼，肾上腺和始緼等。但在治疗方面处于仙滞状态，除维持甲状腺功能尤进症，师状腺癌转移灶，红细胞增多为等治疗外，并无很大的进展。

3．迅速发展时期（1980年～1998年）1983年从国外引速第一批 SPECT 标志䒴我四影像核医学进入了发射计算机断）云（emission computed tomo－ graphy．FCT ）时代。在此同时，我国已完成 ${ }^{*} \mathrm{M}_{0}$
器配套约盒由专业药厂定点生产和供应。并经过卫生部药品审评中心的批准，为临床提供厂各种脏器显像剂。特别是锅 $\left.L^{\prime \prime}{ }^{n-T c}\right]$ 用荓异腈（ ${ }^{-\cdots n} \mathrm{~T}_{\mathrm{c}}-\mathrm{MIBI}$ ）
对心血管核医学和神经核医学的发展起着很大的推动作井。骨显像和甲状腺显像居日常工作重的首位，心脏和脑血流灌注泉像地成为重要的常规项月，肺通气及灌注显像也有所发展。90年代以米，
核系圢以自给，放射免疻显像的不断研究推进」肿瘤核医学的发展，乙显示出对肺癌，乳腺癌和淋巴瘤等有临床价值。在此期间，放射性核素的治疗有了新的发展。特别是＇＇Sm EDTMP 治疗转移性骨痛已取得较广泛泣用。驸放射免疫体外分析技术受到非核素分析技术的挑战，核医学某些项目的族免检测已开始被荧光免疫，化学发光，酶免疫发光和电化学免痖分析所替代，以满是临床快速沴断的要求。

我国的探头式块能仪在此期间也有较大的发展，心功能仪巨被海汰，而単探头甲状腺氻能仪以及多堔头肾功能仪经计算机智能化后，可央速计算各项定隼指标，并同时进行肝血流量，心排出羔等测定．在我闰仍是中小医院核医学的主要仪器设备。荎个探头式脑血流量测定仪与计算机结合不仅能提供局部脑血流量（regional cerebral blood flow。 r （ CF ）的定量数值，还可给勾血流分布的彩色图像。

综上所述，我国核医学走过了四十余午的历称，有了较大的发展，据1993年的我同核医学其本情况调查，除台湾，澳门，香洪和西藏外，共有专业人员 4002 人，以北京和 匕海两地最多。其巾高级人员占 16% ，医学专业占 $7.4 .16 \%$ ，其他为核物理，放射化学，药学，计算机，生化检验和扣理等专业，核医学单位 745 家，临床单位占 85% 。其中不少中小医院仅有功能测定和放免检测，也有不少附设的或独立的放免检测单位。在核影像仪器方面，目前我国 SPECT 技术经才多年发展，全国己有 SPECT 250 多台，部省级和高等院校占 8.4% 。医学院校和市级医院均能开展影像核经学检查，甲状腺和肾功能检查，放射免疫分析测走以及核素治疗工作，核医学在临床教学，医疗和科研上均发挥重要的作用。

随着加速器药物包括正电子发射核素的迅速发展．世界各地建立了不少正电子发射计算机断层中心。PET 已进人临床应用，${ }^{18} \mathrm{~F}$ FIG；的 PET或 SPECT 的应用将在很大程度上把肿瘤核医学提高到一个新的水平。我国虽然不宜全面开展PET的应用，但建立少数几个 PET 中心以提高我国核医学的整体水平十分必要。月前我国的核医学与国外相比尚有很大差距，相信随着核仪器的不断更新，我国的核医学特別是影像核医学，在 21 世纪必将以崭新的面貌赶上世界先进水平。

（三）中华核医学会和中华核医学杂志

1．中华核医学会（Society of Chinesc Nuclear Medicine）1980年5月在河比省石家成市成立」在．中华医学会和中国核学会双重领导下的广华核医学会，由中国科学院院士王世真教授任首届主任委

负，从此核医学T作者有了自己的专业学会，这对卉展学术交往，扩大对外交流，培养人才，科普笪传以及推动学科发展起着重要作用。学会每 $4 \sim 5$年进行一次会国性的学术交流并进行换届选举，至今已有五届。学会下设临床核殹学，实检核廷学，放射免疫学，核电千学和核仪器，放射性药物学以及核医学技术等各个专业学组，以帮助核医学的备个分文学科的发展。

2．中华核医学杂志 〔巾华核医学杂志（Jour－ nat of Chincse Nuclear Medicine）是中华核医学会的学术刊物，创刊于1981年．编辑部设立在汇赤省原子医学研究所，至2001年为止。20年间已出版了 20 卷，杂志在中华核医学会的领导下，发表我国核医学一作者的研究论文，交流和传递信息，开展国际活动。此外其他有关杂志，如么核技术，为每年二期核医学专刊，《中国医学影像技术＂，中中国医学影像学杂志》，《中国临床医学影像杂志い和《上海凮学影像》等也发表核医学的文章，向＂标记免疫分杯与临床》，放射免瘦学杂况》则发表有关免疫分析的论文，均对核医学的发展起着重要的推动和交流作用。

总之，中华核医学会的宗旨兒大ノ开展学术活动和父流，提高找国的核医学学术水平，除举办全国性专业会议，还有专题的跨学科专业会议，学习班，中青年学术会议以及国际学术交流会义。（中华核医学朵志弥办刊方针足大打开展核㗨学的学术论坛，建兴学术交流的园地。刏于核医学的发展，中华核医学会和么中华核隹学杂志力都发挥着重要作用，其贡献是不言而喻的。

第2章 原理和方法

放射性核素及其标记化合物 m_{j} 非放射性 兀素和化合物有相同的生化朴生：䧉作用，但具有放射性。因此迥人机体斤能灵败地探测具体内的行踪，即听谓示踪技术。间样放躬性核素及其标记化合物被某

脏器摄取或浓集，经细胞清除，排计或代谢，「崔手核仪器可矿究它们在服器内的分布，为探测脏器的异常提供诊断方法，不论哪种核显像技术，其基本原理相同。

第1节 核显像的原理

能被㭉一肺器或其病变选择性摄取的放射性核丞或其标地化合物称肭器显像剂，核仪器业示的某桩器影像称显像（imagmg），实际上思放射性核紫及其标记化合物化体内的分们图像。通常正常肚器红织对于放射性的摄取是均－的。 1 的病变组织由于少能受损出现放射性摄取减少展至不摄取，秛放射性减低政缺损，利用正常与异常组经间对丁放射性的摄职差异是核显像的沴断基础，双之，利用仅能发病变组织摄取而正常组织代摄取的核素而纪示怍恼变区的放射性，是近午米发展的亲肿溜业像的花㑬。

核素业像行別十（TT，MR，它具桹怙胙器䄪功能状态而显小其形态或结构异常。故有功能性：成像之称。

核素浓集十脏器的机制，主要琢靠如下世个方 ıaí

一，血液供应

足够的血供是脏强业像的先决条㓡，核素必须近过白液循不到达脏器而被吸收，如冠状动脉粥群硬化战脑血篡供血不足将在心肌！上像和脑显像图 1 ：出现局部放射泾摄取的减低。可少放射性在拄器的浓集反唤花库器的血流量，

二，细胞的代谢状态

放射情核条及其标记化合物可国纵胞的代谢需

要而为脏器所吸收。如倎参至 j 甲状腺激素的代谢．倎被甲状腺滤泡吸收并作为合成用状腺激素的主，要原料，因此放时性 ${ }^{1}$ ！I问测定甲状腺功能并开显小゙毕状腺。间样，${ }^{31} 1$ 㭂记的碘代脂固醇（1．．1－1（））和 ${ }^{1,1} 1$ 标讪的问碘芐胍（ ${ }^{.31}$ I MIBG ）。作为合成肾 F ：腺必质激素机肾上腺素的前身物质可分別被肾 $1:$ 腺皮质和髓质所摄取们进行肾卜腺皮质和髓质鼠像。此外 ${ }^{18}$ F FDG；作为细胞活动的能量物原参与心，脑细胞或肿痓的䊕代谢，进人机体后能被它们迅速摄取而显小゙心，脑和肿洌的影像，均与这些组织参与 ＊F－FDC；的槦代谢有关。

三，代谢产物或异物为细胞摄取和清除

许多业像分法是根据标记物质作为肺器的代谢应物被摄取或清除，如 ${ }^{13:} \mathrm{I}$ 邻碘红水酸钠为肾小管上支汕胞摄収而随水液排出体外进行肾和尿路显

均由肝细胞摄取而经脂道排川到肠愘。 挐进行动态肝胆显像。利用变唑红细胞在脾膖破城利滴除。 ${ }^{\mathrm{m}} \mathrm{T}$ c标记的热变吽红细胞能浓集在脾勖而进行脾足像。此外，放射性胶体作为异物能为肝脏刚状内
经淋凹管清除，㞴分别进行肝脞和淋巴业像。

四，离子交掫和吸附

放射性业像剂 - 脏器内荣些离子以交换或吸附的方式被摄取，如骨骼内有本富的䍩基磷灰石。对维持骨骼的钻，磷离千的内环境平衡起車要作用：放射性 ${ }^{[1 / \mathrm{m}} \mathrm{Tc}$ 标记的亚訐基二膦酸盐（ ${ }^{29 \mathrm{~m}} \mathrm{~T}(\mathrm{CMDP})$或焦磷㡀盐（sm Tc－PYP）能 L_{j} 羟基磷灰石巾无机盐以兆似离手交换柱的作用逃行交换 而被摄取，因此 MDP 和PYP浓集于骨骼组织使骨显像。

五，血池或血库的作用

心詝，大的管，肝血窦充满血液，称囱池或血

库。将放射吽核素标记于不能经血管内迅速逸出的物质（如人体何蛋向或自身红纽胞）羊汗入血液内开亚が心腔，肞和大血管，分別称心，川下血池出像或大血管显像。用小容量和高放射吽：的放射性核索以 ＂弹丸＂形式快速汗封，可显不核素在血笛和各心脏房室的行徍，称核素心的管造影，对先犬性心脏持的诊断有一定意义。注入两側足背静脉山观察卜肢深，浅静脉的通畅程度，称核素下股薢脉造影。以上均是利用核素在血管或心血池内停滞期的点永血管或心岤的影像，同样核素注入蛛网膜下悾或侧脑室边可显示脑脊液的分泌循不和清除过程，

六，暂时性微血管敬顿

人血浆向蛋白（＂n Tc－MAA），由于其直径超过肺毛细血管的直聄，使一部分肺血管床暂时性湈顿，肺内滞留一一定量的放射性，称肺灌注显像，它能反映肺动脉血流分布，随后 MAA会自行分解，对病人不引起佂何危書。

七，特异性结合

标记抗体注入休内，会自动导航到肿瘤部位 或抗原进行特异结合，这是林用抗原与抗体相结合的免将学原理而得到的放射免疫显像。标汇配基㲿 人体内与脏器或肿壃部位的受体相结合，如 ${ }^{181} \mathrm{I}$ MI－
 reotide）肿瘤阳性泉像均为典型例子，䘚小有配基与受体的又一种特异性结合，昆近年来发展中的一。种受休显像。

第2节 方 法

一般可将核鼠像技术分为以下几种方法，值临床实践中根据不同的仪器和要求选择应用。以提高临沫诊断效果。

一，全身显像和局部显像

γ 照相机或 ECT 的探头浩人体长轴的速移动，采集从头至足部的全鳥信息称全身显像。龍显像为全第显像的一个例子，骨㵦，肿瘤探专（如甲状腺癌转移䙺），炎症，血池和淋巴也有全身颅像。探头移动瞬问的信息望较少，分辨率较低，对可疑病
体某一部位的图像称局部显像。有估息枝多和图像清晰等优点，分辡率好，对比度强。

二，静态显像和动态显像

（一）静态显像

注射显像剂后，探头对准可部胜器不集。一论成像得到青态显像。由于一家时间内有足够考的＂；
态，大小，位㨁利放射吽分布提供父位和定性诊断，经数据处理得到定響参数，为脏器的后部为能和代谢啶供很有价值的数据。

（二）动态显像

快凁＂弹丸＂汗射放射悱核素。全的美次快速打搂脏器的连续影像称动态这像，可分㤨速（几秘至1 分一颃）和慢速（几分厺几小时一颃）动态显像。这种随时间的放射性：变化。可在图像与：约四感兴趣区（region of interest，RG）I）后描绘出肘阿一－故身怍曲线，可进一步讣算动态变化中私各垪动态参数。甚早图像や务一象素的定量参数，有助丁观察脏器内侍一一个微小局寧的少能变化和差异。这是象度侍年性功能昆像的特点。

一段脏器的动态浔像堬出动脉相，静脉相和平衡相昆像。对于了解挝器的灌注血流变化们很大觜助，如血流丰富的脏器惐恶吽肺瘤，动脉相山可兄到效射性的明显增强。动态显像层间隔一定定间再进行一次显像得到一帧静态㳑像，因此实际T作中两者可结合诜行。

三，平面显像和断层显像

探头贴近脏器表面进行的无论是动态或静态樶像，都是脏器的综合图像称平面显像，位于脏器深部病变的放射性变化受正常鄗隹放射性的掩盖而不易被探查出来，因此平面出像实质上㿝一种叠加囷像。容易宁生假阴性或假阻性，当然，增加各种体位平而哑像（如前位，居位，侧位和斜位）虫可克服一些十扰肉素，但小病灶仍可被漏沴。

随着核仪器发展为发射型断层仪，探头用绕身休长轴作 180° 或 360° 旋转，遥常以步进庄式进行采集，䢁经计算机图像重建。得到横断，矢状和辱
需要选择，因为避免了各个会面的放射性相互卜扰

和信急里进－－步増加•摸高了小病灶的探测率，笑可精确地进行定蕼和定位沴断。通常，深部大脏器䎟脑，心，肝，肺等均豈进行断层泉像，而表浅或腹部小脏器如甲状腺，年状产腺，肾 L腺则不一定需要断层显像。断层显像与药物，运动介入相结合 （吅潘生丁域运动心肌断层显像）对疾病的早期诊断会有里重要的意义。

四，阴性或阳性显像

胜器很像剂为正常组织吸收们病变组织不吸收，优此病变区的版射性吸收减低戎无放射性浓聚 ｜而称阴性显像，或＂冷义＂湿像，如胶体肝显像，心肌灌汒显像等。阴吽涩像㞴因正常组织的放射性掩䓝病变组织的放射性减低而不易鼠示，朴此断辰显像更为重要。

阴性亚像又称＂热区＂显像或亲肿瘤显像，趿像剂浓集于病变或肿瘤处而正常组织不或很少提取，［大此图像对比性较好，对深部病变探测吅性率舁的亲肿瘤显像，放免显像，功能性甲状腺㿋转移奻，为转移性病变的探测均属于回性显像。

第 3 节 特 点

核素显像技术与其他影像医学（＂1，MR 和超出相比有其特征，可归纳为以下j酥。

一，功能性显像

CT，MR，超声和核显像同属影像医学，但前三者为解剖或结构图像，而核显像是以脏器对显像剂的摄取功能变化为依据的终像，又称功能性图像。如中状腺结节的因结节局部的出能不同显示为放射性过度浓集，䇛常浓集和浓集减低而表现为 ＂热＂，＂温＂和＂冷＂结节，分别表示结节的吸碘理能克进，正常和减少。脏器和病变部位的放射性浓集量除细胞的功能外又取决干血流量，细胞数重，代谢率以及排泌情况。核湴像不仅显示脏器的大小，形态，位置以及放射吽分布，并能提供有关耻器和病变部位的功能，血流和代谢情况，对下早期发现疾病的功能改变有重要意义。

二，定量显像

核素显像分析代仅从日测脏器或胒密的放射性

改变米进行诊断，而月能通过计算机的局部数据处理，如病变与 对应正常部位的放射性比值，局部放射性的动念改变给出定量数据，更客观地评价病变部位的放射性变化，如脑显像的半定量比值小于或大下 $0.9 \sim 1.1$ 为城少或增加。正纯子显像更有定量的资料，如测定心肌，肿瘤部位的局部葡萄糖代谢率（LMRGLU），䂏［ ${ }^{82} \mathrm{Rb}$ ］心肌显像测定心肌的远状动脉局部盎流量，放射受体显像测得受体的定量数据了解受体的调节，这些都是核显像的独特优点。

三，化学或代谢显像

由于加速器药物的发展，核显像技术已从单光于进入I我于品像。不但反映局部品流，细胞功能和放射性浓集量的改变，汿且反映细胞内分子水平的化学和代谢改变，属分子牛物学水平。特别是受体恨像的发展，揭示了细胞内受体量的改变。为受体病的诊断提供分了水平信息，这是其他影像技术无法相比的。

以上独特的特点反映〕核显像技术的主要优点。但是出与注人的放射性有一分限制，除脏器吸收的放射性，正常组织地有一定的效射性，造成 5信橾比降低以及核仪器的总体分辨率不及CT 和 MR，因此在细胞结构的差异和病变的定位方而不如 CT 和 MR．向目图像的对比度较差，这些都有待进一步改进。

第4节 与其他影像方法的比较

X 线，（ T ，MR，超声和影像核医学的原理和方法各异，但最终都是以影像分析来达到诊断疾病的月的。它们之间的空异可以从以下凡个方面比较：

一，设显费用比较

设置一个影像系统费用比较昂贵，除购头设备的费用，尚需考虑场地装备以及运转这一系统人员的费用，包括医，技，护士，工程师，药学家等。 X 线常规拍片设备比较简单，费用边比较低，除 X线外，超声处在费用谱的最低端．CT，MR 和 PET的费用比较昂贵，超过百万美元，都处在费用橧的最高端。PET ゆ心包括PET 和加速器，不

但费用超过儿白万美元，而且操作和运转复杂。影像核医学的 γ 照相札和 SPECT 则位于费用谱的中间。

二，方法比较

（一）能量源的差异

每一种影像方法代表由不同的特殊能量源作用于人体所产：生的包括解剖利生理信息的一种影像。由子能量源有差异，不同方法所得的信息类型各异。产生医学影像的基本能量形式以及每种方法的一些生物物理基础见表2－1。

表 2－1 影像密度的决定因素

TV，	
X 线：摄片，血管造影，CT	组织密度，造影剂的局部浓度
超声	声速，组织密度，组织弹阵，造影剂
放射性核素	示踪剂浓度（决定于配体的生物活性）
磁共振	质量（自旋）密度（含水量），该磁共振松驰时间，化学移动，血流，造影剂效应

标准 X 线技术（包括駨片，荧光透视和选择性心血管造影）是以不同组织密度对 X 线的衰减为基础的。CT 的能量源也是 X 线，不问者在于为断陆显示方式。超声是以组织的不同密度和弹性结构对超声（机械）能量的不同反射和吸收为基础的。核素显像取决子放射性核素的射线能焦及其标记生物物质的活性，而显像密度则反映显像当时身体或脏器内某一显像剂的局部分布。磁共振显像的影像密度反映了组织的局部水含量，血流，运动，松地时间，化学转移等几种变数的复杂函数关系。

（二）投影与断层

X 线摄片时，病人处住 X 线发射源和 X 线探测器之间，X 线投影于病人经脏器的衰减而为 X线片接收。以心脏摄片为例，X 线的衰减不仅发生在感兴趣的结构（如心脏），也在沿线行经穿插其間的其他结构（如胸壁和肺），故这种投影在相片上的最终的 X 线影像代表着需要利不需要的信息的重叠。因此，X 线苂光透视，血管造影和核素平面楽

像都属于投影显像，核素平面投影的差异为：基本数据来自注射核素发射的 γ 光子并由 γ 照相机的旵体探测，光子在行径中也受组织重叠的影响。

Cr 检查时。在选择性的平面内围绕病人的不同角度测量 X 线的衰减。产生一组 X 线衰减剖面图，经计算机图像重建组成一个层面 X 线哀减数据的一维分布图像。由于所得数据仅代表被检查层而的 X 线衰减，故不存在投影显像的肚器间的相互重叠，并能更精确地显示所选夽面的解剖和物理特性。趋声，MR 和核素显像地都为断层，但核素影像的能源来自注射后进人肚器的核素所发射的 γ射线．故称发射型断层，而 CT 的能源为体外的 X线球管发射而来，故称透射型断辱，超声和 MR的能源地为体外发射能量。分別为超声探头发射的声波和磁场的磁力作用。

三，应用比较

前已述及 X 线，CT，MR 和超南的影像均为解剖上的改变，而核素显像因其功能性显像的特征，并进人代谢显像和化学显像，对疾病的早期诊断有其独特的优点。

（一）心血管疾病

（T，MR 和超声可正确评佔心胜房室和大血筞的解剖学，特别是 MR 可精确测定心脏解剖学细节，因此CT，MR 和超声是测定心室大小和大血管形态的最好方法。而 X 线选择性㝴状动脉造影仍然是检测冠状动脉解剖细节的主要庘法。超声检查的可携带特点以及食道超吉心动图的应用，在先天性心脏病，瓣膜性心胜病中已显示其在先天性解剖异常，瓣膜功能障碍和心功能异常方面的重要价值，其主要问题为受到操作者经验和探头位惪的影响。核素心肌灌注显像是目前评估心肌灌注的标准方法，能正确反映冠状动脉血流（微血管水平）。对冠状动脉疾病是一个常规应用的方法。核素 ${ }^{15} F$－ FDG PE厂显像是从心肌代谢来评估心肌活力的，其他方法无法比拟。总之，核素显像已是心血管疾病特別是冠状动脉族病的诊断，研究的重要方法：

（二）神经系统

CT，MR 都能精确分辨脑组织的各种解剖细节，特别是在急症脑出血性疾病中。（T 已成为常规方法，此外在脑肿瘤的诊断中也有重要临床价值。超声図为颎骨对于声波的阻碍，仅能依靠脑巾

线偏差间接判断脑部矩病，以此诊断价值较次。核素脑灌注显像虽边叮发观脑血管吽：脑缺血吽：疾病

有其应会价值，而在精神疾病如精神分裂症和抑郁症方媔的应用正在深入研究。近年米，脑受体显像
 FTGC PET 出像对十脑肿瘤的诊断和葡缶糖代谢价㱏些都是（＂1），MR 无法解决的，

（三）肿瘤疾病

（CI，MR 对肿瘤疾病具有果要诊断价值。们

何很好价值，＂${ }^{\circ} \mathrm{F}-\mathrm{FDG} \mathrm{PF} \mathrm{C}$ 代谢显像对鉴别良恶

性肺单个结节，判断脑肿瘤术后或放疗后是否复发，以及对乳腺膈，黑色素痛，头颈部肿瘤的诊断和转移性肿瘤及其原发病灶的探查均有重要意义：

（四）其他疾病

MR对于软组织和筫关节疾病有重要诊断价值。核素全身骨显像能比X线早 6 个月发现骨转移性病变，肺灌汗和通一组像对诊断肺检塞和与道病变均有独特价值。近年来超声对发现小的甲状腺
状腺显像判断甲状腺洁劣的局部功能以指导治疗仍为重要 j° 法。此外，CT，超詳虽也可用十肾上腺牧病•但 ${ }^{-31}$ I－IC肾上腺皮质和 ${ }^{-31}$ I－M1BC；肾 F ：腺㵦页罪像对于原发吽：醛周酮增多病和嗜铬细胞瘤有特异性高的优点。
(米示谟)

第3章 展 望

从核笑学的发展业中，不娰看川核垁学作为和平利别塬子能的主要组成部分。乍201毕纪50和 60 乍代有其辉湶的战就。但是的仁在进步，科学在发展，人类登月已成为现实，存当今分一生物学和信息技术迅疝发展的时代，核悔学该做什么•怎样做和如何去做，在面问2I扯纪的挑战中。怎样才能维持其生机，这是值得思考和探讨的问题。

第1节 相关科学的发展

核医学与各基础和临覑学科最有厂泛联系，它的发展取决于其他学科的发展。放射化学，放射药物学，核素学，放射性核系标记技术等学科似发展与放射性显像剂和放射吽治疗药物有着密切联系。核技术的发展诸如反应堆，加速器技术的放射企核素的制备和供应不可分割。电子学，计算机技术，甚至自动化技术的发展关系到放射性探测仪器以及㤥影像设备的高水平发展。总之，各学科间在相乙依赖，相出补充，相互䛤进中取得备自的发展。为生物学和智学的核素及核技术的应用贡献各白的帄量。

第2节 放射性药物

放射性药物对干核显像技术仙发展和应用的重要性是众所周知的。随若世界放射性药物的发展，找国的核终学也经开了反应堆药物 ${ }^{3} \mathrm{I}$ ，

配沄显像药物的研制成吻，推动了核显像技术特别是心，脑和肿瘤核医学的发脤， 20 世纪 90年代是加速器药物发展的时代，心 以，ぶGa，
氮 ${ }^{-1.3} \mathrm{~N}$ —和氟 $\left[{ }^{18} \mathrm{~F}\right]$ 管正电子药物的发展，为受体显，像以及PEI显像提供条件。发生器药物随若锝化学特性的研究将进一步发展，亲肿㿔药物，新的心肌显像剂和脑显像剂将进一步研究，放射性药物的质量控制有了新的提高，常出发

生器药物乃至 ${ }^{18} \mathrm{~F}-\mathrm{FD}$（；的设点供应，放射药府 （Radio－I＇harmacy）为怡床快速，优质的服务创造了条件。放射性药物而在向集中供应，庁便病人的）；向发展。

第3节 放射性仪器

核显像仪器已经历厂四个时柋：抽描杪，γ 照相机，SPECT 和PET，核显像技术也从静态半面显像，动态平面显像，经过功能性断！耘显像进入 PET的＂化学＂＂或＂伈谢＂罡像。

核仪器对核显像技术的发展何决定性作用。号井纪 90 年代PETE从研究迸入临床府用。对肿㾗，心胜和脑部疾病的诊断有車要意义。在世界范讳内已建成了不少PET出心，无疑为核原学的发展提供厂活力。但 PET和加速器的设置费用非常昆贵，并非所有临床单位都能承受。因此，对化 SPECT 的基础 工进行 ${ }^{1 / F-F I) G}$ 探测进行了多午的研究。至今，SPECI 主应柿高能准直器或配置符
 SPECTI，梂 SPECT PET，或双功能 SPECT。这样 SPECT 机上具备部分 PE才 的功能。这就为 ${ }^{18} \mathrm{~F}$ FDG 显像的推厂应用创造了积极的条件。但超槀能准局器广法仅能用于心肌棌力测定，对肿瘤的探测哏于自径 3 cm 以上的肿㨨，刚此，米被符合电
行衰减校正以提耑其检测效果。下前胁单个䌶节良悪性病变的鉴刮，FI）G－SPECT 过能达到PFT 的探测决敏度，但 FI）（ SPFCT 的总体效果仔比 PES为差。因此．以碘化钢（NaI）晶体取代锗酸铋
像效果的临床型 PET（CPET）已经晋用士临床。此外，奛体材料的逪一步研究口终开始，已有报道硅酸镥（LSO）暃体可有效地探测様有低能和超总能正 H－子射线的功能，有望使 FDG （SPECI 得以改进而研制与 PET相间功能的真正的 Fi）G－SPE（T 亩有挑战性，肴望在 21 世纪将有所突破。与一垔要
的发展。

第4节 分 子核医学

分子学的迅速发展将生动地影响羊今后的底学实践，对于疾病的认识过程将从其临床症状，体征，病理改变进人化学或生化过桯的变化。也就是说从整个脏器进入细胞分子水平微细变化的过程。由于核医学的特点原本是以及踪原理即＂分 个＂为
学＂或＂代谢＂的PET显像盰代。不少分子生物学技术开始进入核医学，因此，所谓分子核医学扡就是结合分子生物学技术揭が人体内＂＂化学＂改变过程的分子水平异常的学科。

一，受体显像

分子核矤学的概念首先思从受体显像开始的。受体显像是选择合适的放射性配基与细胞内的受体部位结合而显示其所化部位的影像，它开拓厂－种更精细的诊断领域，可以＂为观察细胞问和细胞内的生物学过程提供窗口＂，特别是＂观察执行基泪编码指令的蛋约质生化讨程＂。受体研究涉及细胞之间机细胞与其他分了之间的识別，信息踪膜转导 （或传递）及细胞的生理和病理反店等生命现象。疾病使受体的数目和亲和力行所呚变，过去只能在：体外检测，现可在体内直接检测，这是分与核医学的
－大进步。此外在已知其配体结合位点结构的其础上形设计出更好的放射性配体。

二，重组基因工程抗体

重组单抗片段或基因工程抗体的应用是㘯 一个重要方面，使得放免显像技术的应用更趋宽普：众所周知．整分子抗体清除䍏，穿透力差．靶组织分布不均，人抗鼠抗体靼：非靯（T／NT）比值低，均为肿瘤的局部罡示带米许多困难。因此应用基
区肽段（分子呮別单元）等小分子川段，其穿透力，清除率和 Γ ；VT 比值有进 一步提高，体靸组织有均匀的分布，而U化真核细胞收高效表达，为抗体的生号开辟新途径：此外敢合抗体减少人抗鼠抗体（HAMA）区䌽，双价微型抗体

都是有赖丁基因工程技术的战熟才能进一歩用：

三，反义基因显像

妌记反义探钋基因显像，肿瘤胞浆中有癌基医过度表达的信息核糖核酸（mRNA），标记人工：合成的䕓核甘酸，通过体内核酸杂交而显示狩异性的熎基因过度表达的癌组织，称反义业像。它汶映了核亚像技术发展到基因水平，荷乳腺㿋小鼠模型癌基因 cmycmRNA反义䖪像上经取待成㓛，但对于寡核恬酸的修饰，标记仍有待进一步砋究，

四，肽类放射性药物

肺类放射性药物合成，即使几个肽类地能合成和标记，起着重要的信息传递和调䒚作用，小分子量胝类的穿透了强，是对结构单元的重要分子识別系统。

五，基因治疗

㠻因治疗研究作为人类疾病治疗的一种新庄法已经开始，将有功能的基因转移到病理细胞以赋于。新的功能，为遗传缺陷性疾病和肿瘤治疗旨出一个新㡯庐。核医学与基因治疗相结合可进行基因表达
疗，但这些厂作刚在起步阶段。

综上所述，分与核医学些然在受体显像和放免显像中有 5 一些发展，但尚有不少上作有待进一步研究和完善，这是面向 21 世纪核医学的重要方间。

（亲丞谟）

参 考 文 献

1．刘秀态，等。中国核医受：学会少略。中华医学会中瓦核学会核医学会（内部资料），［997
2．王析真，等，核医学与核生物学基础及应用。北京：科学圤版社。1990
3．夏宗钦．等．实验核资学与核约学，武汉；同济大学出版社． 1989
4．赵照扬．等．核医学．上海：上海科学出版神，1981

6．抱奇晓，刘秀杰．实用临床核垁学，北宗：筫子能出年社． 1990
7．潘山公，林景敞．放射性㤥素诊断学，北京：原子能持

第 2 篇

CHINESE MEDICAL IMAGING

第4章 显 像 仪 器

第1节 γ 照相机

 Anger 发明。 γ 照相机的问世给核素业像及核原学带束了深刻的拿化，它使传统的逐点线吽桪描成像变成 「一次成像，使静态成像过渡到动念成像。使抲部成像发展到全容显像。到日前为止，尽管各相先进影像设备相继H1现，但 γ 照相机的动态功能及全守湿像仍永葆青春。另外，观代发射计算机断层仪。尤其是单光f发射计算机断层仪。它的守体部分仍然是一台 γ 照相机，仅加上：开旋转机构及重建软件而已，研究 γ 照相机的成像宗理及结构对了解

发射计算机断层（ECT）也很有替助。

一，γ 照相机的基本结构

γ 照相机是利用大型闪炼晶体一次成像的核医学影像设备。 γ 照相机自发明以来，县然有了不断发展及更新，但基本结构仍与原始的Anger 型 γ照相机有许多相似之处。本书仅以 Anger 䇥 γ 照相机为例介绍 γ 照相机的县本结构。

终1－1县 γ 照相机的结构原理图。它由探头，佂号处理电与学线路及显示－部分组加。探头是 γ照相机的核心，γ 照相机探头犹如一台普通照相机的镜头，它的性能好坏决定了整台机器的好坏，也决企了影像的质量。

图41y照相机结呁原理图

（一）探头

1．准直器 探头最前端有一个铅钨合金的机械装置，叫准直器，没有准直器，从人体内发射出的 γ 射线会打去到晶体的任何部位，形成不了定点影像，准直器的作用就是把人休内发射出的各向分布的 γ 射线定向准了宜到旨体的一定部位上，形成探头表面位置与人体内分布的一一对应关系。由于成像H的和要求不同准直器分许多类型，根据形状准今器分成钟孔，平行孔利斜孔 二种类然，斜孔除单纯斜孔外，还叮构成发散算及会聚型准商器。根据

使用的放射性核索能㧹范围准直器有低能，中能及高能 二种， 150 keV 以下称低能， 150 keV 至 350 keV 称中能， 350 keV 以上称高能。从灵敏度和空间分辦考虑，准直器还有高灵敏型，高分辨型及通用刑之分。有了一台 γ 照相机以后，如何选配准直器呢？没有固定的规律，主要根据需要。但首选的是通牛低能平行孔准直器，这也是 y 照相机探头的标准配件，再接下来可步否低能高分辨，再其次是高能或针孔准南器。

帘间分辨和灭敏度是准直器的两大主要性能指

标：空间分辨描述准直器分辨两个相邻的点源或线源最小距离的能み。典型平行孔准古器空间分辨山达 7 mm ，灵敏度表示入射的 γ 光子通过准相器的白分比，一般为 6.1% 。当然，准直㗊的类型不同，疋敏度和空间分辨边不相问。们加淮广t．器与不加准直器，探头计数率会相差 1000 倍这个概念应经常边住，准直器还有一个重要性能在：断层成像中尤其重要，即均创性。均邠悔是准直器对一个均的分布的而源的响应，加丁精细的准直器，均匀蒋境存 5 铝以下，准出器孔径大小不均冰，壁间隔原度不一致，孔与孔之间不平行，孔间石粘连和堵寒等均会影响准占器的均彸性。

2．晶体 紫靠准奢器的部分是莳体．品体是探头最重要的部件。晶体为闪炼体，γ 躬线在晶体内产生肉光，㫛体主要吽能指标有阻止本领，光转
收 γ 光子能量转换为可规光的份额大，发兆时问短，死时间短。可提高栄头的计数率特性；

铊激活的碘化钠晶体［NaI（＇Il）］牛止．本领离。可制成大晶体。价格便宜，在 γ 照相机哳广泛采用的 9 mm 厚晶体几乎可吸收全部 120 keV 光子能量。
光转换效率低。仅为 10 兴，发光时问长 $u .8 \mu s$ 。易潮解。晶体形状有圆形，方形和知形三种，规格用火小和厚度表示。圆形奛体以直径表示大小，矩形和方形唱体以边长長小゙大小，旦前最大面积晶体可达 $600 \mathrm{~mm} \times 400 \mathrm{~mm}$ 。昆体厚度用 mm 表小（传统用英寸），最薄晶体 6.2 mm ，最原 12.5 mm ，γ 哭相机常用晶体厚度为 9.3 mm ，薄占体可提高 γ 照相机的分辨本领。

奛体在探头小起波长转换器的作用。放射性核素产生的 γ 光子为高能光子，波长短，不能被帅体后面的光电倍增管（PMT）接收，必须把它转换胧波长与可见光一样的光子才能被 PM丁接收。

3．光电偣增管 晶体后面是光电倍增管（pho tomuttiplier tube），起光电转换和电－f倍增的作用。从闪胨唱体出来的光和打吉在PMT的光防极上产牛光电子。光电子被PMT的打拿极战 2^{n} 借放大，最后什PMT阳极上欵成一个心湬冲，这是 γ 照相机最初始和最主要的佮号。 γ 照相机的位置信号及能量信号均由这个信号它：牛。

光电倍增管在：γ 照相机中依晶体抢状排成各种

阵列。PMT的数H根据舁体大小而定，最少19个，最多可超过 100 个。㙄加 PMI 的数国叮以改善 γ 照相机的空间线姓，但损害分辨，光电倍增管有做形，分角形和方馱，㭵形光电倍增管大小以直径表小，常用的为 7.5 mm 和 5 mm 。

花式 γ 照柜机巾，为了故普光子的空间分布。使其平坦分布在 PM_{-}^{-}间。光电倍增笛与楽休间加光导，光导用一种塑料材料荆成，对 γ 照相机空间分辨有损失。圲代 γ 照相机均充掉光守。采用电子学线路来收善光的空问分布，娟体当光中倍增管之问涂上一抾硅油，增加光的耦合。

（二）电子学线路

1．放大器 从探头输出和捯号卜分微疗。一般什豪伏级范周。 γ 照朴机的后处理线路贾求有定幅夏及形状的规则信号。放人器的口的就是对探头输出的佮号进行放大利成形。放大分前置放大和主放人两部分。前置放大器放在探头内。以減八信号的传输损失。

2．单道脉冲幅度分析器 单迨脉冲幅度分析器是 γ 照相机的重要组戊部分。其版能是用束选择放射性核素的能皆。单道分析器由下，下試和基线三部分电路组成。上，下閾之间构成䆚変，改变隻究可以选择能谱的范㭏，γ 眧相机的窗宽浫常选住： 20沙。基线有时又称中心线，应于窗的中心，改变基线可以政变窗的位置，迎就㣽改变能㬐打光自峰的位置，从向选拝了放射性核系的能鱼。单道分析器的其线必须1分稳定，漂移会严重影响图像质量，影响动态研究的活度一时间曲线。高床不稳定及閾值线路漂移均会影咐基线的稳定度。

3．取样保持线路 放射吽：衰变足随机的．γ照相机探测的闪炼隶件也是不规则的。石统计涨落．有的闪胏事件持续时间长，有的持续时间浢。但位号处理线路总是有一定的扵问要求。为此。 γ照相机的信号处理必须有 一个缓冲库。把探头送来的信号先存放起束，然后舟分壮送到后面的处理线路，这部分电子学线路称为取样保持线路，该部分线路在很大样度卜决定了 γ 照相机的死时间或最大计数率特吽：

4．校丁线路 巷式 γ 照相机一般只局均永性校正线路，现代 γ 照相机㖑 ECI 都有成焦校正线路，而目这种校正不炏靠㹬件完成，加上 「软作配合。这些校正包括光电倍增管増流奥动校正，均匀

性校正，能量校正及线性校正。光电㙵增管增益自动校正采用一个标准光源。它模拟放射性核素标准源的频率及活度，光源通过光年导向每一个光电倍增管。如果光牦倍增管性能及增益无变化，它们的输出应该是稳定的：如果由于某种原因发生变化，其变化会传绘一个比较器，比较器与一个微处理器相连接，微处理器将这种变化分析辰，反馈［去控制光电倍增管增兹的调捅。这种计算机控制的增益自动调节速度快，精确，极大地改善和保证了 γ 照相机的均匀性。均匀性校正，能量校正和线性校正虽然概念不同但校正庘法相闰，都是建立一个校正知阵或校正图，把 γ 照棹机探头分成许多小区域或矩阵，用泛源和模型采集均匀性，能量或线性的数据，经计算转化成校正矩阵，称校正图，存于硬盘的特殊区巾。进行病人数据采集时，采集程序会白动把各类校正图调人采集区内，进行实时校证。

（三）显示和照相

γ 照相机的病人图像最终显示在高分辨的阴极射线示波器上，并可以用 X 光胶市或彩色打印把图像记录下来，显方器可改变图像的显宗大小和格式，还可调节灰度刻度或彩色等级。灰度刻度或彩色等级表示计数与亮度或颜色的关系，有线性关系，对数指数炎系，方波尤系等。让确选择这些关系对照相质量很有影响，尤其是全身显像，比较保险的方法是首选线性关系，然后再根据具体情况进行调节。

多帧照相使用 X 光胶片。 X 光胶片的优点是对比分辨好，医生喜次看，但其照相贲量受许多因素影响，应正确选择多帧照相机的昰度，对比度和曝光时间，最好的方式是选报不同的条什组合，选择其中最佳的作为最后临床应用。

二，γ 照相机成像原理及分类

（一）γ 射线的探测

γ 照相机探测 γ 射线的原理为闪胨探测法。注射人人体内的放射吽核素发射出的 γ 射线经准直器后打击在 NaI 晶体上， NaI 晶体产生的闪光经一组光电倍增管收集形成电脉冲。产生在光生倍增管中心的闪胨事件形成的脉冲最强，其次是周围第一圈，越偏离中心的光电倍增管产生的信号越䂧，位置信号和能量信号是出所有光电倍增管的输出之和形成的。

人体内射出的 γ 射线经准直器后仅有下分之一可进人 γ 照相机的探头，同样，进人 γ 照相机探头的闪胨事件并不是所有的都在显示器上形成闪伢图像，脉冲幅度分析器将限制窗窝以外的闪胨事件启辉。

（二） $\boldsymbol{\gamma}$ 照相机位置信号的形成

前面已经提到，γ 照相机位置信号是由光电倍增管产生的信号形成的。模拟式 γ 照相机均有 一一个位置线路，它们由一组电阻矩阵构成，位置线路的核心是给每一个光电倍增管加上一个与距离成比列的权重先阻。设第 J 个光电倍增管的权重安阻为 R （I），权重因于为 $W(J)$ 。则 X 方向的位置坐标应为每个光弛倍增管权重电阻与权重因子乘积之和。用公式表示为：

$$
X=\sum_{J=-v}^{N} W(J) \cdot R(J)
$$

这样得品的位置坐标显然与能量有关。为此。用所有光电倍增管输出的和去除以上的位置坐标就得出与能量无关的位置信号。

$$
X_{P}=\sum_{j=-N}^{v}[W(J) \cdot R(J)] / \sum_{j=-N}^{*} T R(J)
$$

Y坐标可以用间样的公式进行计算。设沿 Y轴方向各光电倍增管的权重因子为 Q （I），呴应为 $R(I)$ ．则位管坐标经归一化厉为：

$$
Y_{\mathrm{P}}=\sum_{\mathrm{J}=\mathrm{m}}^{\mathrm{m}}[\mathrm{Q}(\mathrm{I}) \cdot \mathrm{R}(\mathrm{I})]_{!} \sum_{\mathrm{J}=\mathrm{m}}^{\mathrm{m}} \mathrm{R}(\mathrm{I})
$$

用以上方法计算位置坐标对电阻矩阵的电阻值精度要求很高，同时稳定性也要很好。如阻值随时间，环境变化，将直接影哬闪胨点空间优置测定，造成非线性畸变，损害 γ 照相机的均匀性。

（三）γ 照相机的分类

1．固定式 γ 照相机和移动式 γ 照相机 γ 照相机有大晶体，铅准直器及机架，重量在1吨以上，一般做成固灾式结构，机架与地面都有守固的结合，但为了把 γ 照相机用于急救及病房心伐功能监测，也可做成移动式 γ 照相机。移动式 γ 照相机专为使男 ${ }^{99 \%}$ Tc ，${ }^{201} \mathrm{Tl}$ 低能放射性核素而设计，晶体小而薄，探头轻，体积小，主机与计算机合为一体，它不还用于高能放射性核素和大脏器显像。

2．模拟式 γ 照相机和数字式 γ 照相机 模拟式 γ 照相机和数字式 γ 照相机的概念过去一一直不十分清楚，经常是把加有计算机的 γ 照相机称为数字

式 γ 照相机．其实这种分法是锴误的。 γ 照相机的发展分三个阶段。初期为模拟式 γ 照相机，最终的图像是模拟图像，典型产品为原Techaicare 公 时的（）mega 500 利 Sigma 438 。 4 期阶段的 γ 照相机为模拟，数宁混合型，γ 照相机的原始隹置信曹和能量信号仍是模拟的，但压面经过与模数转换（an alcg－to digital－conversion）及信号处理，泈像叟小为数字化图像：这部分 γ 照相机几乎坞 ك主要市场。连许多单光子发射计算机断层（SPECT）的探头部分地是这种混合䦙，近」年由下证电子断云成像的要求。诈名双探头 SPECT 开始用于止电子符合断层成像，这种成像方式对单头的计数效率和最大计数率要求很高，模拟式 γ 照相机不能适应技术发䍗的需要，从而出现了真正的数字式 γ 照相机。数字式 γ 照相机的主要特点是光电倍增管辰面跟一个模数转换器，収消了电阻矩阵位置线路。图像的位䈯由光电倍增䈏位置编码及光电倍增管的输出脉冲幅度决定。数宇式 γ 照相忆提高了门数率特性。降低了死的间，改善了影像的位伹精度，为各种校正提供了更方便的条件，是一种与传统Anger 型 γ照相机完全不相同的新型 γ 照相炕，在现代双探头，一探头 SPECT 中广泛雨用。

3．局部显像和全身显像的 γ 照相机 尒身显像在骨转移肿癁的诊断上 直是核医学的－个优势，所有现代 γ 照相机除了局部静态显像和动态研究外，都有全牙显像。全身昆像有探头移动或床移动两种方式，各有其优缺点。全身出像在业小器 E得到的是一婮缩小的全身放射性分布洛。图像短阵是 512×128 或 1024×256 。全身亚像田匹部分组成：探头或床程动机构，位皆编码线路，图像弿娍及显示跟踪。扵捎速度和扫描长度叮仟意选择，也叮道过售息密度计算扫描速度，㐁身业像的空间分辨一般比静态像差。现代的全身显像不采用位稙裏减的办法，而是把几段缩小的静态像连结起來构成 －幅全身像，这种方式可以改善图像的分辨能力。

三，γ 照相机的缺陷及校正

（一）γ 照相机的缺陷

1．γ 照㫟机的图像非线性 y 照相机讣算图像位置采用的是光电倍增管的能壁输川加电阻权雨，这种位置与能量低赖关系决定了 γ 照相机仔在一些基本的难以克服的缺陷。首先是位䴙北线性，

位置韭线性指的是一个放射性的点源沿探头表面移动时，X，Y 位置坐标的变化不的点练移动距离成比例。点源从光电倍垪管的边缘向忯心移动时。中心的光收集效率高，边缘的光收集效率低。结果造成一均匀泛源影像在炎电倍增管中心成热风，光电倍增等之问戊冷区。如米用一线源成像，则线源影像呈波浪式分布，此种现象称 γ 照相机的影像非线性。

2．γ 照梱机的图像排均的性 γ 照相机非均匀性时许多㡴因造成，主要䅫凶是探测效率的非均的吽和非线性。探测效率的非均匀吽是由于定 一个光电倍增管的能谱不一致造成的；非线性是由于位宣信咨发生了畸变，造成图像明品＂冷问＂和＂热区＂。除上述两种原因之外其他原因过可造成非均匀性．如显示器的显小究度代均匀．採头边缘效庶。等。

3．周有空间分辨的极限 γ 照相机的湖有分辨由探共本身性能（不带准直器）和相关儿于线路㓋定。阿个主要因素限制了闹有空间分辨：骎头内的多次散射及光于的统计涨落。假如一个光于在探头中经过散射后两被探测，则位置发生偏移，撒射对空间分㒕的影响与晶体品度，射线能量们炎，低能放射性核系，琵体越厚空问分辨越差，光子的统计涨落对空间分辨的影响与．lnger 型y照相机的原理有关，Anger 型 γ 照相机的位嵸信白为模抧信号．与光子能有关。 VaI 唱体的光了转化为电羊的效率很低， 140 keV 的 γ 光子 1000 个仅能转化成 30 个光电子。然后这些光电 ${ }^{\circ}$＂再经 PMT信增形成 X，Y位置信号。此外同 位置点的 γ 光子数迪是随怄变化的，其大小遵从泊松统计分布。类似一钟形分布。由于上述鿌刚。即或一个很聚焦的队㷧点打本到晶作上．最终产耂的影像位置也不是一个点，而是一个小圆盤，这个圆盘的井程就是 γ 照相机探监固有分辨的极限，目前最好的 γ 照相机，探头国有分辨约 2 mm 半高宽（FWHM）。

4．准自器的影响 前面已经提到，要形成 γ射线的影像，准冝器是不可缺少的。但准直器址给 γ 照相机的影像带来许多限制和缺陷，主零包括空问分辨，灵敏度和非均的性。使用准直器的结㬗是降低厂 γ 照相机的空间分辨和灵敏度，增列了非均匀卦。准直器的空间分辩是由准南器的孔大小和半影决定的。即或一个很小的孔，点源通过后所成的

影像也是一个小闾盘，其半径就是准直器的空间分辨。平行孔准直器的空问分辨一般化 7 mm FWHM左另。系统空间分辨为固有空间分辨和准吉工器空间分辨的平房和再开 $j_{j}, ~ R s^{\prime \prime}-\mathrm{Rc}^{-} \div \mathrm{Ri}^{\prime \prime}$ ，准 $\mathrm{I}^{\prime} \mathrm{F}$ 器的录敏度用光子穿过准直器的有分比来表ぶ，半行孔
影像的非均匀性氜它的机械加巨的丁 乙水平有火。壁问陵，孔大小，孔的垂古性等的一致䛨都会对影像的非均匀性造成影唎。

（二） $\boldsymbol{\gamma}$ 照相机的校正

上述所讲的 γ 照相机的缺觕有的可以校正，有的则是不可以校神约。例如照相机的固有分辨种探测位䈯的不精确性，准南器的空所分辨利，尽敏度都
线性两项。

1．拉均空性的校正 非均匀性㫨简单的校正是调节光弛倍增管的增益，这一校正包括手动校正：和计算机向动校正网种。这种较化的业要目的是调节能一光电倍增管的能峰．使其均修丁分析器的佫内。更细的校正是把探头分成 64×6.1 知阵，年一
校正表，称为能昆校泟。能热校正是否起作用或校正效果如何，有许多方法可以判断，最简色的方法是用窄窗（ 5 名）来集泛源，看敏一少电倍增管的 ＂热区＂是否均诗，它对 γ 照相机的均刢性有极大改善。比较普遍采用的均诗性校甹方法是用一微处理器来完成，先采集一均伀泛源的静态㹣像，建立。一校正矩阵，校正矩阵的每一，个并元实际」，是一些大于 1 和小于 1 的校正因f。探头灵敏度低的区域存放一个大于 1 的因子。探头起䑤度问的区域存放一个小土 1 的因与．采集疬人数据时，用该校正矩陏进行实时校正。还行的均约性校 F 是采井减少讣数或增加计数（count skimming＇count add ng）的）j法，核为法是在探头有效视野肉找出一最＂热区＂或最＂冷吏＂，然后使其他计数低的区域或高的区域向它们看齐，从而达到均伀的强度哥示。

2．非线性校迟 非线性校正一般任 γ 照相机的生北厂内进行。对士不同能显有不同的线性校正模型，线性校正模型有线条型及止交方块型两类。不管采用哪一类，都是用一，均匀泛源采集线性娭型的静态泛源图像。从该泛源图像数据中拟合出模型的标准几何位置及备点相对于该几们们置的俘置畸

变 Δx 或 Δy ，将各点的 Δx 和 Δy 汇寨起来建成一个线性校正㹣。当采集病人数据时，用该线性校正：图对病人数据进行非线性校 FF 。线性校正表建立好之后一般不需要改变，可侦用很长时＂日！

第2节 单光子发射计算机断层

一，概况和发展历史

单光子发射计算机断层（single photon emi－ sion computed tomography，SPECI）是发射计算机断层（emission computed tomography，ECT）的一•种光型，发射计算机断层还创括正她子发射计算机断层（pusition emission computed tomography． PET），Sl ${ }^{3}$ E（T是核素血像仪器的进一一步发展。它继线了 γ 照相机的优点和咑能，又可主现像X线 C丁 样的断层成像。

SPECT 的研制丁作起始于1963年，Kuhl和 Edwards 等人研制了一种称为横问断前成像的扫挜仪，该设备具备了现代X线CT 的概念，装夏包括两个准直的射线探头，跨越扫描体平行移动，然㞕严旋转一战空角度重复扫描，这实际七已获得了不同方向的投影影像。但由于 Kuhl 等人旪期应用的图像重建仪是简单反投影法。图像模糊，对比度差。图像知阵单元活性分布与实物无很好的对应关系。Kuhl 等人以后义做了不少故进，引人广汁算机校平．最终在 1979 色做出了第一台 SPEC丁．称 MARKIV。SPEC厂真工用于临朱是在80年代初期。主要商业产品为 γ 照相机型 SPEC丁，最早的 SPECT厂家是美国的Technicare 公可。我国从 1983 年压始应用 SPECT，日前企国共有 SPECT仪近 100 分。

SPECT 告经过了儿代的发展。早期产品呈单搽头，计算机非常简单。许多校正都用手动电位器调节。现代 SPECT 发展到双探头，三採头，计算机功能大大加强，全部校正均出计算机椌制，包括均匀性，线性，能量白动校正，泟示也采用与高分㸷的玕窗名示，图像的处理十分灵活方便，孕外有的机器采用与滑环技术。这样不仅提离成像速度。还为分组迟代重建雰来厂好处。分组迭代重建算法可以提高信噪比，攻善影像㕣量。在准直器方面，采用了微铸型高工艺，以提高准直器本身的均匀

性。扇形准育器的应用大大惿高了SPECT 的空问分辨利灵敏度，使脑血流断层叮分洁脑部更细的结构。有不少厂家的双探头 SPECT 还配上「符合线路，可进行氟 $\left[{ }^{18} \mathrm{~F}\right]$ 脱氧葡萄糖（ ${ }^{19} \mathrm{~F}-\mathrm{FDG}$ ）高能正㢆子断层成像。

二，单光子断层的成像原理

（一）什么是单光子

单光子的概念是相对于正电子或双光子放射性核素而言的。在放射性核素昆像中，γ 光子的探测分两种方式：一种是单光子探测法（SPD），一种是符合探测法或双光子探测法（ACD）。 γ 光子的两种探测方式是由形成 γ 衰变的放射性核素的性质决定的。 γ 照相机利 SPECT 使用的放射性核素一般由反应堆生产，如 ${ }^{9{ }^{942} \mathrm{Tm}} \mathrm{Tc}$ ，${ }^{1.1 .1} \mathrm{I}$ 等。这种类型的放射性核素是富中子的，它们在哀变中发生中子，质子相万转化，把一个中子转化成质子，同时产生一个 β 粒子，称 β^{-}衰变。裹变过程用公式表示为： $n \rightarrow P+\beta$ 。经过 β^{-}衰变的原子核还有多余的能量，原子核在回复基态时以 γ 光子形式放出名余能量。这种方式产生的 γ 光子是单个的，单方向的，单光子的名字由此而来。

（二）SPECT 的图像重建

SPECT 实现断其的方法与 X 线CT相同，采用图像重建。由已㧅不同方向的投影值求物体断云面内各点的分布，称图像重建。

在数字图像म！，图像单元的大小，悊一个图像单元的计数都不是连续的模拟量，而是用二进制单位比特（bit）表示的数字量。图像可划分成许多小的方块或单元，称矩阵单元，常用的图像矩阵大小有 $64 \times 64, ~ 128 \times 128, ~ 256 \times 256$ 等。显然，如果知道了图像矩阵中每一个矩阵单元的值，一幅图像的性质也就知道厂。在 γ 照相机型的 SPECT 中，我们事先并不知道各个矩阵单元的值，我们仅从测㫣中知道沿某一方向上各矩阵单元的和，称射线和／或投影。从不问方向的投影中找们可以求非知阵单元的值，这就是图像重建的任冬。下而我们用一个二维矩阵单元为例来说明图像重建原理，实际小用中只是矩阵大小发生变化。设四元矩阵中每一个矩阵单元的放射性活度值为 $\mathrm{C}_{1}, ~ \mathrm{C}_{2}, ~ \mathrm{C}_{4}, ~ \mathrm{C}_{4}$ ，探头在水平，垂直及斜位二个方向的投影值分别为 5 ， 11；7，9；8，8。图4－2出示厂图像重建的过程。

图1－2 图像重建原㻦
a 原始矩阵 b 射线和 c 小同方问投影值 d 重建厉图像疑阵

由已知的投影值可列出三组方程：
水平方向：$\quad C_{2}+C_{2}=5 \quad C_{3}+C_{1}=11$
晋直方向：$\quad C_{1}-C_{3}-7 \quad C_{2}+C_{1}=9$
斜位方向： $\mathrm{C}_{1}+\mathrm{C}_{4}=3 \quad \mathrm{C}_{2}-\mathrm{C}_{3}=8$
解上而三组方程得 $\mathrm{C}_{1}=2, \mathrm{C}_{2}-3, \mathrm{C}_{3}=5$ ， $\mathrm{C}_{2}=6$ 。将计算结果代人矩阵中，求出计算的投影值，与测量的投影值比较，两者完全一样。

这种简单解线性方程的办法对理解图像重建原理是有帮助的，但在突际应用巾，知阵要大得多。求解的方程数也很可规，这种方法不仅繁顼，费时，还很不精确。在SPECT 中，常用的图像重建方法是滤波反投影法（FBP），FBP 決快涑，精确。但要求完整的投影数据，只适用于完全角度的图像重建。对一些不完全角度的投影可以采用迭代法，达代法的缺点是计算时间长。

三，SPECT 的优缺点及其校正

前面已经提及了 γ 照相机的缺陷及校正方法。 SPECT 的投影数据就是 γ 照相机在不同角度的静态图像，SPECT 断层影像除了它的一些优点以外。还继承了 γ 照相机的缺陷，增加了一些新的缺陷。认识 SPECT 的这些特点对获取最仹影像，减少误诊极有好处。

（一）SPECT 可改善影像对比度

对比度与影像质量有极大尤系，探测病变的能力不仅取决干空间分辨，还取决于对比度。同样的

空间分辨，在高对比度下可以探测小病变。在低对比度下则无法区分病变与周围组织。对比度与诸多因素有关，包括放射性药物，血本低及本底计数，散射线暞壁穿透，显示器和照相系统。对于 SPECT来垪，主安是减少 5本底计数，用公式表示为：

无本底时的对比度

$$
C_{1}=\left(R_{1}-R_{0}\right) /\left(R_{t}+R_{6}\right)
$$

有本底时的对比度

$$
C_{1}=\left(R_{1}-R_{1}\right) /\left(R_{1}+R_{\mathrm{t}}-2 R_{\mathrm{b}}\right)
$$

R_{1} 为病变区计数，R_{u} 为周闱红织计数， R_{l} 为本底计数。在平面显像时， R_{h} 为病变」，下重忮增加的本底，而断层时 $\mathrm{R}_{\mathrm{b}}=0$ ，因此断层显像可以显著提高对比度。

（二）SPECT 增加噪声

噪声是核匤学影像共有的缺陷，但在 SPECI中尤为严重。噪声分统计噪声（statistical noise）和结构噪声（structural noise）两类。统计噪声又称为随机噪声，它白成像光子的放射性统计涨落决定，在影像中，噪声的高低与信息密度密切相火。色息密度定义为单位面积计数（计数， cm^{2} ）。信息密度高，则噪声低；信息密度低，则噪声高。在数字影像中，每一个象素单元的讨数就表示信息密度。例如，一象素单元计数为 100 ，则统计噪声为 10 ，统计精度为 10% 。

SPEC．T 的投影影像是一些低信息密度的影像，噪声高，务外反投影重建过程对噪声还要加以放大，因此尽管 SPECT 提高了影像对比度．但由于它的晶啋声，使综合探测病变能力升未茂著提高。有临末监用中，如果要探测小的病变，一企要隹提高信息密度的条件下应用断层，否则事与愿进。

（三）旋转中心漂移

旋转中心漂移是 SPECT 固有的缺陷。SPECT的旋转中心是一个虚拟的点，它位于辌转轴上，旋转轴位于断层床的中心。㽰转中心漂移指的是投影影像矩阵中心的偏移。旋转中心漂移的主要原因是探头札架与地面不垂直，务外电子学线路，地磁场，计算机模数转换及显小电路都对旋转中心有影响。旋转中心漂移造成断层影像空问分辨变差，图像质虽下降。旋转中心漂移可用计算机软件加以校正。
（四）哀减对断层影像的影晌
衰减从 SPECT 研究初期就是一大难题，日前

仿然是 SPECT 所有校正中最难解决，最费时问和经费的问题。在 SPECT 中，衰减影响指的是体内分布的放射性活度从体内发射出来后，由于经过的组织路径和结构不同，射出光于数减少。从而造成断有影像虚假的缺损。对病变而兴，衰减会影响病变的形状，大小及分布，造成假阳性。衰减可以通过校正加以克服，但采用不同衰减校正方法进行系统的临床比较尚末见报道。

（五）部分容积效应

断层影像都有一个特征分辨容积，它为一小圆柱形，由断层的平面分辨和轴向分辨所决定。小圆柱高为轴向㘯辨的 2 倍，直径为平面分辨的 2 倍。断云影像反映的洁性分布是以这一体积元为基础的，如果物体大小等于或大于这一特征体积，则断层影像如实反映其忌最和活度；如果物体大小小寸这一•特征体积，则断层影像仅反映其总量，而反映不出真实的活度。假如有一组放射性活度相同但大小不同的圆球，它们的断层影像活度会发生变化。球越小，活度减少越严重，这一现象称为断层影像的部行容积效底（partial volume effects）。部分容积效应对断层图像的定量和定性解释都有影响，在病变周㭏和胜器边缘更严重。部分容积效应在已知系统空间分㒕和病变大小情况下可以校正，但实际工作中仅能用模型进行。用于病人则相当困难。

四，SPECT 的质量控制

（一）SPECT 质量控制所用放射源和模型

1．点源 点源用于测试和校正 γ 照相机的固有均匀性和能量分辨，测量影像的象素大小和校正旋转中心，不同的用途对点源的制作和要求也不一样。
（1）均匀性测试用点源：测试探头的固有均匀性是用点源模拟一東平行射线，对点源的大小尺的无严格要求。关键是点源离探头的距离要足够迊，用一小瓶盛 $1 \mathrm{I} .1 \sim 18.5 \mathrm{MBq}(0.3 \sim 0.5 \mathrm{mCi})^{10 \times \pi} \mathrm{Tc}$溶波即可制成一一点源。
（2）象素大小测试用点源：测试象素单元的绝对大小，要求能精确确定点源在探头上的儿何位置，这种点源要求八寸小䛔且准直。这类点源可用上述点源舞于一壁厚 3 mm ，底部开有小孔，孔䄱小于 2 mm 的小铅罐制成；也可用 - 块厚 3 nmm 的铅板，始一个 2 mm 的小孔，把点源小瓶置于孔中

心制成。
（3）旋转中心校正用点源：校正旋转打心的点源是为今测量探头在不同角度位置时点源的话置，尤此要求各向同性，不能准直，这类点源有的要求有一个长柄以便测试的固定其位置。有的可直接置于断层床上。有以ド三种简便制作方法：（用一小汗射器，吸入高比活度的 ${ }^{\omega}$＂$T c$ 溶液，使与钟头接口的小管颈部活度达 $37 \mathrm{MBq}_{\mathrm{q}}(1 \mathrm{maCi})$ 。然后投去有放射性的针头，换上清洁的针头。制作的关键是控制＂${ }^{*}$ Tr 浚液只能在针头的小管腔内，不污染渌射器的其他部分。（将高比活度的 ${ }^{*} \mathrm{FIC}$ 溶液滻任直径小寸 2 mm 的小棉球上，烤丁盾寨入内径 22 mm的小玻璃管的一端。注意不要污染管臂，汤用有机玻璃棒制成顶盖可拆卸的小容器，容器外径为 7 mm ，内径为 3 mm ，外高为 10 mm 。内高为 3 mm 。顶盖拧上后注人 $37 \mathrm{MBq}(1 \mathrm{mCi})^{-9 m} \mathrm{Tc}$ 溶液。央拧紧顶盖。注意不要污染外壁和严防 ${ }^{199 \mathrm{~m}} \mathrm{~T}$ C 溶液外涺。

2．线源 线源用于测试穼头的空间线性和空间分辨，也可用于校正 SPECT 的旋转巾心。线源叮用移液管或硅胶管制作，管长 300 mm ，内洤小于 1 mm ，管本身的直线性是最雨要的。管内注入 $37 \mathrm{MBq}(\mathrm{mCl})^{\mathrm{nm} m} \mathrm{mc}$ 溶液。注意不要污染外壁和封紧管子的两端。

3．面源 面源用丁测试和校正探必的均会吽：。最友便的面源是活度为 $185 \sim 370 \mathrm{MBq}(5 \sim 10 \mathrm{mCi})$的 ${ }^{5} \mathrm{Co}$ 周体面源，${ }^{\circ} \mathrm{Co}$ 的米哀期为 273 天，用到 －定时间后要更换新面源。另一种面源为液体白
大小应能覆盖探头的有效视野䒫大于 1 勺兴。面源内部 ${ }^{n 7 n} \mathrm{Tc}$ 溶液的高度不应该小于： 15 mm 。灌溶液方便，表面无气泡隦着，易于密封，勿污染外壁，

4．SPECT 系统模型 国际凉？•能机构（IAF．A）推荐 Jaszczak 模型作为SPECI质量控制的系统模型。它由圆村形容器和内插件组成，圆柱形容器高 200 mm ，内径 2013 mm ，容量 6280 ml ，内雨件包括不同大小的圆杜棒，空心和实心圆球。圆扯形窝器单独使用时可测试断击的均匀性，配合内插件可测试断层层面空问分辨和 SPECT 的其他性能。

（二）SPECT 的性能测试

1．均准校iF

（1）目的：SPECT 均匀性校正指系统均匀性校正．故用面源加准南器（推荐用低能高分㲔平行

孔准直器），在无面鿌的情况下。 打问临时使用点源作囷有均约性校止。但必须指出，固们均匀性校正不能对准南器产牛的非均匀性进行校止。追者有可能对断层影像产生非均诗性，表现为同心伪影环。
（2）材料和方法：（1）肘 ${ }^{\circ} \mathrm{Co}$ 面源或完 ${ }^{-r \mathrm{ra}} \mathrm{Ic}$ 的面源：（3）探头加低能畐分辨平行孔准广器。面朝上，面源紧贴探头表面：（3）能峰 $14^{11} \mathrm{keV}$（＂rme）或
 64×64 或 128×128 ，总计数 $32 \times 10^{\circ}$ 或 $12 t \times 10$ 。 Looml．${ }^{\circ}$ ．
（3）数据处理和分析：采集数据日动存入校正：解阵中。在断层数据采集时对原始数据进行实吋校正。

2．旋转中心校正
（1）日的：旋转中心校 古悬在临床数据采集时，对旋转中心漂移进行实时补偿。各公司的 SPEC 软件都有旋转中心校正只体操作程序，㗐依其要求进行。
（2）材料和方法：（将探头配上低能高分㒕平行孔准直器，移至断层采集位犆：匀将准备好的旋转中心校正用点源（有的公可规定用线源）置子断「县床上，将探头暨 0° 或 93° 位惪观察点源是否位于旋转中心．可在湿小器上，观察点源是念在矩阵中心，
可炠定的程序进行，其中包括㚜阵大小，视野放大，挖头旋转方向，旋转间隔等。如采集条件与公可给定的程序不符合，则采集的数据不能用干旋转巾．心校正：（1）数据处理和分析，旋转中心数括采集后，计算机会自动对病人断层数据采集逝行旋转中心呩移的突时校正，有的公可还可以示旋转中心漂移的情况。

3．断层均匀性测试

（1）日的：测量 SPE（「横问断层尝面内的挴匀性：
（2）材料和方法：（1）将圆柱模㤠汗满蒸馏水。再注人 $710 \mathrm{MBq}\left(20 \mathrm{mC}\right.$ ）的＂${ }^{\mathrm{m}}$ TC 溶液弁混匀：置则枰模型于断层床上，模型长轴与床晋行，外轴与旋转轴里合。任任何方向均包括仕视野内：信采集条件为 $140 \mathrm{keV}, 20 \%$ 窗宽． 360° 旋转． 6° 间隔。视野放大 1.5 倍，矩阵 61×64 。每投影像计数 5 ， 16° ．总计数 $3 \times 10^{\prime}$ ；（1）重建横问断腎影像，沾波

膡数用 Ramp（尤 Ramp 滤波函数可用 Butter worth，截止频率 0.3 •陡度因 5 10）。素厚度 3 个象素单无，加哀㨔校正；（5）数据处虫和分杤。断界均匀性的评价。断层均刐性比 γ 照相机平㣚影像券，一般枳分均约性们 10% 以上。用日测模型横断面影像即可判断均匀性的好坏。影像基本均公，无明络环転伪差和＂冷区＂，＂热区＂，均创性好，可开下临床诊断。出于方法复杂相必要吽不六，一般常规质控不作断云均的非的定皆计算。

4．象素单元绝对大小的测㱏
（1）H的：象素单元的大小用要米（mm）央小，称为象素单元绝对大小。象素单元绝对大小对衷堿校正，空间分㱖测定和䦻离测章及某些全最分析有实用价值。
（2）材料和方法：（1）探头加低能高分辨平行孔准克器，面朝上，置两个点源于探头视野内，住于视野印心两侧，相距 10 cmm ；采集网个点䅞影像．采集条件与 L述相同。佃知阵为512人512，视野不朋放大，总计数－＇定不要使点源影像计数过载，点源影像计数边载会使点源位号计算发生偏原：3井重心法确定点源影像的几何住䈯。设点源影像扩展的［域为 $\Delta_{\mathrm{t}}, \Delta_{i}$ 。每个象素的计数作为 C（I，J）．则位置坐标为 $\dot{\Delta}:=\mathrm{I}_{2}-\mathrm{I}_{1} . \Delta_{1}=\mathrm{J}_{2}-\mathrm{J}_{1}$ ， （ I 和 J 为象素位置），为精确起见，后在不同庁问冬测儿次取平均侑，则两点耑缘素数为

$$
\mathrm{N}=\mathrm{COCX} \mathrm{CO}_{1}-\mathrm{CO}\left(\mathrm{iX}_{2}\right)
$$

$C O G X_{1}, ~ C O C X$ 为点源的重心位值，象素绝刘大

5．旋转巾心呩移的测试
（1）甘的：旋转巾心呩移的测试访在 360° 范闱内进行，测具每两个相对 180° 位䈯投影像的呩移。四扗旋转中心漂移随角度变化的出线，横坐标为角度，纵坐标为旋转颃心漂移（用 mmn 表示），本文仅㘯 $90^{\circ}, ~ 270^{\prime}$ 和 $0^{\circ}, ~ 180^{\circ}$ 两组数值平均讨算旋转中心湦移。
（2）材料和方法：（1）置一带长枫的点澋于断秐休的前端，并将长柄固定在断层床」，使点源伸出床面，点源前位于探头视斯中，在 X 方向偏离旋转轴 100 mm ：（2）在 0° 和 180° 采集点拣的可自影像。矩阵 2.56×256 。总计数以不产生计数过载为准：管朋重心法测定点源在网幅影像中的位罗，其值分

偏离琁转轴 100 mm 。分别体 90° 和 277° 采集两幅平 1影像：匀用重心法计算点源在两幅影像中的位置，具値分别设为 X_{1} ，和 $\mathrm{X}_{-} \cdots$ ；（6；旋转巾心的计算公式为； $\mathrm{R}_{1}=-\left(N+1-\mathrm{X}_{1}-\mathrm{X}_{18}\right)$ 2． $\mathrm{R}-\mathrm{N}-\mathrm{N}-\mathrm{i}-$
大小， $\mathbf{\lambda}=256$ 。

6．断层空间分辨䄪测试
（了）目的：测集 SIPECT 横向断考层臬内的空间分辨，用FWHM 表示。
（2）材料和方法：（1）置—点源距旋转收心 1 cm内：（2对点源进行断念采集，矩阵 $64 \times 6 t$ ． 360%施转，旋转斗聄 200 mm 。圆形轨迹．每颃计数1， 30：了胃 Ramp 滤波断数重建断感影像：王对断层影像作剖面曲线，并计算 FWIHM：太数据处埋及分析。断层分辨与平面分辨相厓 10% 。如果相差大于 10% 㖪 2 mm ，则病对设备政重建软件进行检查，断层空间分辨与旋转半径的大小有很大火系。

7．SPEC厂 总体性能测试
（1）月的：该项检查叮足性，半定量和走量评价 SPEC「的条项性能指标，其中以均匀性和空问分辨最为主要，共余性能包括对比度，体积灭敏度等。
（2）材料和六法：（1）选好 SPECT 憶型，推荐用 Jaszczak 模型；（2）将不同大小财柱溙内插件置子圆杜形模型内加蒸馏水，加 $740 \mathrm{MBq}(20 \mathrm{mCi})$ 的 4．${ }^{m 1}$ 「c 溶液，摇匀，充满容器，排尽气泡．加蒸媳水密封待用；这置模型于断层床上，模型だ轴的床长朝叶心线平行。探头旋转至任何位置时，模型均应位与视哩中心：（1）采集条件为矩阵 64×64 。 360° 旋转， 6 间隔，圆殷轨迹，珄帖计数 $3 \times 10^{\circ}$ 。 Zoom1．了：（5）重建影像用 Ramp 滤波隣数：面衰减校让，衰煘系数 0.11 。
（3）数据处理与分析：分析 SPECT 模型横断影像的项毗，空问分辨以分㒕出圆柱棒为依据，均匀悭以无明显环形偊影和＂冷区＂，＂热心＂为合格。有朋显环形或蜂窝状伪影，空问分辨很差，分不出 15 mm 圆柱棒均表示仪蛞性能变块，需及时调整后方可使用。
（4）SPECT 性能测试的频度：（1）象素单元绝对大小的测试每季度一次：（2）旋转山心漂移测试每 ノ 1 次（INFA 推荐拇周一次）：（3）均匀性的校正和

测试每周一次；（4）旋转中心校正每周一次；（5）总体性能测试每月一次（IAEA 推荐每周一次）。

第3节 高能正电子发射断层成像

一，正电子及正电子放射性核事

正电子（positron）是与电子（负电子）相类似的一种带电粒子，正电子带一个正电荷，有一定质量和能量，正电子所带能量的大小决定了正电子在组织中消火的射程。正电子由两种方式产生：一种是高能 γ 光子与原子核相互作用产生对子效应（正电了和负电子）；一种是正电子放射性核素在 β^{\prime} 衰变中产生正电子。

正电子放射性核素可由回旋加速器，直线加速器及正电子放射性核素发生器来生产。医学上所用的正电子放射性核素冬数由回旋加速器生产。这种加速器小型，结构紧凑，自带射线解蔽装置，安装在医院，称为医用回旋加速器（medical cyclotron）。

回旋加速器用射频场（radio frequency）和磁场 （magnetic field）加速带电粒子，如质子，気核等。回旋加速器的主要部件为两个半闾形的真空电极盒，射频电场加在两个真空盒电极上，它的极性是可以互换的，一个为正时则另一个为负。磁场的作用是保持粒子运行在圆形轨道上。离子源产生的质子，止核在真空盒中不断加速，每加速一次轨道的半径增加一次，粒子的速度（能量）也增加，螺旋运动的结果是粒子在偏转极作用下射州真空盒。除了上述基本结构外，现代医用回旋加速器还有靶系统，束流引出及诊断调节控制系统，计算机自动操作控制系统等。加速器的主要指标有粒子能量，束流强度，靶数目及种类。粒子能量用 MeV 表示，束流强度用 $\mu \mathrm{A}$ 表示。常用正电子放射性核素核反应过程见表4－1。

表4－1 常用正电子放射性核素核反应过程

㓌建		189\％
उप		2.45% 知
W	Y4，\times ，\％	9.04
¢		30 3 3 6
－		14.85

迬：$\left.{ }^{14} \mathrm{~N}(\mathrm{~d}, \mathrm{n}){ }^{25} \mathrm{O}\right)$ 中，${ }^{14} \mathrm{~N}$ 为靶材料，${ }^{15} \mathrm{O}$ 为生成的跋电子放射性核素，（ d, n ）为妞核，中子核反应，如速粒子为気核。

二，正电子成像的发展历史

正电子成像经历了近半个世纪的发展，从 50年代初期止电子脑肿瘤定位显像到现在多环，多层面全身断层显像。从机型上正电千昆像也经历了三个阶段：正电子扫描机，正电子 γ 照相机及 $\mathrm{PE} 1^{\circ}$ 。从影像类型上，起初为正电子平面显像，X 线 CT问世以后发展为断层亚像，近几年又发展成为全身断层显像。下面简要介绍证电子成像的发展历史。

从 50 年代初至 60 年代末，这 20 年为正电子成像的初期阶段，主要为正电子平面显像。1950年初，Wrenn Good，I Iandler Sweel 和 Brownell等人用正电子放射性核索作脑肿瘤定位显像。1960年初 Anger 等人研制出正电子 γ 照相机，用高能准直器及厚晶体可获得 511 keV 单光子的正电子放射性核素平面影像。这一时期，正电子显像发展缓慢，机型单一，用途局限，侣这一时期也有正电子发射断层的尝试，由于没有好的数据处理系统及末使用滤波反投影技术，最终木获得成功。

1973年英国 FMI 公司 Hounsfield G．N发明了 X 线 CT，这一新技术一出现就受到了放射学及核医学界的极大重视，奠㱏了现代医学影像学的基础。正电子成像也受CT 技术的刺激有了快速发展，PET 问世，初期为 NaI 晶体的多唱体正电子发射计算机断层仪。这一时期的主要机型有美国华盛顿大学的 PETT，Montreal 神经研究所的 Posit－ ome，此外还有洛杉矶加州大学的 PEI。初期阶段的 PET 为单环，空间分辨 25 mm FWHM，灵敏度 $5 \times 10^{4} \mathrm{CPS} / \mu \mathrm{Ci} / \mathrm{ml}$ 。第一台商业 PET 是由美国 EG\＆G Detee 公司生产的 ECAT II，它是根据原 PETT III研制出来的，由 66 个 NaI 探头组成圆形六角阵列，每个探头可与对侧的 I1 个探头进行符合，机架有转动和平动两种运动，达到多个取样的日的。

锗酸铋（BGO）晶体为 PET 探头技术的改进带来了革命性的变化。1980年初，Montreal 神经研究所研究出了第一台 BGO 晶体的PET，开始为单环，以后为双环，代表机型为 Positome II 和 Posi－ tome Ill 。与此同时瑞典，日本，加拿大和美国其他一些中心也在 PET 的发展上做了大童工作，取得了不少突破。特别值得提出的是日木岀津公司研制出了可同时用于正电子和单光子断层成像的

ECr ，称 Headtome II 和 Headtome III。此外美国休斯顿大学研制出 了飞行时问的PET。机型为 TOFPET。这一时期 PEY发展的主要特点是技术发展快，机型芕，探头材料由 NaI 旨体转为 BGO奛体，空间分辨和灵敏度都有了很大改善，但缺点是仍停留于实验室研究，探头坏数有限，临床应用不多。

80 年代中期以后，PET的发展有了突破性变化，其主要特点是探头中分离 BGO ）晶体向模块式晶体转化，该项专利是用 CTI 和㱜门子公可发明的。模块式探头大大提高了PET的空间分辨和灵敏度，机械稳定性和可袁性也大火改善，使PEI由实输室进入临床应用。

多环 BGO晶休构成的 PET无疑是当前抆先进的正电子成像装置，但它价格最费，一台好的 PET售价约200 万美元，近 2 年米由于 ${ }^{18} \mathrm{~F}$－FDG在肿瘤诊断中的广泛应用，促使人们寻找新的正电子成像方法。大黒的临床研究证实，在双探头 SPECT上他可以买现正电子断镸成像，成像质量，所用 $\left.{ }^{1 k} \mathrm{~F}-\mathrm{FT}\right) \mathrm{G}$ 剂量和采集时间均能满足临床要求。 SPECT－PET 成像有高能准直成像（HECI）及分子符合成像（MCD）两种。MCD）战像在美国获 FD \wedge通过，有数家公司已有商品出售。

三，实现正电子成像的几种方法

根据探测 $511 \mathrm{keV} \gamma$ 光子的方法和使用仪器的类型，正电子成像有以下几种途径：

（一）高能准直成像法

高能准点成像（high energy collimation ima－ ging）是一一种单光子探测法，该广法只探测正电子放射性核素酒没辐射时产生的 2 个 $511 \mathrm{keV} \gamma$ 光子中的一个，因而用普通的 SPEC厂 就可获得 511 keV 的正电子断层影像。主要的改生是设计专用的 511 keV 高能准直器。 511 keV 高能准直器有以下技术指标：准直器厚 $80 \sim 100 \mathrm{~mm}$ ，准直器孔大小约 4 mm ，壁间蒚 2.5 mm ，单孔壁穿透小于 5% ，准直器重约 150 kg ，准直器野大小 $200 \mathrm{~mm} \times$ 400 mm 至 $250 \mathrm{~mm} \times 500 \mathrm{~mm}$ 。为了保持探头机械平衡，高能准直成像都采用双探头 SPECT，计算机自动从低能档换到高能档。此时机器能量范围从 $50 \sim 400 \mathrm{keV}$ 扩展到 $100 \sim 560 \mathrm{kcV}$ 。此外机器的线性，能量，均匀珄校正表均要按 511 keV 制作。

高能准直成像的优点是价格便宜，SPECT 机型不用做大的改动，不损害普通单光子放射性核素 （如 ${ }^{\text {wen }} \mathrm{Tc}$ ）的使用性能。作心肌断层显像时，可同时得到心肌 ${ }^{99 \mathrm{~mm}} \mathrm{Tc}$－MIBI 灌注像和 ${ }^{15} \mathrm{~F}-\mathrm{FDG}$ 心肌代谢像。对判断心肌存活有很大价值。高能准直成像的空间分辨和夷敏度都很差，不适宜作脑及肿瘤的正电子断层成像。

（二）分子符合探测成像

正电子符合成像已有近 30 年的历史，早期用 Anger 型 γ 照相机和多探头系统，近期用双探头 SPECT 实现断层成像。符合探测成像近两年受重视的主要原因是 ${ }^{18}$ F－FDG在肿瘤和心血管疾病中的应用日益扩大，尤其是在肿瘤学中的应用获得重大进展。 ${ }^{12} \mathrm{~F}$ 半衰期为 110 分钟，允许用非 PE＇厂的方法进行筰合探测成像，${ }^{18}$ F－FDG 被评为 1997 年最受欢迎的放射性药物。许多生产 SPEC厂 的厂家在双探头SPECT 机上进行了正电子符合探测战像的开发与研究，取得了重大成功，并已在临床应用中得到证实，其临床价值和图像质量受到肯定，并且都相继中请或获得了美国 FDA 的通过批准。各公司实现符合探测的原理都是相同的，但各公司对这一新技术的命名各不相同，有的公司称分于符合探测（molecular coincidence detection，MCD）或符合探测（CD），有的公可称正电子符合探测（PCD）。有的公司称体积符合采集和重建（volume coinci－ dence acquisition reconstruction VCAR）。

符合探测利用了湮没辐射产生的两个 γ 光子的直线性，同时性这两个特点。直线性即两个 γ 光子互成 180° ，探测的基本要求是两个互成 180° 的探头，双探头 SPEC Γ 的探头机械结构完全满足这一要求。直线性的另一个优点是对人体内发射出的 γ光子进行了电子准直（electrical collimation），不需要机械准直器，从而大大提高了探测效率。双y光子的同时性要求采用一种特殊的线路一一符合线路，符合线路是核电子学巾常用的一种普通线路，该线路的核心是高精度时间控制器。所谓同吋到巡的两个 γ 光子总有一定的时间差，在 MCD 探测 ゆ，一般将这一时间差定为 $10 \mathrm{~ns} \sim 1 \mathrm{Hzs}$ ，在此时间内进人的两个 γ 光子视为问时发生的 γ 光于予以探测；在此时间外的两个 γ 光子则不予探测。由于随机符合（randorn coincidence）和散射符合（scat－ tering coincidence）的存在．真符合（true coinci－
dence）在总符合中所占比例仅有 1% 。因此要提高 AF电子戊像的信㰒比，单个SPECT的探头计数效率必须很富。SPECT 的最大计数率为 100 kcps 至 300 kcps 。在：M（I）探测中则要求至少在 1000 kcps以上，有的机器可这 7000 kcps 。

符合探测成像比高能准直成像分辨奸，灾敏度高，空间分辨可达 $5 \sim 7 \mathrm{mml}$ FWHM．比高能准直成像提高一倍，接近 PET 的空间分辨，SPECT 符合探测成像比PET价格伐宜，可作正电子断层成像和单光子断层战像，达到一机两用的口的。 MCD ${ }^{18}$ F－FDG 成像的进行身本任何部位的正宅子成像，包括脑，心脏及全身各部位的肿擂成像，当然 MCD 的功能及图像质量与 PE厂相比仍合相当差距。

（三）正电子发射断层

PET是正电子成像中最先进，取完善，最高级的仪器。它图像质樟好，灵敏度高，分辨病变小，達用面广，可做身体各部位的检查，最大优点是可以获得全身各分位的断层像，对肿溜转移，复发诊断尤为有利。

PE．由 探头，断层床，计算机及其他辅助部分组成。探头部分是机器的核心，边是耗资最大，影恦机器性能最大的部件。探头的主要功能是把泣人人体内的正电子放射性核亚发射出的㴗没光于转换成空间位置信号和能量信号，供后面计算机进行处理，图像重建形成断层影像。探州由晶体，光电倍增管，前端电㞎学线路及射线屏蔽装莭组成。晶体办 NaI 妆体和锗酸锊旵体（ BGO ）两种，应用最多，最成熟，性能及价格比地适中的仍是 BCO 旵体，晶体后面是光电倍增管，光电倍增管起光，电转换及信号放大的作用。并个昆体与光电倍譄管构成分离的探测器，它是PET 以沮没光子符合探测的基本单元，它决定了PET的分辨能力。许多分离探测器排列在 360° 圆成上㚘成环状结构，PET的分代，纵向视野及性能等多种因素取决于环的多少。第一代PET为单坏，第二代为双环和多坏，第三代为多环模块结构，第四代为多环，模块， 3D线构。

分离採测元件占用光电倍增管多，造价高，财敏度低，机械稳定性差。80年代中期，（：Tl公可发朋了块状结构探测器（block detector system）。这种结构是在一块大晶体上刻成讣多槽，把鼠体分

成 $\mathrm{t} \times 8$ 或 8×8 小矩阵。臣㽀联接 1 t 个兆电倍增管，这种结构不仅大量节省了光电储增管，血沙H改善了光的收集效率，关敏度机空间分辨业有所湜离，许多模块结构的探测器排列在 $36!^{\circ}$ 欧周上可以构成不同直径，不间环数的 PET．机械隐定䚹也大大提高，维修採头也很方便，由单一模块构成的 PE＇I 为 8 坏，如将 2 个模块并排可构城 16 环的 PET，H前最多有32 球的PET。
比，断层自数 $=($ 坏数火 2 ）－ 1 。单环有一一个断界面，欢环有 3 个断层面，24环有 47 个断层面。在同一坏内，探测器与对侧堔测器的符合为当接符合 （direct coincidenct），探测留场相邻球内对侧探测器的符合为交叉符合（cross coincidenct），多环汀） PET 则为多层面的交廹符合，3D－PET灵敏度会大侍政善，但敬射线的影晌会黑产重．必须加以校正。

探测器模块（detector modules）由 BGCO槽式站构楽体，光电倍增管及模块色与学线路组放，模块电于学线路确定要没韦件的空间位置。时问俭息和能䖝信息。所有这些信息包含在一•个 16 位的信宁输出忚，该信号输出给环接收器（ring recciver）。每个模块有一个环接收器。其山 2^{\prime} 位表示环位置
信息表示㴗没事件发生在模决中的空间坐标。另外 2^{5} 位表示事件的时间唐息，剩下一位衣小能蝔筒。

PET 的计算机在硬件刘软作上都与 SPECT 原显著差别，尤其是在设计 ROl ，图像处理等方面：硬件方面的主要要求是内存容量大，运算速度娦： PET 探测的符合线和计算的事件数比 SPECT 要高得多，因此PET 中所用的计算机一般为八型机或精简指令系统（RICS）微机T，作站。

四，正电子断层成像中的若干技术问题

（一）PET 断层像的构成

PET 断层像的构成与 SPECT 相同，采男滤波反投影法（FBP），但投影影像的含义及坐标表示法却有所不同。SPECT 原始投影影像为探头位于不同角度的 γ 照柑机平面像。用直角坐标 $\mathrm{P}(\mathrm{x}, \mathrm{y})$ 言小゙。青SPECT 中，表示影像中的某一点用 x ，y

两个位垍坐标就可以与，图像重建的将投影影像先滤波再反投影到同一坐标体系上，即得懬向断息影像。

体 PE厂 中，孤立的一个空间则胨点是毫无总义的。胭火㴗没鎘射（anmbilation radiation））炎子总是成对出现，两个互成 180° 的探义探测湮没光子构成一条符合线，称线响府（line－oi－response， LOR）。LOR 在极坐标系中叮用两个参数米农示，角度 Q 及半径 r 。 Q 和 r 都是相对视野中心而言的．I．（Q．r）构成 PE厂投影影像的基本点．PET 中的每一个湮没闪燃点可以存许多条 LOR 。在极坐标中，以半径为横坐标，以角度为纵坐标，众多的 LOR 形成一条正炫冊线。每一个沮没鎘射闪胨点何 条平弦曲线，众多的闪胨点构，戊一幅重叠父错的正弦图（sinogram）。正弦图是PET 的原始投影影像，正弦图的知阵大小就是横断断层影像的矩伡：大小，正弦图经滤波反投影构成断云影像。

（二）真符合，随机符合和散射符合

影啊正电于＂符合探测成像影像质量的一个重要以素是真假符合的区分及校1下。真符合足构战 PET断沄图像所需的湮没辐射 γ 光子，真符合数越多，图像质量越好，真符合 γ 光子必须具备 三个
 180° ；（3）两 γ 光子能量火 611 keV 。尽管在上地了符合探测中采用了电一子准自。去拈了机械准直器。单个探头的探测效涳大大提袁，但必须注意，真行合数远远低于单个探头的探测数，这是因为符合探测效率为单个探头探测效率的平 \boldsymbol{j} 。设羊个探头探测效率为 ε ，则符合探测效率为 $\varepsilon^{\prime \prime}$ 。理想情况下 $\varepsilon=1$ 。由于湮没辐射事件发牛的空间位置以及组织的吱收影响，单个探头的探测效率可能仅有 0.1 或更小，符合探测效率则小于 1% 。因此提高探头的捘测效率是增加真符合数，增加图像伿号的火键，

随机符合是股符合的一种。它与兵符合的市要区別是两个 γ 光子毫无时问与空问的相互关系，但在符合时间窗内被误认为＂闰时＂发生的两个 γ 光子而探测下来。随机符命增加图像噪声。严重影响图像对比度。随机符合数（ N_{K} ）${ }_{-j} \mathrm{j}$ 单个探必的计数率（ $N_{+}, ~ V_{13}$ ）和符合分辨时间 t 的溗积成正比，即 $N_{k}=2 t \times N_{1} \times N_{3}$ ，减小随机符合有以下几种方法：（1）降低单探头的计数筫。化临沐会用山减少随机符合就是要椌制注人剂照，不是剂壁越狺，图像

质量越好，从随机符合公式中可以看执，随机符合数与年个探头计数率平方成正比。耐真符合只与探火计数率一次方成正比。在低计数率时．增加计数。真符合增加明显：在高计数凝时。增加计数。随机符合增加明显。珹少不符合分辨时问。符合分辨咐问与楽体材料，光电倍增管输听眿冲上升时问以及电子学线路分辨时间有火，在机器设计时心i统一，考虞。（3）从总符合数中减去随机符合。西门子公言觅用超迟时间窗（delayed time window）的办法扣除随机符合，㱏迟时间窗的时间宽度与采集时间窗相同。 目此在延迟狛间窗内测定的随机符合数！与采集符合窖中测定的随机符合数相同，从总符合数中减去延造窗内的符合数即对随机䈈合进行广校」。

散射符合是古散射线产生的符合，它的立要特点是光于能量小于 511 kcV 。 11 应向不线 180° 。符各响应线（LOR）随散射产：生的空问住置而变化：散射胙合影响图像的位置精度，造成PET图像空间分辨降低，对比度变羞。敬射分探头内部散射及探头外部散射，探头外部散射由人体红织中的散射产生。组织巾散射对影像质量影响最大。不为组织中散射的房向变化不易测定，从而符合啝底线的应向也不特测定。例如组织巾某光子散射后的方向与原方向仅差 10° 。但由此产生的符合响应线与原符合响应线的牛径可能相差 85 mm 以上，探头内散射对影像质量影咁较小。因为它的能量损先较小。方的变化有限。剩余能挂的光子夜同一探头块内与
应线的半径改变也不大。块状结构 BG（）探测器对消除探头内散射是很有效的，探头外部散射可通过控制能帘及其他－－些数学方法加以校 E．PET 的出产厂家均将散射校正列人自己的系统软件中。

（三）衰减校正

衰珹校正（attenuation correction）在．PET 分坒分析巾是十分重要的。尽管 511 keV 光子比低能少子在组织中穿透力强，吸收少，但由于符合探测的复杂性，光子在组织中约衰减对影像质童的影响在： PET 巾比在 SPECT 中严重得多。符合探测效率为丽个单探头探测效率的乘积，符合探测的两个光子要通边两个方向，衰减路程加长。任何一个探头灵敏度的下降均会对符合探测效率造成严重影响•从䛔影响影像空间位淔的定位精度和质量：心脏，纵隔，腹部，盆腔的PET断层及MCD常需做衰減

校正，全身断层在腹部做衰减校正更有必要。
正㐌于断层中常用的衰减校 IF方法是外源穿透校正法。该方法的基本假定是 511 keV 的双光子在组织中 I_{-2} 及 L_{2} 两个路径方向的衰㺂与单个 511 keV 的光子在路径 $\mathrm{L}=\mathrm{L}_{1}+\mathrm{L}_{2}$ 上的衰减是相同的。穿透衰减校正可以用单光子探测法，也可用䈃合探测法。外源既可以是正电子放射性核素，也可以是单光子放射性核素。正电子放射性核素，如 ${ }^{68} \mathrm{Ge}$（锗），半衰期为 9 个月，单光子放射性核素，如 ${ }^{37} \mathrm{Cs}$ 。在 PET 中，外源装在环形模型内，该模型古定在探头的准直器环内。采集病人数据前先做衰减采集（大约 $5 \sim 10$ 分钟），然后给病人注人正电子放射性核素进行病人数据采集。除穿透校正外，正电子断层中也有采用其他方法做衰减校正的，如几何校正法，混合校正法，CT，MR 衰减校正法等，这些方法都有一些特殊的要求，存此不作详细介绍。

（四）正电子断层的空间分辨及灵敏度

空问分辫和，敏度是正电于断层的两项重要指标。空间分辨用线源伸展函数（line spread func－ tion，L．SF）的 FWHM 表示，单位为 mm．影响空间分辨的主要因素有探测器材料，大小，信噪比及探头孔洤，高能准直成像的空间分辨主要由准直器决定。正电子断层成像巾，MCD 空间分辨为5～ 7 mm FWHM，高能准直器成像为 $11 \sim 15 \mathrm{~mm}$ FWHM，PET 的空间分辨为 $4 \sim 6 \mathrm{~mm}$ FWHM。正电子符合探测的空间分辨从理论上讲是有极限的，它受两个因素限制：一个是正电子的射程，另一个是㴗没鎘射光子不是绝对的 180° 。止电子的射程取决于正电于的能量，正电于从其产生点到与组织中负电子符合㴗没，其最大射程可达 2 mm ，这 zmm 距离是测不准的。另外，湮没轱射 γ 光子只是准 180° ，其角度偏差约 0.5° 。角度偏关也会造成空间位移偏差，其大小与探头孔径半径有关，这个误差也有 $2 \sim 2.5 \mathrm{~mm}$ ，因此正电子断层空间分辨的极限值为 $2 \sim 2.5 \mathrm{~mm}$ 。正电子断层的灵䑤度用一个高 200 mm ，直径 200 mm 的圆杜模型．内允正电子放射性溶液进行测定，单位为 $\mathrm{CPS} / \mathrm{mCi}_{i} \mathrm{ml}$ 。灵敏度与探测器晶体的厚度，探头的数目，坏数多少，光收集效率等有关。在双探头的SPECT－PET中，晶体厚度是一个重要因素，晶体學度对 311 keV 光子的空间分辨影响不大，但对灵敏度影

啊很大。在 MCD 巾，SPECT 的晶体厚度加厚到 1 ＇2英寸或 $\overline{5} / 8$ 英寸，晶体增厚以后对低能光子 （ ${ }^{99 \mathrm{rc}} \mathrm{T} \mathrm{c}$ ）的固有空问分辨会有一定影响，但对系统空问分辨和灵敏度的影响却非常之少，可以忽略不计。正し子发射断层的总体发展万问是提高性能，降低造价，推厂＂应用。具体途径有四方面：（1）研制和应用新的闪胨晶体，如 LSO，GSO 等，它们的特点是有高的光输出及知的光衰减时间。合新型光转無器件。普通光电倍增管的缺点是体积大，量子效率低，增益稳定性圧：新的光转换元件有位置灵敏光电倍增管 PS－PMT，砫光电一极管PIV，雪崩型光电二极管 APP 等。（3）前端电子学线路和采集系统的改进。（4）计算机图像处理。超大规模集成电路的应用，如用一个 16 片的 VISSI构成一个 16 环 PET 系统，反投影吋间仅为 27 秒。少一改进是在普通工作站中加快速板，叮缩短重建时间 $5 \sim 10$倍。另外，一些特殊的阵列处埋器（如 transputer）被采用来提高运算速度。新的PET设计方案用3维PET代替 2 维 PFT， 3 维与 2 维的主要区别是多环交叉符合替代了 2 环交叉符合。
（陈路祖）

参 考 文 献

1．表著果．影像核医学．第2版，北京：人民下生出版社，1999．12～22
？陈盛祖．医用高能止电子成像。闻外医学（放射医学核医学分册），1998．22：97
3．Fudinger TF．PET instrumentation：What are the limut？ Semin Nucl Med．1998．28（3）：247～26：
4．Patton Ja，Turkington TG．Coincidence maging with a dual－head scintillation camera．1 Nuel Med．1999，40（3）： 432～441
5．Wagnar H．N．A Brief history of positron emmsion lome－ graphy（PET）．Semin Nuci Med．．998，2s（3）：213～ 220
6．Lewellen TK．lime－of fligh PET．Semn Nucl Med． 1998．28（3）： $268 \sim 255$
7．Links JM．Advances in nuclear medicine m－lromentation： Consideration on the design and selection of an Imagnag systerrı，Eur J Nucl Med，1998．25（10）：1453～1465
8．Smith EM．OMera RE． 511 kev maging：SPECT．coin－ sidence，or both：Applted Radiology，1996，10：6－2 25

第5章 放射性药物

第1节 基 本 概 念

一，放射性药物的定义和分类

（一）放射性药物的定义

放射性药物（rediopharmaceuticals）系指含有放射性核素，用于医学诊断和治疗的一类特殊制剂。放射性药物可以是放射性核素的简单化合物，如碘
但大多数放射性药物一一般由丽部分组成：放射性核素机非放射性的被标记的部分。非放射性的被标记的部分可以是化合物，抗生素，血液成分，生化制剂（多肺，激素等），生物制品（单克隆抗体等）等。

放射性药物和放射性药品（radiopharmaceuti－ cal preparations）在中国是有区分的。作为放射性药品的显著特征是具有规格标准，可在市场上销咅，即被国家药品监督管理部门批准的。放射性药物则可不具备完善的规格标准，叮在当地药品监督管理部门备案，只可在研制单位作为医院制剂使用。

（二）放射性药物的分类

放射性药物存多种分类的方法：按放射性核素的物理半衰期可分为长半衰期（以日计），短半衰期（以时计）和超短半衰期（以分计）放射性药物。按放射性核素的生产：来源可分为核反䧹堆生产的（包括裂变），加速器生产的和从放射性核素发生器 （radionuclide generator）得到的放射性药物。按放射性核素的辐射类型可分为发射单光子，正电子， β 粒于等的放射性药物。按放射性药物本身的剂型可分为注躬液，悬浮倠，口服溶液，胶嚢，吸人剂 （气体，气溶胶）等放射性药物。按放射性药物的给约途径可分为静脉，动脉，腔内，鞘内，皮内，皮下等注射放射性药物。但通常是按临床核医学的用途分类（图51）。即体内放射性药物和体外放射性药物，体内放射性药物又分为诊断用放射性药物和治疗用放射性药物．体内诊断药物又分为显像药物和非显像药物，体外放射性药物主要指放射性核案

标记的免疫沴断试剂盒，这类试剂盒作为放射性药物是国务院发布的《放射性药品管理办法\％明确规定的。由于体内与体外放射性药物有着多方面的区别，本章只论述体內放射性药物的内容。

图 J－1 按临床核区学学用途放射性药物的分类

二，放射性药物的特点及特殊要求

（一）放射性药物的特点

1．具有放射性 放射性药物是一类特殊药物，这是在《中华人民共和国药品管理法》中明确的。它之所以特殊，是因为这类药物兰不是像普通药物（general drug）有着明显的药理作用，达到有目的地调节人的生理功能之功效，它的特殊性在于利用其放射性核素放出的粒于或射线来达到诊断与治疗的日的。因此，在放射性药物中放射性核素发出的盖子或射线是昗有双重性的，一方面作为放射性药物的有效性，面不是＂毒性＂来评价；另一方面在放射性药物生产，制备或使用不当时，这些放射性核素又会对病人，医护人员造成鎘射危害，乃至对坏境造成放射性污染。如碘［ $\left.{ }^{13 \mathrm{I} I} \mathrm{I}\right]$ 化钠引人人体后，由于碩离子的生物学行为，很快被浓集在甲状腺组织，${ }^{131} \mathrm{I}$ 发出的 β 粒子对甲状腺组织产生辐射生物效应，破坏功能元进的出状腺组织或甲状腺癌转移灶。当放射性药物质量得到保证，使用的放射性药物剂皇恰当，则对中状腺功能元进症或甲状腺癌转移灶的治疗取得很好的疗效。利用 ${ }^{13 .}$ I 发发的 γ 射线具有的穿透能力，能从体外测定甲状腺组织摄取碘的能力，以判断甲状腺组织的功能，或借助仪器在体外看到甲状腺的影像，以判断甲状腺的

位置，大小，形态。如果碘 ${ }^{1 \cdots}$ I 化钓在牛宁制备卜或使用上色观问题，就可能守致诊断错误及治疗炎败。以全发生辎射危害或放射性污染等不利的一面。当然放射偝约物中放射性核素的这种奴重性，主要是指少数物理半衰期较长，㟔茾放射性核素而市，而大多数放射性药物门的放射性核素，特別是诊断用放射性药物，如含锝 ${ }^{-9}{ }^{-9 r r} \mathrm{Tc}_{-}^{-}$或超知物理捒衰期放射性核素氟＿－${ }^{-1 \times 5} \mathrm{~F}$ 等的约物，其危卓怆的一面是可以忽略不计的。

2．不恒定性 放射吽药物川的放射性核系是不稳定的。会自发的变为另一种核素吸核能态。这种按照一定规律变化的过程称放射性硋衰变（de cay）。这又是守前通约物代囘的，苔通约物在生产上ウ腐，在有效期内，其纯度，含量应该是不变的，但放射性药物则不同，不仅放射性的童随时问增加而不断减少，其内在质量地可能改变。正是这一点在放射性药物生产，制备，质量控制和临床使用中，均须给予足够的重视。例如碘｜${ }^{1: 3}$ I 工化钠，日前国内在以碲为靶材料的情况ド，其最终产品け会有碘 ${ }^{126} \mathrm{I}$ —杂质。由于 $\mathrm{F}^{12 ;} \mathrm{I}$ 和 ${ }^{12:} \mathrm{I}$ 的物理半裏期不同，${ }^{123} \mathrm{I}$ 的物理半衰期（ $\mathrm{F}_{1} 2$ ）为 13.2 小时，${ }^{1: \prime} 1$ 的 T． 2 为 4.17 天．产品生产以后的不问时间。出于两种放射性核素衰变，手成分；I 的望很快減少， ${ }^{13.1} \mathrm{I}$ 的量相对增加，导致产品不符合质量标准，直接影响临床使用效果。因此放射性约物从住产，制备，质量控制到临床使用，必须強调＂让录时间＂的观念。

与此相关的是大多数放射性药物的有效期很短，如含锠 ${ }^{-3 \|_{\mathrm{m}}}[\mathrm{c}]$ 药物一般为 $6 \sim 8$ 小时。这就给药品检验，经茕销售，进川口报白等诸多方面带来不便，显示出与前通药品极大不问的特点。

3．引人量少 普通约物一般－次用量大多以 g 计，最少也在 mg 水平。放射性药物的引入童相对少得多，如常用的含锅！${ }^{-9 \mathrm{~mm}} \mathrm{Te}$ ］放射性约物一次静脉汗射 $370 \mathrm{MBq}(10 \mathrm{mCi})$ ，其中锠 $\Gamma \% \omega_{\mathrm{N} .} \mathrm{Tc} 7$ 的质量仅为 1.9 ng ，与放射性核素锝一并汗射的其他组分也不过 mg 水汗，而且大多数一次使出，利此儿乎不存在体内蓄积而引起的化学地害性。即使某些治
酸盐 ${ }^{09{ }^{41}} \mathrm{~T}_{\mathrm{n}} \mathrm{MDDP}$ ），每疗程多次注射，引人化学物质的量也在 mg 水平。但对某些放射啭线物图加入载体或标记配体过量，也应考虑可能产生的药理，

毒理可题，如来屈南钐 $\left.{ }^{1 \cdots n} \mathrm{Sm}\right](\therefore \mathrm{Sm}$－EI）TMP）中游离的 EDTMP 过多。很可能将体内微量无素络合排出体外。

4．回辐射分解 人多数放射性药物是放射吽核索标记的化合物或生物活性物质，由 j－放射性核䒺核衰变发出的䊉于或射线的物理效豆，化学效后，牛物学效应，I直接作用于放射㤢约物本身．引起化合物结构的政变或生物活性农失，导致放射性药物在体内的生物学行为改变，这种现象称作H辐射分解（radiation decomposition），发生直稫邪分解的程度通常与放射性药物的放射吽浓度或比源度成江比，放射吽浓度，比江度越高•向辑射分解作用越明留。例如，缓解昰转移疼痛的治疗药物
肝㧐取增加，不仅影响厂治疗效果，出增加厂对扰人的鎘射吸收剂量。为避免自辐射分解．采取将 ${ }^{1,3} \mathrm{Sm}$ 和 EDTMP 分瓶供为．临用前作放射性药房刷时制备，是保证药品质革的右效措施。

基于放射性约物具有上述的显苦特点．体制定放射性药品管理的诸多政策上，必须体现近 $\mathrm{j}_{\mathrm{j}} \mathrm{H}$ 普通药品管理不同的特殊珄。

（二）放射性药物的特殊要求

放射性药物像其他药物一样。保证它的安全，有效是基本要求，此外根据临床使用目的。对放射性核素的选择和被标记物的理化，生物学行为，㧅记 今法以及标记后的人体吸收，分布，代谢和洁除有若下同的要求。

I．放射吽核条的选择 放射悱㤥尖有千余种之多，不是所有的放射性核索都适合制备放射性药物，只有那些核性质䦽合医学应用的放射性核索方可用来制备放射性药物。根据临床核医学用途，选择放射性核素的基本原则如下：
（I）治疗用放射性核素：发射粒子㖪射线的类型应具有较高的生物效应，如 $\alpha, ~ \beta$ 粒于或内转换电 5 ＂，俄歇电于＂。具有较长的有效半哀期，以增大对埍器官或组织的辐射，假于实现稳分的标记。
（2）诊断（北显像）用放射吽核素：以发出同质异能跃还（IT）或电子俘获（EC）衰变的核采为宜，γ能其呵从 25 keV 到 1 MeV 。物䞏半衰期适当，取决于实验时问。
（3）诊断（亚像）用放射性核素：以发出同质岑能柾迁（IT）或比子捊获（EC）衰变的核素为宜。 γ

能量可从 100 keV 到 511 keV ，对于 γ 照相机的最佳范韦是 100 keV 到 200 keV 。物埋半衰期应足够长，以便完成放射性药物的制备与显像，但义要足够短，以免带给病人及迕护人员较高的稫射剂量。

作为医用放射性核素要有尽可能高的核纯度，如若伴有核杂质，该杂质核素的有效半衰期应远短于主要核素。

2，被标记物 对被标记物总的要求是无毒，副作用，无致敏性，纯度高，具有明品浓集在靶器官或组织中的特点，便于被放射性核素标记。

3．标记方法 应简单，快速，标记后不需纯化。

1．标记后 应尽可能达到体内，外稳定。

第2节 放射性药物的制备

放射性药物的制备包括 ${ }^{-}$－个基本部分：放射性核素；非放射性的被标记物：放射性核素与被标记物的标记方法。

一，放射性核素

制备放射性药物的放射性核素存两个米源：基本米源与次级来源。基本束源是用核反应堆或者加速器直接牛产的放射性核素；次级米源是从称为放射性核素发生器的装置问接获取的放射性核素。

（一）基本来源

1．核反应墔生产 利用核反应堆强大的巾子流轰击各种靶核，吸收中子后的靶核发生重新排列，变为不稳定的（放射性的）新核素。这些核反应可用符号分别表示为 (n, p) ，(n, α) ，(n, γ) 以及 （ n, f ）。 n 为中子；p 为质子；α 为 α 粒子或氮核； γ 为 γ 射线；而 f 表示裂变。对核医学应用来说， (n, γ) 和 (n, f) 反应是核反应堆生产放射性核素最重要的核反应。表 5－1 列出核反应堆生产的部分矣用放射性核素。

表 5－1 核反应堆生产的部分医用放射性核素

： H	3．3	
\because	303	＊＊
\％	183 3^{3}	＇ $\mathrm{P}^{\prime} \mathrm{m} \cdot \mathrm{y}^{\prime}{ }^{\prime}$
		\rem，${ }^{\text {b }}$＇

		续表
	4604．4．	14．\％\％
\cdots	6n， 31	
Bo		
1	\％，\％	
\because	k． $\mathrm{m}_{\text {\％}} \mathrm{d}$	Temsy Th－
\cdots	7n 23－ 0^{3}	\cdots 亿nomx
$\because \mathrm{Sm}$	\％${ }_{\text {a }}$	
－＂现	40，\％	＂Rustor＂k
$\cdots{ }^{\prime} \times$	2．30 4	

核反应堆生产的放射性核素的优点是：能同时辐照多种样品；生产量大；辐照时间短操作简单等。缺点是：多为卉巾子核素，通常伴有 β 衰变。不利于制备诊断用放射性药物；核反应产物与靶核大多属同一元素，化学性质相同，难于得到高比活度的产品。

2．加速器生产 回旋加速器是通过电流和磁场使带电粒子得到加速，以足够的能量克服原子核势㕕，引起不同核反应，生成多种放射性核素。这些核反应可用符号分别表示为 (d, p) ，(α, d) ，（ α 。 $n p$ ），（ p, n ）。 n 为中子，d 为気核，p 为质子。 α为氦核。表5－2列出加速器生产的部分医用放射性核素。

表 5－2 加速器生产的部分医用放射性核素

	4 6 \％ 4 \％	，\％\％ 6 k
－	20.1 mim	：8fore
\because		（＇d．s）${ }^{\text {c }}$
＇s	3， 3 \％mas	\because N＇d．rif \｛j
＊${ }^{\text {\％}}$	103． $\mathrm{S}_{\text {mam }}$	
\cdots		
＂ $\mathrm{irg}^{\text {r }}$	270， B	
\cdots	2．ha＇${ }^{\text {a }}$	
：$\%$	13.8	
$\therefore Y$	74．2 ${ }^{\text {a }}$	

加速器生产的放射性核素的优点是：大部分是贫巾子核素，通常为发射 β^{+}或电子俘获衰变。正电子洅没放出能量相同，方向相反的两个 511 keV光子，利用 PET 或双探头符合线路探测，提高了核医学影像的分辨率。大部分是短半衰期或怊短半

衰期核素，可以给病人较高放射性活度的药物，缩短收集信息的时间，也可在较短的时间内重复进行核医学检查，污物较易处理。比活度高，大多数靶核与生成核素不属同位素，在生产时易于化学分离，使成为无载体或高比活度，便于医学应用。缺点是：水电资源消耗大，靶材料及制靶系统要求高等。
（二）次级来源
放射性核素发生器是一种从放射性核素毛子体系中分高出子体的装置。放射性核素母子体系巾，母体核素不断衰变，子体核素不断增加，最后达到母，于体放射性平衡。由于母，于体系不是同位素，易于用放射化学方法分离。每隔一段时间分高一次于体，犹如母牛挤奶，故放射性核素发生器又称＂母牛＂。以母子体系分离方法的不同，分为色谱发生器，萃取发生器和升华发生器。当前均以母子体的核素名命名发生器，最常用的发生器是钼 $\left[{ }^{99} \mathrm{Mo}\right]$－䦄 $\left.{ }^{99{ }^{99}} \mathrm{Tc}\right]$ 色谱发生器，简称锝［ $\left.{ }^{99 \mathrm{~m}} \mathrm{Tc}\right]$ 发生器（ ${ }^{99 m}$ Technetium generator）。图 5－2 是色谱发生器示意图。

图 5－2 色谱发生器示意图
在锠 $\left[{ }^{99 m} \mathrm{Tc}\right]$ 发生器中，依钿 $\left[{ }^{95} \mathrm{Mo}\right]$ 的生产方法不同，可分为核反应堆照射天然钿，富集钿 ${ }^{-98} \mathrm{Mo}$ ］，铀 $\left[{ }^{235} \mathrm{U}\right]$（裂变）等制得的锝［ ${ }^{999_{\mathrm{ru}}} \mathrm{Tc}$ ］发生器。此外，具有中国特色的以核反应堆照射天然钼制备的（凝胶）锝［ $\left.{ }^{99 \mathrm{~mm}} \mathrm{Tc}\right]$ 发生器，仅在中国有商品供应，其优点是：以天然锠为靶核素，成本低，以

铝酸钴凝胶装柱，克服了色谱吸附剂吸附容量限制的困扰，从向制成高放射性活度的发生器。其缺点是：洗脱效率低，洗脱曲线峰半宽度较宽，峰位靠后导致洗脱体积大，＂奶＂液放射性浓度低。

用于临床核医学的部分放射吽核素发生器如表 5－3。

表 5－3 用于临床核医学的部分放射性核素发生器

		4ify
M，${ }^{1}$	WTr，\％L	－ 4 ，\％${ }^{\text {a }}$
WY\％ 4	4 4 K 48	W，K＋1）
W54\％		Wamolu 1
4\％\％\％ 8	， 1 ， 6 mmm	
CTL ${ }^{2}$	W1\％ 6	W\％
L4 10	C\％，${ }^{\text {an }}$	2nol 1 IT
H5\％ 5.5	El， 6,	

上述放射性核素发生器除 ${ }^{185} \mathrm{~W}-{ }^{188} \mathrm{Re}$ 发生器外，均为诊断用。随着对发展治疗药物的重视。 ${ }^{188} \mathrm{~W}-{ }^{188} \operatorname{Re}$ 发生器很可能成为临床核医学常用的另一种放射性核素发生器。

二，非放射性的被标记物

非放射性的被标记物通常称㥢体，主要根椐诊断和治疗的不同目的来设计。例如，为了实现将放射性核素䦄［990 ${ }^{99 \mathrm{Tc}]}$ 通过血流将其滞留脑内，设计了依沙美䏡（exametazime $d \cdot l$－HMPAO）；为了使放射性核素较长时间滞留在骨组织中，设计了多种含磷（膦）化合物；为了使放射性核素浓集在肿瘤巾，制备该肿瘤抗原的单克隆抗体，然后用放射性核素标记该单克隆抗体，使其在体内特异地浓集在该肿瘤中。从这些例子不难看出，非放射性被标记物（配体）的作用，是携带放射性核素并将其浓集在所希望的靶器官或组织，以达到诊断或治疗的目的。配体是多种多样的，它可以是一般的化学药物如二．巯丁二钠（ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－DMSA）；抗生素如博莱霉素 （ $\left.{ }^{114} \mathrm{In}-\mathrm{BL} \mathrm{M}\right)$ ；血液成分如红细胞 $\left.{ }^{99 \mathrm{~mm}} \mathrm{~T}_{\mathrm{c}}-\mathrm{RBC}\right)$ ；生物制剂如单克隆抗体 ${ }^{111} \mathrm{In}$－CEA）。但也有一些配体是专门为核医学诊断或治疗设计的，如大多数心肌灌注显像放射性药物的配体等。对非放射性被标记物（配体）的基本要求是：（1）在 mg 级使用剂量，无毒，副反应；（2）能提供一个官能团．便于放射性核素标记；（3）放射性核素标记后的产品，具有体内，外稳定性；（4）易于制成＂药盒＂。

三，放射性核素与被标记物的标记方法

少数放射性药物的生物学行为仅表现在放射性，核索方哃，则不是元系（ ${ }^{133} \mathrm{Xe}$ ）就是完全离子化的分 $f\left(\mathrm{Na}^{99 \mathrm{ra}} \mathrm{TcO}_{1}\right.$ ， $\left.\mathrm{Na}^{1 \times 2} \mathrm{l}^{2,1} \mathrm{TlCl}\right)$ ，这些放射性药物没有标记的问题：只有当生物学行为表现在非放射性部分或放射性核素利作放射性被标记物两部分时，就涉及标记方法和技术问题厂。

一般来说，放射吽药物的标记分法包括合域法 （生物合成，化学合成），交换法，络合法（直接，间接络合）等。

（一）生物合成法

生物合成法是利用动物，植物或微生物的代谢过程或生物酶的活吽：将放射性核素引人到需要的分子上。胰腺显像用的唒［ $\left.{ }^{\prime} \mathrm{Se}\right]$ 盆氨酸，就曾经以生物合成的方法制备。对于生物大分一和结构复杂的难以通过化学区应途径进行标记的物质，以及为获得那些任生化过程巾有重要意义的标记物，生物合成法是一种很有用的方法，但在放射性药物制备中现已很少使用。

（二）化学合成法

化学合成法是制备放射性约物的最经典的う法，其原理与普通化学合成法相似，只是在合成中吏用了放射性核素作为原粠。化学合成法义分为遂步合成法（以最简单的放射性化合物按预定合成路线一•步步合成复杂的有机标记化合物），加成法（通过加成反应将不饱和有机分于制爷成标记化合物），取代法（有机分子 ${ }^{(1)}$ 的原于或原子基団被放射性核素或其基团所置换）等。

（三）交换法

交换法是标记分子中的一个或几个原子，被其有不问质量数的同种原子的放射性核系所置换的标记広法。由于标记上的放射性核素与被标记分子上被置换的非放射性原子是闰位素，因此除厂有同仿条效应外，它们的理化和生物学性质是相同的。交损反应是可椾反应，可通过调出反内条件（温度 pH 等）㕲加人催化剂以控制反应的进行。

（四）络合法

络合法的大部分放射性药物是将放射性核素以共价键或配位键的形式络合到被标记的分子小．被标记分子不含标记的放射性核系的同位素。这利标

记法称非同位素介人法。双功能螯合剂法也属这类标记法，不同的是先把某种劝功能螯合剂联接在被标记物的分f」，再将放射性核素标记到螯合剂 1．形成＂放射性核弯－鳌合剂－被标记物＂的复合物。此种方法大多用米标记多肽，单克隆抗体等。由于鳌合剂的存在，被标记物有可能非坝理化和生物学性质的故变，在临亲应用前应予注意。

四，放射性药物标记制备中应考虑的要素

标记方法的选择，标记产率的高低，是选择标记方法的重要因素。

（一）标记产物的稳定性

放射性核素与被标记物之间键合的形式与其稳全性密切相关，通常共价键合的标记化合物相对稳定。

（二）失活或变性

标记过程中，由于标讹条件的影响，使被标记物结榪改变或丧失生物活性。

（三）同位素效应

由于同位素相互问质量不同而引起的理化和生物学性质改变称同位素效壴（isotope effect）。原子量大的同位素间同位素效应微乎其微，但気标记是个例外。

（四）辐射自分解

由于标记化合物自身的放射性核素发州的粒子或射线作用．导致自身分解的现象称轻射自分解 （radioautolysis）。放射性药物的比活度越高，越易发生辐射白分解。辐射发生在溶液中地可能产生自由基，自由基能破坏标记物的共价键，引起间接轵射向分解。这是高放射性浓度的放射性药物常易产生的质量问题之一。

第3节 放射性约物的质量控制与质量检验

质量控制与质量检验是两个相关而不相司的摡念，质量挖制包括质量保证和质量检验 ${ }^{(1)}$ 质量控制是指为达到药品质量标准，生产厂家按《药品生产质点管理规范》要求而采取的一系列措施，质量检检是质㫣控制中的一部分，是指按照药品标准速行实验空检验。核医学科自行制备放射性药物，如利用核素发生器和配套药畣现场制备放射性药物，生

产超短半衰期放射性核素，制备放射吽药物以及利用放射性核素标记单占隆抗体氹行免疫显像或免发活疗等，扗鉴建立自し的质旨控制体系。

按照放射性药品的管理。出放射性药／生产俱应的成品或半成咶，药！负贪对药品生产过程及最终成品边行质垩控制（quality control）。达到保耻药品使用的㚣全，有效；由原院的放射性药房现场制备的放射性约物。在使用前负贳对自己制备的约物进行质黄检验，并保证安全，有效。因此，医院的放射性药房必须熟悉和掌握放躬吽药物质畜检验的全部内容和操作，并配备相应的人员和设备。

放射性药物的质童检验（quality assay）－股分为物理，化学检验和生物学检验两个j；角。物理检验包抑：对药物性状（色泽，澄明度，粒于等）的观察，放射性核素的鉴矨，放射性核纯度，放射性源度等检验项日：化学检验边括：注射波的 pH值（ pH value）测定，放射化学纯度，化学纯度等检验项月；生物学检验包括：无菌，热原，＇七物分布以及生：物活性等检检项目。

一，物理，化学检验

（一）性状

放射性：药物大多数为注射剂或山服溶液，一股为无色澄明液休。性状检验方法是在规定了一色照度的澄明度仪上，在存防护的条件下肉眼规察供试品的色泽和澄明度。虽然这是一杉经典，简易 j法，但在质量检验中却是重要的，因为遇到的 些不合格约品的性状是不符合规定的。少数放射性药物有颜色，如胶体磷 $\left.\right|^{-32} \mathrm{P} \mid$ 酸铭注，射液为绿色的胶体溶液；铬 ${ }^{51} \mathrm{Cr}$ ］酸钠注射液为淡黄色澄朋液体；邻碘 $\left[^{13} 1\right]$ 马尿酸钠注射液为淡棕色液体等。还有个別的放射性药物是含存颗粒的悬浮液，如铞「＂＇＂＇Tc］聚合问蛋自注射液，除了肉眼观察性状庐为白色暊粒悬浮液外，还应该在光学显微镜下检查其粒子的大小，不允许有 $\geqslant 150 \mu \mathrm{~m}$ 的粒子，这是个重姴的指标。

（二）放射性核素的鉴别

布药品标准的「鉴别」项下，指得是对已知物的鉴別，因此只要确证供试筘中放射性核素与标答琙使用说明北标明的核素—致，即认为符合规定。通常放射性核素的鉴別（radionuclide identification）方法是测定物理半衰期或用 γ 谱仪测定该核素的 γ 橧。

（三）放射性核纯度

是指某一放射性核索的放射性活洨占样品放射吽总活度的而分比。进行放射性约物放射性核纯度 （radionuclide purity）检验是很重要的，因为放射性约物中混有放射性核杂质，不仅会绘受检者增加不应有的鎘射危害，阳时也会影䏨显像的质量，如
放射性药物的质量标准中都朋确规定」放射吽核纯
杂质销 ${ }^{3 N} \mathrm{Mo}$ ］不得超过 0.1% ，应该注意的是．放射性核紫是在不断变化着的。凶此在给出放射性核纯度测定结果对，必须汸朋测定的朋问：如果某
一种放射性核素的衰变产物（子作）仍具有放射性。在计算放射性核纯度时，了体不作为朵质
镍 「＂${ }^{\circ} \mathrm{Tr}$ 〕。放射吽核纯度的测实方法可根据杂质核素的性质，选用锗（锂）或高纯锗探测器的名道 γ 谱仪或其他核纯度测定方法。

（四）放射性活度

是指放射性核索的原子核每秒钟发生的衰变数。国际计量单位为以可 $(\mathrm{Bq}), ~ 1 \mathrm{~Bq}$ 的活废等于每秒针发生－－次衰变。常用的单位是千分可（ kBq ），
星（ mCi ）， $1 \mathrm{mCi}-3.7 \times 10^{-} \mathrm{Bq}$ ，旗射性活度是饮射性药物的一个至要质星指标，特別是治疗用放訝吽药物的活度测定，关系到给病人的剂立是否准确。笔者认为，般治疗用放射性药物的放射性河度测定值。控制在标示值的士 5% 为好：一般放射性药物质重标准中活度测定值均在标示値的」 10% 。

与放射性活度相关的放射性浓度利放射性比度分别是义为：

放射性浓度（radioconcentration）是指溶液放射性：物秀单位体积中的放射性活度，通常以 MBq ml （ $\mathrm{mCi} \cdot \mathrm{ml}$ ）表示；

放射性比度（specific activity）是指固体放射性物质单位质量中的放射性活度，通常以 $\mathrm{MBq}_{\mathrm{m}} \mathrm{mg}$ （ $\mathrm{mCi} \cdot \mathrm{mg}$ ）或 $\mathrm{MBq} / \mathrm{mmol}(\mathrm{mCi}, ~ \mathrm{mmol})$ 表示。

放射性汸度的测定㡯法可分为绝对测点法和相对测量法，由于放射性药物对活度测定的不确定度受求不是很高，一般采用相对测量法．如叮用活度计（radiometer）（并型电离室）测量，但在使用前虚对泞度计进行刻度，最好能用待测放射性核素的标

准源进行校正。放射性浓度和放射性比度可通过古接测得的样習体积或质量计算得到。

（五） pH 值

放射性药物绝大部分是注射液，其 pH 值测定是常规检验项 $\mathrm{H} 之 一$ 。特定的 pH 值对保证放射性药物的稳定性是重要的。放射性药物的 pH 值测定的普通约物不同的是：提供的大部分供试品体积少，用一般 pH 计测全有国难，闰的对操作人员的鎘射剂量也高。达此，多采用精密 pH 试纸法，仙所用精密 pH 试纸在使用前应用 pH 计进行验让。—些有颜色的放射性药物，则应采用微量 $\mu \mathrm{H}$ 计测足。

（六）放射化学纯度

是指某一种放射性核素的㭉一化学形式的放射吽，卜该放射性核素总放射性的王分北。放射化学纯度（rediochernical purity）是衡量放射吽药物质量的重要指标之一，比是放射性药物常规检验项日中最重要的项目。需要指出的是，放射化学纯度的计算应在放射性核纯度计算的基础上进行。如含锝 －年 4 Ic］注射液的放射化学纯度，是指除え供试品
以外。以所有锝［ $\left.{ }^{40 \mathrm{~m}} \mathrm{Tc}\right]$ 的放射性作为们分之白，来计算可能存在的其他化学形武的锊［ $\left.{ }^{\omega_{\mathrm{in}}} \Gamma \mathrm{\Gamma}\right]$ ］，如
 （ ${ }^{14 \mathrm{~mm}} \mathrm{Tc} \mathrm{O}_{2}$ ）。常同的放射化学纯度测定法有纸色谱法，聚酰胺薄层色谱法，快速群胶薄厂色谱法，高效液相色谱法以及电泳法等，对葉些特珠理化性质的放射性药物地可采用其他分离分析方法，如过滤法，离心法等。但提但的也是经常使用的方法是纸色谱法。在纸色谱汰中，涉及放射性药物け各组分的比移值（Rf）。所谓比移值是指供试品中某组分从点样原点移动到纸上任意一点的距离，被展开剂移动的距离除后所得的商值。用公式表示为：
$\mathrm{RI}=\frac{\text { 原点至供试品中某一组分移动的距离 }}{\text { 展可剂移动的距离 }}$
放射性药物巾各组分的 Rf 值估 — 定的条件下是一个常数，佰当条件政变时也可能随着故变。
（七）化学纯度
是指存放射性约物中指定葉些非放射性的化学成分的含量，与放射性尤关。这些化学杂质一般是生产过程中带人的，过量的化学杂质可能引起毒副反应或影响放射性药物进一步的制备札使用。如高锅！${ }^{\circ 8 \mathrm{~m}} \mathrm{Tc}$ 〕酸钠注射液中的含铝量，该品标准规足

每 ml 不得超过 $10 \mu \mathrm{~g}$ ，呮含量过高影响对红细胞的标记已众所周知。化学纯度（chemical purity）的测定一般应用滴定法，分光光度法，原子吸收法等。因为化学纯度测定与放射性无关，所以如果不急于得到测定结果，可等到敨射性核素衷变一段时问后央进行分析，以减少操作人员承受的鎘射剂尘和对设备的放射性污染。

二，生物学检验

（一）无菌检查

无菌检查（sterile test）是保证药品泣射液安全的重要检查项々之一。放射性药物大多数是注射液，因此要通过无菌检查。制品要达到通过无菌检查的要求，主要采用两神力法：火菌或除菌。对广热稳定性好的制品，可选用灭菌方法。否则可用除菌方㳎。灭菌方法有1＂热灭南，湿热灭菌，环氧く烷灭菌和 γ 射线轵射灭菌等，除菌方法大多采用膜过滤方法。干热灭菌是瓜干燥箱中干热 $180^{\circ} \mathrm{C} 2$ 小时或 $250^{\circ} \mathrm{C} .30$ 分钟，即可达到灭菌又消除热原的目的．般䦽用于玻璃容器及器且的灭菌。湿热灭菌却是高压蒸气灭菌，利用高压消毒锅．通常在 $121^{\circ} \mathrm{C} 30$ 分钟达到彻底灭菌，似不能消除热原，通常也用干坡璃容器及器四的灭菌。放射性药物制剂或原料药大部分用除菌的方法，即使溶液通过微孔滤膜，选择孔径为 $0.22 \mu \mathrm{~m}$ 的滤膜，叮有效地阻止微生物通议滤膜。不宜灭菌或即时标记的放射性药物，常采用这种方法得到无菌溶液。即使是经过灭菌或除菌的放射性药物也还要进行无菌检査。以确证制品中无活的微生物。经典的无菌检查法在《中国药典》中有详细介绍，此处不再赘述，这利方法的最大不足是需要花费很长的时间（5～7 天）。用来等待微生物繁殖，生长，以使液体培养基变浊或在固体培养基上出现菌落，因此这种经典方法非常不适合放射性药物，特別是短半哀期核素的放射怍药物的无菌检古。各国《药典》均明确规定，无菌检查只是对制备 L 开的确证，允许在无菌检查结果报告前发放制品。虽然地曾有微生物快速检验的时究报道，如利用气相色谱火焰电离检测器测定微生物的㭉些代谢产物；或利用微生物生长的放射测定法，但这些方法仍术被任何国家官方承认。

（二）热原检査

热原（pyrogen）切勿理解为＂热源＂。药础注射

液必须通过热原检查（pyrogen ress），以保证药品的安全。因注射引起的发热，寒战，恶心，头痛，关节痛乃至休克等症状称热原反应，引起热原反应的物质称热原质亦称热原。热原的本质至今作不清楚。但是现已清楚地知道，无论定热原还是内毒索，都没有直接的毒副作用，热原（内变素）引起的毒副作用是间接的。注射到人休内挐热原，刺激外凬血单核细胞，产生一种称为＂cytokine＂的物质，cytokine 被血液运送到脑卜，制激体温中枢，引起热原反应。检查热原还没有一种好方法， 1912年被美国药典收载的热原试验，是以家兔广温为测定指标的。它除了具有反映哺乳动物利温的优点外，几乎再卫没有别的长处。即它的灵敏性，重复吽，经济性，简易性都很差，特别是随着制约工业的发展，有些药物本身会干扰汇常家兔的体温，放射性药物就是其中之一。为此1980年美国约典推出细菌内毒素试验（bacterial endotoxins test），很快为世界备国所接受，纷纷载人药典。中国也他 1990年版药典中首先将其作为放射性药留热原检查的替代方法，近年来以内毒素检查的药品品种目益增多。它具有灵敏性高，重复性好，经济，简单，快速等优点，但是它的䗟点是不直接代表体内升温反应，存在假阳性〔即制品不合格，人休不一定出现热原反应），也存在假阴性，即内毒素以外的热原会被漏检（尽管这是极少数）。因此可以说，任药品检验方法学中，热原检查的问题还没有真正解决，但最近已有报道，利用志愿者提供的全丘的供试品保温，用酶标法测定产生的 cytokine，为热原检查方法的研究展现出新的前景。

（三）生物分布

生物分布（biodistribution）试验在放射性新药仾究中，作为阐明药代动力学的一部分是必须报送的资料，在放射性药品的常规检验中也占一定位置。如有些含镈［ $\left.{ }^{5911} \mathrm{Tc}\right]$ 放射性药物，放射化学纯度指标不能真正控制质毞，如 ${ }^{\circ 9 \mathrm{~mm}}$ Tc－MAA，因为任何简便的放射化学分离分析方法均无法楼 ${ }^{\prime \prime \prime}$ ．T_{c} MAA 和 ${ }^{s_{n}} \mathrm{TcO}$ 分开，按照规定方法测定的放射化学纯度结果，实际上是二者之和，所以只好用生物分布试验米判断其质量。生物分布实验一般选用
分组或不分组由实验目的同定，给药途径艮与药物的临床应用一致。给药斉量可根据测定仪器的注敏

度而定走。给药后不同时间处死动物，取主要器官和组织的全部或一部分，称重或不称重，测量各样品的放射性计数。并以给药剂早的放射性计数为谷分之百，计算每克或全部器官或组织的摄取百分数。如上述 ${ }^{y m} \mathrm{Tc}-\mathrm{M} \wedge \mathrm{A}$ ，标准要求是给 3 只小白鼠静脉注射一定剂量供试础， 10 分钟㟁杀死小鼠，取全部肺，肝．分別测量放射性。并与江射剂塾相比计算肺，肝摄取百分蔡。3只小门鼠中有 2 只肺揩取不低于 80% 。肝摄取不超过 5% 。即认为该批 \therefore Tc－MAA 的生物分布符合规定，否则不符合规定。如果用大动物（兔，犬战灵长类）可采用全身易像。均面出感兴趣区，计算备器官摄取放射性的百分数，可得到同一个体在不同时间的生物分布结果。这在䈈选放射情药物的研究中是很有用的试验方法：

（四）生物活性

有些放射性约物具有特定的生物活性：当这些活性物质被标记厂放射性核素后，其生物活性不京改变，对于这些药物，除应进行放射性药物的常规检验外，还要对特定的生扬活性进行检验，其检检方法与未标记放射性核素的生物活性物质相同。并尽可能将标记与术标记的样品在相层条件下进行比较实验。

（五）其他

毒性，药代动捍学，一般药理，药效学以及医学内辐射吸收剂量（MIRD）等试输，只是在新药研究时，按照新药研究要求进行实验，在常现药品检验时均不妥求。

第4节 临床常用放射性药品简介

一，显像用放射性药品

（一）锝 $\left[{ }^{19 n} T_{C}\right]$ 放射性药品

自60年代锝 ${ }^{-94 \pi} \mathrm{~T}$ C］发生器问世以来，放射情核素得 ${ }^{4} 9 \mathrm{~mm} \mathrm{Cc}$ 了已成为临床核医学显像巾元可替代的核素，在第 24 版美国约典（2000年版）中含锝 ［ ${ }^{\prime \prime \pi} \mathrm{m} \mathrm{Cc} 7$ 放射性药物占全部放射性药物留种的こ分之一（22／60）。锝 $\left.{ }^{[99 n} \mathrm{Tc}\right]$ 具备了前面讨论的对显像用放射恨核索的全部要求，是目前临椺核矤学用量最大的诊断用放射性核素。

铣位于元素周期表䜣 B ，与锰（ M_{t} ），铼（ Re ）

在自然界是不存在的，所有的锝㤪素都是人工制造的。锝共有 28 种同位素，全部为放射性核素，物理半衰期最长的是铊 $\left[{ }^{98} \mathrm{Tc}\right]$（ $\mathrm{T}_{1 / 3}=4.2 \times 10^{6}$ 年），最短的是锝 $\left[{ }^{160} T c\right]$（ $T_{1.2}=0.83$ 秒），核医学最有用的是垍［ $\left.{ }^{99 \mathrm{man}} \mathrm{Tc}\right]$（ $\mathrm{T}_{: 2}=6.02$ 小时）。

1．高锝 ${ }^{999 \mathrm{~m}} \mathrm{Tc}$ ］酸钠注射液（sodium pertechne tate－${ }^{99 m}$ injection， $\mathrm{Na}^{39 \mathrm{~m}} \mathrm{TcO}_{4}$ ）是含高锝 $\left[{ }^{99 m^{m}} \mathrm{Tc}\right]$ 酸根（ ${ }^{95 \mathrm{sm}} \mathrm{Tc}$－pertechnetete，${ }^{54 \mathrm{~m}} \mathrm{~T} \mathrm{co}_{\dot{\circ}}{ }^{-}$）的无菌等渗溶液。通过用生理盐水洗脱锝 $\left.{ }^{\left[99^{9 m}\right.} \mathrm{Tc}\right]$ 色谱发生器，是获得高锠 $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\right]$ 酸钠注射液的最简单方法，可供注射，口服或标记制备多种含锝［ ${ }^{099_{m}} \mathrm{~T}_{\mathrm{C}}$ ］放射性药物。
（I）高淂 $\left[{ }^{59 \mathrm{~m}} \mathrm{Tc}\right]$ 酸钠的主要用途：甲状腺及唾液腺显像，体内标记红细胞进行血池显像或首次通过血管显像，胃粘膜显像诊断 Meckel 熟室， $]^{1-201} \mathrm{Tl}^{-}$结合诊断甲状旁腺瘤等，最重要的还是制备各种含锝 $\left[{ }^{99 m} \mathrm{Tc}\right]$ 放射性药物。
（2）剂量：甲状腺显像 $74 \sim 185 \mathrm{MBq}(2 \sim$ $5 \mathrm{mCi})$ ；体内标记红细胞 $555 \sim 925 \mathrm{MBq}(15 \sim$ $25 \mathrm{mCi})$ ；Meckel 悡室 $74 \sim 185 \mathrm{MBq}(2 \sim 5 \mathrm{mCi})$ ：甲状旁腺显像 $74 \mathrm{MBq}(2 \mathrm{mCi})$ 。
（3）高锝 $\left[{ }^{99 \mathrm{~m}} \mathrm{Tc}\right]$ 酸钠估计的辐射吸收剂量：见表5－4。

表5－4 高锝 $\left.{ }^{190 u T c}{ }^{190}\right]$ 酸钠估计的辐射吸收剂量

\％	－2．	Mus ${ }^{\text {a }}$	4．14	6，\％	Ya／wMy	TH4\％
		a，M\％	0.13	䇣文	a， 4 \％	4，${ }^{\text {a }}$
				緒號壁	Q．${ }^{\text {and }}$	人
算脕；		0． ma	4.3	明筧	\％ 3 ． 6	\％
大嗂了		v． 118	（1）m\％		8，\％\％	\＃，\％1\％
＋紼下新		6． 6 ¢	4，mb		日， $\begin{aligned} \\ \end{aligned}$	9．17

2．锝 $\left.{ }^{\left[9{ }^{9 n} \mathrm{n}\right.} \mathrm{Tc}\right]$ 亚甲基二膦酸盐注射液（technet $\mathrm{i}-$ um［ ${ }^{99 \mathrm{~mm}} \mathrm{Tc}$ ］medronate injection，${ }^{19 \mathrm{~m}} \mathrm{Tc}-\mathrm{MDP}$ ）
（1）${ }^{\text {com }} \mathrm{Tc}-\mathrm{MDP}$ 的化学结构式：见图 5－3。

图 5－3 ${ }^{5 / \mathrm{sin}} \mathrm{Tc} \mathrm{CMDP}$ 的化学结构式
（2）${ }^{494} \mathrm{Tc} \mathrm{MDP}$ 的制备：大多数核医学科使

用的 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－MDP 是在自己科内放射性药房用生理
放射性浓度取 $4 \sim 6 \mathrm{ml}$ ，加入到注射用亚锡亚甲基二膦酸盐瓶中，充分振摇使内容物溶解，静置 5 分钟即得。在少数大城市中，也可从放射性药品即时标记企业得到。
（3） $99 n 1 T c-M D P$ 的主要用途：骨显像。
（4）剂量： $555 \sim 740 \mathrm{MBq}(15 \sim 20 \mathrm{mCi})$ 。
（5）${ }^{99 m} \mathrm{Tc}$－MDP 和 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－PYP 估计的辐射吸收剂量：见表5－5。

表 $55^{99 \mathrm{~m}} \mathrm{Tc}$－MDP 和 ${ }^{99 \mathrm{n}} \mathrm{Te}$－PYP 估计的辐射㖩收剂量

3．锝［ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ ］焦磷酸盐注射液（technetium ［ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ ］pyrophosphate injection，${ }^{99 \mathrm{~m}} \mathrm{Tc}$－PYP）
（1）${ }^{999_{m}} \mathrm{Tc}$－PYP 的化学结构式：见图 5－4。
（2）${ }^{9 \% n} \mathrm{Tc}-\mathrm{PYP}$ 的制备：大多数核医学科使用

的 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－PYP 是在自己科内放射性药房用生理盐水洗脱 ${ }^{99 m} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}^{50 \mathrm{~mm}} \mathrm{TcO}_{4}$ 后．按其放射性浓度取 $4 \sim 10 \mathrm{ml}$ ，加人到注射用亚锡焦磷酸钠瓶中，它分振摇使内容物溶解，静置 5 分钟即得。在

图 5－4 998 Tc PYP 的化学结构式
少数大城市中，也可从放射性药品即时标记企业得到。
（3）${ }^{99 \mathrm{~mm}} \mathrm{Tc}-$ PYP 的主要用途：骨显像；也可作为急性心肌梗死区的阳性显像。而注射用亚锡焦磷酸钠药皿多用于体内标记红细胞。
（4）剂量： $555 \sim 740 \mathrm{MBq}(15 \sim 20 \mathrm{mCi})$ 。
4．锜 $\left[{ }^{99 \mathrm{ma}} \mathrm{Tc}\right]$ 依替菲宁注射液（technetium［ $\left.{ }^{99 m} \mathrm{Tc}\right]$ etifenin injection，${ }^{69} \mathrm{Tc}$－EHIDA）
（1）${ }^{99 \mathrm{~m}} \mathrm{Tc}$－EHIDA 的化学结构式：见图 5－5。
（2）${ }^{99 m} \mathrm{Tc}$－EHIDA 的制备：大多数核医学科使用的 ${ }^{99 m} \mathrm{Tc}$－EHIDA 是在自己科内放射性药房用生理盐水洗脱 ${ }^{93 \mathrm{~m}} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}^{99 \mathrm{~m}} \mathrm{TcO}_{4}$ 后。按其放射性浓度取 $1 \sim 8 \mathrm{ml}$ ，加入到注射用亚锡依替菲宁瓶中，充分振揺使内容物溶解．静置 $5 \sim 10$分钟即得。在少数大城市中，也可从放射性药品即时标记企业得到。
（3）${ }^{99 m} \mathrm{Tc}$－EHIDA 的主要用途：肝胆系统的显像，对肝外胆管阻塞，胆囊无功能，胆管炎，胆管闭锁，胆管囊肿及胆系手术后的观察有较大诊断价值。
（4）剂量： $148 \sim 185 \mathrm{MBq}(4 \sim 5 \mathrm{mCi})_{s}$
（5）${ }^{99 \mathrm{~m}} \mathrm{Tc}$－EHIDA 估计的辐射吸收剂量：见表 5－6。

$$
\begin{aligned}
& \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{CH}_{3} \text { and } \mathrm{R}_{2}=\mathrm{Br} \quad \mathrm{~V} \text {-(3-bromo- } 2,4,6 \text {-trimethylacetanilide)-iminodiacetate(mebrofenin) } \\
& \mathrm{R}_{1}=\mathrm{CH}_{3}-\mathrm{CH}_{2} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} \quad \mathrm{~N} \text {-(2,6-diethylacetanilide)-iminodiacctate(EHIDA) } \\
& \mathrm{R}_{1}=\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2} ; \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} \quad \mathrm{~N} \text {-(2,6-diiscpropylacetanulde)-iminodiacetate(disofenin) }
\end{aligned}
$$

图 5－5 ${ }^{99 m} \mathrm{Tc}$－EHIDA 的化学结构式
表 5－6 ${ }^{39 \mathrm{man}}$ TEEHIDA 估计的辑射㖟收乵量
，

5．锠 $\left[{ }^{595 \mathrm{~m}} \mathrm{Tc}\right]$ 喷替酸盐注射液（technetium ［ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ ］pentetate injection，${ }^{99 \mathrm{~m}} \mathrm{Tc}$－DTPA）
（1）${ }^{99 \mathrm{ma}} \mathrm{Tc}-\mathrm{DTPA}$ 的化学结构式：见图5－6。

图 5－6 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－DTPA 的化学结构式
（2）${ }^{99 m} \mathrm{Tc}-\mathrm{DTPA}$ 的制备：大多数核医学科使用的 ${ }^{99 m} T \mathrm{c}-\mathrm{DTPA}$ 是在自己科内放射性药房用生理盐水洗脱 ${ }^{99_{m}} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}^{9 \mathrm{smm}_{\mathrm{m}} \mathrm{TcO}} \mathrm{A}_{4}$ 后，按其放射性浓度取 $2 \sim 4 \mathrm{ml}$ ，加入到注射用亚锡喷替酸瓶中，充分振摇使内容物溶解，静置5分钟即得。在少数大城市中，也可从放射性药品即时标记企业得到。
（3）${ }^{95 \mathrm{~m}} \mathrm{Tc}$－DTPA 的主要用途：肾显像及肾小
（4）剂量： $185 \sim 740 \mathrm{MBq}(5 \sim 20 \mathrm{mCi})$ 。球滤过率的测定。
（5）${ }^{\text {Y }} \mathrm{m} \mathrm{Tc}$－DIPA 估计的鎘射吸收剂量：见表 5－7。

表5－7 ${ }^{99}{ }^{\mathrm{m}}$ Tc－DTPA 估计的電射吸收刘量

	－\％myy M May	raversea	薙，\％	mev／nst，	，
\％	4．त1\％	（1，1ma			
	4． 11	（1）：		d，wi	A， 16
枟	4，1，${ }^{\text {a }}$	：4， 18	行䏡	4． 4 \％	：U18
	9， 10	$\therefore 6.6$	\％	4．2	
\＃！	Q，11	\therefore ¢ 3	明筦	d，\％${ }^{\text {d }}$	$\because 1 \%$
	H．\％${ }^{\text {a }}$	4，18\％		1．11－6	\because,
	\％．6m	i．\％\％	矿	（1）．4．	$\cdots \cdots$
				\％\％\％	\because ：$:$ ：${ }^{\text {a }}$

6．铛［ $\left.{ }^{99_{\mathrm{m}}} \mathrm{Tc}\right]$ 聚合白蛋白注射液（technetium $\left[{ }^{99_{\mathrm{m}}} \mathrm{Tc}\right]$ macroaggregated albumin injection，$\left.{ }^{94_{\mathrm{m}}} \mathrm{Tc}-\mathrm{MAA}\right)$
（1）${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{MAA}$ 的化学结构：不详。
（2）${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{MAA}$ 的制备：大多数核医学秘使用的 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－MAA 是在自己科内放射性药房用生理盐水洗脱 ${ }^{99 m} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}^{95 \mathrm{~m}} \mathrm{~T}_{\mathrm{c}} \mathrm{CO}_{1}$ 后，按其放射性浓度取 $3 \sim 10 \mathrm{ml}$ ，加人到注射用湴锡聚合H

蛋向旅巾，充分振摇使颗粒分散均匀，成为悬浮液即得。在少数大城市中，也可从放射性药品即时标记企业得到。
（3）${ }^{99 m} \mathrm{Tc}-\mathrm{MAA}$ 的主要用途：肺灌注显像。
（4）剂量： $55.5 \sim 111 \mathrm{MBq}(1.5 \sim 3 \mathrm{mCi})$ 。
（5）${ }^{99 m} \mathrm{Tc} \mathrm{MAA}$ 估计的辐射吸收剂量：见表 5－8。

表 5－8 ${ }^{99 m}$ Tc－MAA 估计的喓射吸收剂量

7．锝 $\left[{ }^{99_{m}} \mathrm{~T}_{\mathrm{C}}\right]$ 依沙美䏡沙射液（technetium ［ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ ］exametazine injection，${ }^{9 \neq \mathrm{m}} \mathrm{Tc}$－HMPAO）
（1）${ }^{994} \mathrm{Tc}-\mathrm{HMPAO}$ 的化学结构式：见图 5－7。

图 5－7 ${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{HMPAO}$ 的化学结构式
（2）${ }^{59 \mathrm{~m}} \mathrm{Tc}-\mathrm{HMPAO}$ 的制备：大多数核医学科使用的 ${ }^{99 r} \mathrm{Tc}$－HMPAO 是在自己科内放射性药房用生理盐水洗脱 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}{ }^{999_{\mathrm{a}}} \mathrm{TcO}$ 4 后，按其放射性浓度取 $3 \sim 10 \mathrm{ml}$ ，加人到注射用亚锡依沙美肪瓶中，充分振捊使内容物溶解，静置 5 分钟即得。制备后，应不超过 30 分钟静脉注射。
（3）${ }^{99_{m}} \mathrm{~T}_{\mathrm{c}}-\mathrm{HMPAO}$ 的主要用途：脑灌注显像；HMPAO 药盒也可作为制备 ${ }^{99_{n}} \mathrm{~T}_{\mathrm{c}}-\mathrm{HMPAO}$ WBC 的中间体，用于桊症和感染的定位显像。
（4）剂量： $555 \sim 740 \mathrm{MBq}(15 \sim 20 \mathrm{mCi})$ 。
（5）${ }^{98 \pi n} \mathrm{Tc}-\mathrm{HMPAO}$ 估计的辐射吸收剂量：见表 5－9。

表 5－9 ${ }^{99 m}$ Tc－HMPAO 估计的辐射吸收剂量

8．锝 $\left.{ }^{99 n} \mathrm{Tc}\right]$ 双半胱乙酯注射液（technetitm
［ ${ }^{79 \mathrm{~m}} \mathrm{Tc}$ ］bicisate injection，${ }^{99 \mathrm{~m}} \mathrm{Tc}$－ECD）
（1）${ }^{99_{m}} \mathrm{Tc}-\mathrm{ECD}$ 的化学结构式：见图 $\mathrm{j}-8$ 。

图 5－8 ${ }^{93 \mathrm{~mm}} \mathrm{Tc}$－ECD 的化学结构式
（2）${ }^{999 \mathrm{~m}} \mathrm{Tc}$－ ECD 的制备：目前国内制备 ${ }^{99 \mathrm{~mm}} \mathrm{Tc}$－ ECD 有两种工艺：其一是所谓一步法，即在得到 $\mathrm{Na}^{99 \mathrm{~m}} \mathrm{TCO}_{4}$ 后，按其放射性浓度取 $3 \sim 10 \mathrm{ml}$ ，加人

到注射用亚锡双半胱乙酯瓶中，充分振摇使内容物溶解，静置 5 分钟即得；其二是所谓两步法．即在得到 $\mathrm{Na}{ }^{99 \mathrm{ma}} \mathrm{CcO}_{4}$ 后，按其放射性浓度取 $3 \sim 12 \mathrm{ml}$ 。加入到 A 瓶中，充分振摇使内容物溶解，将其全部转移到 B 瓶中，充分振摇使内容物溶解，静置 5分钟即得。在少数大城市巾，也可从放射性药品即时标记企业得到。
（3）${ }^{99 n} \mathrm{Tc}-\mathrm{FCD}$ 的主要用途：脑灌注显像；
（4）剂量： $555 \sim 925 \mathrm{MBq}(15 \sim 25 \mathrm{mCi})$ 。
（5）${ }^{93 \mathrm{~m}} \mathrm{Tc}-\mathrm{ECD}$ 估计的辐射吸收剂量：见表 5－10。

表 5－10 ${ }^{99} \mathrm{~m}$ T－ECD 估计的辐射吸收乵量

9．锝［ $\left.{ }^{35+\mathrm{m}} \mathrm{Tc}\right]$ 甲氧异腈注射液（technetium
［ $\left.{ }^{98 m} \mathrm{Tc}\right]$ sestamibi injection，${ }^{99{ }^{9}} \mathrm{~T}$ c－MIBI）
（1）${ }^{99 m} \mathrm{Tc}$－MIBI 的化学结构式：见图 5－9。

图 5－9 ${ }^{*} \mathrm{~m} \mathrm{~T} \mathrm{C}$－MIBI 的化学结构式
（2）${ }^{99 m} \mathrm{Tc}-\mathrm{MIBI}$ 的制备：大多数核医学科使用的 ${ }^{99 \mathrm{~m}} \mathrm{Tc}_{\mathrm{c}}-\mathrm{MIBI}$ 是在自己科内放射性药房用生理盐水洗脱 ${ }^{94 m \mathrm{~m}} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}^{99 \mathrm{~mm}} \mathrm{~T}_{\mathrm{C}} \mathrm{O}_{4}$ 甹，按其放射性浓度取 $1 \sim 4 \mathrm{ml}$ ，加入到注射用甲氧异腈瓶中，密封条件下置沸水浴加热 $5 \sim 15$ 分钟，取出冷却至至温备用。在少数大城市中，也可从放射性药品即时标记企业得到。
（3）${ }^{5 y_{m}} \mathrm{Tc}$－MIBI 的主要用途：心肌灌注显像。
（4）剂量： $370 \sim 1110 \mathrm{MBq}(10 \sim 30 \mathrm{mCi})$ 。
（5）${ }^{2 ?_{m} \mathrm{~m}} \mathrm{~T}-\mathrm{MIBI}$ 估计的辐射吸收剂量：见表 5－11。

10．锝［ ${ }^{0 g_{m}} \mathrm{Tc}$ ］替曲膦注射液（technetium $\left[{ }^{99_{m 1}} \mathrm{~T}_{\mathrm{c}}\right]$ tetrofosmin injection，${ }^{99 \mathrm{~m}} \mathrm{Tc}_{\mathrm{c}}-\mathrm{TF}$ ）

表 5－I1 ${ }^{59 m}$ Te－MIBI 估计的僲射吸收剂量

（1）${ }^{99 \mathrm{~mm}} \mathrm{Tc}-\mathrm{TF}$ 的化学结构式：见图5．10。

图 5－10 ${ }^{3 m}$ Te－TF 的北学结㘬式
（2）${ }^{99.1 n} \mathrm{Tc}-\mathrm{TF}$ 的制备：大多数核医学科使用的 ${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{TF}$ 是在自己科内放射性药房用生理盐水

洗脱 ${ }^{951 .} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}^{9 \mathrm{gmm}_{\mathrm{m}}} \mathrm{TcO}_{4}$ 后，按其放射性浓度取 $1 \sim 4 \mathrm{ml}$ ，加人到注射用亚锡替曲膦瓶中。充分振摇使内容物溶解，静置 15 分钟即得。在少数大城市中，也可从放射性药品即时标记企业得到 （在中国目前还未获得批准文号）。
（3）${ }^{99 \mathrm{~mm}} \mathrm{Tc}-\mathrm{TF}$ 的主要用途：心肌灌注显像。
（4）剂量： $185 \sim 740 \mathrm{MBq}(5 \sim 10 \mathrm{mCi})$ 。
（5）${ }^{99 \mathrm{~mm}} \mathrm{Tc}-\mathrm{TF}$ 估计的辐射吸收剂埋：见表 5－12。

表5－12 ${ }^{99 m}$ Tc－TF 估计的僲射吸收剂量

11．锼 $\left.{ }^{999_{\mathrm{m}}} \mathrm{Tc}\right]$ 双半肬氨酸注射液（technetium ［ ${ }^{99 \pi 11} \mathrm{Tc}$ ］ethylenedicysteine injection，${ }^{9994} \mathrm{Tc}$－EC）
（1）${ }^{9 . m} \mathrm{Tc}-E C$ 的化学结构式：见图 5－11。

图 5－11 ${ }^{73 n T C E C}$ 的化学结构式
（2）${ }^{99 \mathrm{n}} \mathrm{Tc}-\mathrm{EC}$ 的制备：大多数核医学科使用

的 ${ }^{95 \mathrm{~m}} \mathrm{Tc}-\mathrm{EC}$ 是在白已科内放射性药房用生理盐水洗脱 ${ }^{99 \mathrm{~mm}} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}{ }^{59 \mathrm{~m}} \mathrm{TcO}_{4}$ 后，按其放射性浓度取 $1 \sim 6 \mathrm{ml}$ ，加人到注射用亚锡双半胱氨酸泒中，充分振摇使内容物溶解，静置 5 分钟即得，在少数大城市中，也可从放射性药品即时标记企业得到。
（3）${ }^{99 m} \mathrm{Tc}-\mathrm{EC}$ 的主要用途：肾小管分泌型肾功能显像。
（4）剂量： $148 \sim 370 \mathrm{MBq}_{\mathrm{q}}(4 \sim 10 \mathrm{mCi})$ 。
（5）${ }^{94 m} T c-E C$ 估计的辐射吸收剂量：见表 5－13．

表 5－13 ${ }^{m m}$ Tc－EC 估计的辐射吸收剂量

12．锝［ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ ］巯乙甘肽注射液（technetium ［ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ ］mercaptoacetytriglycine injection，${ }^{99_{\mathrm{n}}} \mathrm{Tc}$－ MAG_{3} ）
（1）${ }^{98 \mathrm{~m}} \mathrm{Tc}-\mathrm{MAG}_{8}$ 的化学结构式：见图 5－12。

图 5－12 ${ }^{93 \mathrm{~m}} \mathrm{Tc}_{\mathrm{c}}-\mathrm{MAG}_{3}$ 的化学结构式
（2）${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{MAG}_{3}$ 的制备：大多数核医学科使用的 ${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{MAG}_{3}$ 是在自己科内放射性约房用生理

盐水洗脱 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－发生器，得到 $\mathrm{Na}{ }^{99 \mathrm{~m}} \mathrm{TcO}_{4}$ 后，按其放射性浓度取 $1 \sim 4 \mathrm{ml}$ ，加人到注射用巯乙甘淢瓶中，密封条件下置沸水浴加热 5 分钟，取出冷却至室温备用。在少数大城市中，也可从放射性药品即时标记企业得到。
（3）${ }^{98 m} \mathrm{Tc}-\mathrm{MAG}_{3}$ 的主要用途：肾动态显像或肾图检查。
（4）剂量：肾动态显像用 $185 \sim 555 \mathrm{MBq}(5 \sim$ 15 mCi ），最大注人量不得超过 1.5 ml 。肾图检查为 $80 \mathrm{kBq}(2.2 \mu \mathrm{Ci}) / 10 \mathrm{~kg}$ ，最大洋入量不得超过 1.0 ml 。
（5）${ }^{99 m} \mathrm{Tc}_{\mathrm{M}}-\mathrm{MAG}_{3}$ 估计的辐射吸收剂量：见表 5－14。

表 5－14 ${ }^{99 m}$ Tc－MAG ${ }^{5}$ 估计的鎘射吸收剂量

（二）鎵 $\left[^{67} \mathrm{Ga}\right]$ ，它 $\left[^{201} \mathrm{Tl}\right]$ ，碘 $\left.{ }^{[123} \mathrm{I}\right]$ ，铟 $\left[{ }^{111} \mathrm{In}\right]$放射性药物

在这四种常用的放射性核素药物中，含钢 $\left[{ }^{113} \mathrm{In}\right]$ 和唤 $\left[{ }^{123} \mathrm{I}\right]$ 的放射性药物应用更为广泛，但在国内，由于核素生产条件遇到困难，限制了它们的应用。因此，仅介绍含铵 $\left[{ }^{[77} \mathrm{Ga}\right]$ 和铊 $\left[{ }^{[01} \mathrm{Tl}\right]$ 的药物。

图 5－13 ${ }^{67}$ Ga－citrate 的化学结构式

1．构䏂酸鎵 $\left[{ }^{67} \mathrm{Ga}\right]$ 注射液（gallium $\left.{ }^{[67} \mathrm{Ga}\right]$ cit－ rate injection，${ }^{67}$ Ga－citrate）
（1）${ }^{67} \mathrm{Ga}$－citrate 的化学结构式：见图5－13。
（2）${ }^{67} \mathrm{Ga}$－citrate 的制备：通过在回竨加速器中以质于表击氧化锌靶，根据 ${ }^{68} \mathrm{Zn}(\mathrm{p}, 2 \mathrm{n})^{67} \mathrm{Ga}$ 反应，经过溶靶以及冷却一定时间（使 ${ }^{66} \mathrm{Ga}$ 衰变）。再与枸檬酸钠形成本品，用氢氧化钠调节 pH 至 $5 \sim 8$ 即得。
（3）${ }^{617}$ Ga－citrate 的主要用途：某些肿溜和炎症的定位诊断和鉴别诊断。
（4）剂量： $74 \sim 370 \mathrm{MBq}(2 \sim 10 \mathrm{mCi})$ 。
（5）${ }^{67} \mathrm{Ga}$－citrate 估计的辐射吸收剂量：见表 5－15。

表 5－15 ${ }^{67}$ Ga－citrate 估计的辐射吸收剂量

W1／』！	Mrysula	ridma	\％	Wix	mhrumy	TH／込
			影			的程
F大緆	4， 24	10，\％			0．13	84
1䞨踢	a． 1.6		等		d． 11	a，${ }^{\text {a }}$
小薬	6， 3 4	（4．36	第籘		ती \％\％	：\％\％
	a．0．9	1． 2.2	繁め		0．006	4．${ }^{\text {\％}}$
数變	6． 5 \％	0.30	会単		4，\％me	4，\％
膟	2． 14%	0．3 ${ }^{3}$				

2．氯化亚铊 $\left[{ }^{291} \mathrm{Tl}\right]$ 注射液（thallous $\left[{ }^{201} \mathrm{~T} 1\right]$ chloride injection，${ }^{2 n} \mathrm{TlCl}$ ）
（1）${ }^{201} \mathrm{TlCl}$ 的制备：通过在回旋加速器中以质子轰击天然铊 $\left[{ }^{203} \mathrm{Tl}\right]$ ，根据 ${ }^{203} \mathrm{Tl}(\rho, 3 n)^{201} \mathrm{~Pb}$ 反应，将 ${ }^{201} \mathrm{~Pb}$ 从 ${ }^{2013} \mathrm{Tl}$ 靱中纯化，放置一定时间后使衰变成的 ${ }^{201} \mathrm{Tl}^{3+}$ 经过离子交换去除 ${ }^{201} \mathrm{~Pb}^{291} \mathrm{Tl}^{4 \top}$ 还

原成 ${ }^{201} \mathrm{Tl}^{-}$，蒸干，用生理盐水重新溶解后灭菌即得。
（2）${ }^{207} \mathrm{TlC}$ 的主要用途：心眀灌注显像，甲状旁腺显像，某些肿瘤的显像。
（3）剂量： $74 \sim 148 \mathrm{MBq}(2 \sim 4 \mathrm{mCi})$ 。
（4）${ }^{201} \mathrm{TlCl}$ 估计的辐射吸收剂量：见表5－16。

表 5－16 ${ }^{201} \mathrm{TICl}$ 估计的辑射吸收剂量

二，非显像用放射性绦物

（一）邻碘［ $\left.{ }^{131} \mathrm{I}\right]$ 马尿尿钠注射液（sodium io－ dohippurate injection，${ }^{131}$ I－Hipp）
（1）${ }^{131}$ I－Hipp 的化学结构式：见见图 5－14。

图 5－14 ${ }^{131}$ I－Hipp 的化学结构式
（2）${ }^{131}$ I－Hipp 的制备：在一个无菌的多剂量

瓶中加入 $1 \mathrm{ml} \mathrm{pH}=4$ 的醋酸缓冲液（ 0.2 M 醋酸钠 0.2 ml 和 0.2 M 醋酸 0.8 ml ）， $0.2 \mathrm{ml} 50 \%$ 乙醇中含 5.0 mg 邻碘马尿酸， 0.2 ml 水中含 $1.0 \mathrm{mgCuSO}_{4}$－ $5 \mathrm{H}_{2} \mathrm{O}$ 和 0.02 M NaOH 中含 ${ }^{183 / 13 \mathrm{I}} \mathrm{I} 185 \sim 555 \mathrm{MBq}$ $(5 \sim 15 \mathrm{mCi})$ ，在 $121^{\circ} \mathrm{C}$ 高压消毒 15 分钟，冷却至室温即得。也可直接从放射性药品生产企业购到。
（3）${ }^{131}$ I－Hipp 的主要用途：肾功能（肾图）检查。
（4）剂量： $185 \sim 370 \mathrm{kBq}(5 \sim 10 \mu \mathrm{Ci})$ 。
（5）${ }^{131}$ I－Hipp 估计的辐射吸收剂量：见表5－17。

表 5－17 ${ }^{131}$ 1－Hipp 估计的辐射吸收剂量

（二）铬 $\left[{ }^{51} \mathrm{Cr}\right]$ 酸钠注射液（sodium chromate injection， $\mathrm{Na}_{2}{ }^{51} \mathrm{CrO}_{4}$ ）
（1） $\mathrm{Na}_{2}{ }^{51} \mathrm{CrO}_{4}$ 的化学结构式：见图 5－15。

图 5－15 $\mathrm{Na}_{2}{ }^{31} \mathrm{CrO}_{4}$ 的化学结构式
（2） $\mathrm{Na}_{2}{ }^{53} \mathrm{CrO}_{4}$ 的制备：国产 $\mathrm{Na}_{2}{ }^{53} \mathrm{Cr}_{2} \mathrm{O}_{4}$ 是以

中子轰击天然铬酸钭，由＂${ }^{[1]} \mathrm{Cr}(\mathrm{n}, \gamma)^{31} \mathrm{Cr}$ 核反重生产，经 HCl 溶靶和双氧水氧化，蒸下，溶于生理盐水，高压灭菌后即得。该品中含 $\mathrm{Na}_{\mathrm{a}} \mathrm{CrO}_{4}$（载体），标准规定每 1 ml 含铬量不得超过 $50 \mu \mathrm{~g}$ 。
（3） $\mathrm{Na}_{2}{ }^{31} \mathrm{CrO}_{4}$ 的主要用途：标记红细胞 （ ${ }^{51} \mathrm{Cr}-\mathrm{RBC}_{8}$ ），进行血容量，红细胞寿命测定。
（1）剂量： $3.7 \sim 7.4 \mathrm{MBq}(0.1 \sim 0.2 \mathrm{mCi})=$
（了）${ }^{51} \mathrm{Cr} r \mathrm{RBC}_{\mathrm{s}}$ 估计的辐射吸收剂量：见表 $5 \cdot 18$ 。

表 5－18 ${ }^{53} \mathrm{Cr}-\mathrm{RBC}_{\mathrm{s}}$ 估计的辐射吸收剂量

[^0]（1）${ }^{14} \mathrm{C}$－urea 的制备：以碳酸钡 $\left(\mathrm{Ba}^{14} \mathrm{CO}_{3}\right)$ 为起始原料，经氨化得到睪化氮钡（ $\mathrm{Ba} \mathrm{N}^{14} \mathrm{CN}$ ），里经水解即可得到尿素 $\left[{ }^{14} \mathrm{C}\right]$ 。
（2）${ }^{14} \mathrm{C}$－urea 的主要用途：尿素呼气试验，用于诊断幽门螺杆菌。
（3）剂量： $18.5 \sim 37 \mathrm{kBq}(0.5 \sim 1.0 \mu \mathrm{Ci})$ 。

三，治疗用放射性药物

（一）碘 ${ }^{13 \mathrm{st}} \mathrm{I}_{\lrcorner}$化钠口服溶液（sodium iodide o－ ral solution， $\mathrm{Na}^{13 \mathrm{r} 1}$ ）
（1） $\mathrm{Na}^{13 .} \mathrm{I}$ 的制备：制备 $\mathrm{Na}^{1311} \mathrm{I}$ 有两种方法，

其一是核反应堆照射碲 $\left.L^{\because 30} \mathrm{Te}\right]$ ，即经 ${ }^{13 \prime} \mathrm{Te}(\mathrm{n} . \gamma)$ ${ }^{131} \mathrm{Te}$ 反应，${ }^{1.31} \mathrm{Te}$ 经 β 衰变（ 30 h ）为 ${ }^{151} \mathrm{I}$ ，再经化学处理（溶靶，蒸馏或干馏），最后生成 $\mathrm{Na}^{1.1} \mathrm{I}$ 。其二是从裂变产物巾分离，即通过 ${ }^{2.55} \mathrm{U}(\mathrm{n} . \mathrm{f}){ }^{231} \mathrm{I}$ 反应得到。
（2） $\mathrm{Na}^{131} \mathrm{I}$ 的主要用途：作为诊断可用于甲状腺吸碘［131 I 试验，甲状腺显像以及制备含碘［ $\left.{ }^{131} \mathrm{I}\right]$放射性药物；作为治疗用于治疗甲状腺功能㡰进症，中状腺癌转移灶等。
（3）剂量：甲状腺吸䃆 $\left.{ }^{131} \mathrm{I}\right]$ 试验，口服 $74 \sim$ $370 \mathrm{kB} \mathrm{q}_{\mathrm{q}}(2 \sim 10 \mu \mathrm{Ci})$ ；甲状腺显像，口服 $1.85 \sim$ 3． $7 \mathrm{MBq}(50 \sim 100 \mu \mathrm{Ci})$ ；治疗剂量遵医搌一般每克甲状腺组织口服约 $2.59 \sim 3.7 \mathrm{MBG}(70 \sim 100 \mu \mathrm{Ci})_{\text {。 }}$
（4） $\mathrm{Na}^{131} \mathrm{I}$ 估计的辐射吸收剂量：见表5－15。

表 5－19 $\quad \mathrm{a}^{131} \mathrm{I}$ 估计的辐射吸收剂量

（二）磷 ${ }^{32} \mathrm{P}$ ］酸恣二钠口服溶液（sodium 值（ $6 \sim 8$ ），再经高压灭菌即得。
phosphate oral solution， $\mathrm{Na}_{2} \mathrm{H}^{32} \mathrm{P}\left(\mathrm{O}_{4}\right)$
（1） $\mathrm{Na}_{2} \mathrm{H}^{32} \mathrm{PO}_{4}$ 的制备：无载体 ${ }^{32} \mathrm{P}$ 系采用富集 ${ }^{d 2} \mathrm{~S}$ 或高纯度的天然硫粉为靶，经以 ${ }^{32} \mathrm{~S}(\mathrm{n}, \mathrm{p})^{32} \mathrm{P}$反应生成。照射后用离子交换法分离获得正磷酸溶液，然后用氢氧化钠溶液滴定中和至 pH 达到一定
（2） $\mathrm{Na}_{2} \mathrm{H}^{32} \mathrm{PO}_{4}$ 的主要用途：治疗真性红细胞增考症以及制备含 ${ }^{32} \mathrm{P}$ 的放射性药物。
（3）剂量：口服每疗程 $148 \sim 222 \mathrm{MBq}^{(4 \sim}$ 6 mCi ）．

表 5－20 $\quad \mathrm{Na}_{2} \mathrm{H}^{32} \mathrm{PO}_{4}$ 估计的辐射吸收剂量

（三）荃化锶［ $\left.{ }^{69} \mathrm{Sr}\right]$ 注射液（strontium［ ${ }^{89} \mathrm{Sr}$ ］
（2）${ }^{89} \mathrm{SrCl}_{2}$ 的主要用途：骨转移疼痛的治疗。 chloride injection，${ }^{99} \mathrm{SrCl}_{2}$ ）
（3）剂量： $1.48 \sim 2.22 \mathrm{MBq}(40 \sim 60 \mu \mathrm{Ci}) / \mathrm{kg}$ 。
（1）${ }^{34} \mathrm{SrCl}_{2}$ 的制备：${ }^{89} \mathrm{Sr}$ 以碳酸锶 $\left[{ }^{38} \mathrm{Sr}\right]$ 为
（4）${ }^{89} \mathrm{SrCl}_{2}$ 估计的辐射吸收剂量：见表 $5-21$ 。靶，经 ${ }^{88} \mathrm{Sr}(\mathrm{n}, \gamma)^{89} \mathrm{Sr}$ 反应产生，化学处理简单。

表 5－21 ${ }^{89} \mathrm{SrCl}_{2}$ 估计的鈴射㖟收剂量

（夏振民 冻 方）

参 考 文 献

1．主吉欣，卢玉䄸．放射性药物学．北京：京ヶ能出版社，1999，1～8
2．中华人民共和国卫生部医政可．㧡你学诊断与治疗规范．北京：科学出版神，1937．53～70
3．中华人民共和国玉生部药典委员会，中国药品通朋

名称．北京：化学丁业出版社．1497．细－11
4．ゆ华人民共和因吅生部约政算理局，国家原与能机构同位素管理办公室，故射性药品于册（内部资料）．1997．181～219

6．Azuwuike Owunwanne．et al．The Handbook of Ra－ diopharmaceutiaals，Londen：Chapman \＆Hall Medical，1995．57～1た

第 3 篇

HINESE MEDICALIMAGING
脏器显像

第6章 心血管系统

第1节 解剖坐理基础

心脏和 E_{j} 其连接的大血管及其分支构成了循环系统，循㳅系统分为体循环和肺循环。流动丁循坏系统中的血液将氧，各种营养物质，约：理活性吻质供给组织，同时清除局部代谢产物，从而保证机体的新陈代谢。

一，心 脏

心脏由た：存心室和心房四个心腔，左，右房室瓣，们十心窒流作道和动脉之间的半月瓣组成。随着心脏有节律的舒缩，血液在循坏系统内流动：㹸静脉内含氧低的静脉血经右心房，右房室瓣进入在心室，由右心室袞入肺动脉：血波在肺泡壁正细血管内氧合后肜成的动脉血经肺静脉流山庄心房，左心室，再出左心室乭人主动脉，供应全身拆器。

心脏山外至心腔为心包，心肌种心内膜。心腯的集血功能主要低赖于心肌的舒缩。由粗，细两种肌丝交错排列构成的肌抒是心脏舒缩的基本单位。细肌丝为肌纤蛋的，位于肌节的两芳，利肌凝蛋白部分重叠。当心肌细胞除极时，肌浆网终池中储存的锖离子大量释放，作用十肌纤蛋白上的楜节蛋自复合体，使肌纤蛋白的受点暴露，肌凝蛋兒的球形木端即与之结台，形成横桥。住于两旁的肌纤蛋白向肌节中央滑行，十是肌节缩短，心肌收缩。在心肌兴奋一收缩耦联之后，钙离子和调节盆由复合体分离，收缩蛋白む问横桥分离，肌纤丕门问两端滑行，恢复原位，肌节驰展，心肌舒张。心肌舒张同样消耗能量，其所耗 ATP 是肌凝蛋HATP酶对线粒体作用的结果，

心脏具有起搏传导系统，包括窴房结，结间束，房室结，房室束，左，布束支从其分支和普肯耶风纤维等。该系统能自动地，有节律地发放冲动，冲动沿传导系统传导到心肌细胞．使心肌细胞兴奋，收缩。其中空房结的白律性最高，営含起搏

细胞，必常时由其控制心脏的收缩节律。心脏以其起搏传年系统维持正常的收缩节律和顺序。

心肌的血滠供应来白左，右冠状动脉，经心肌毛细血管网大部分血液回流至过状寞或亩接佰，入必心房，极少部分血液流人表心房和左，在心室。心脏本身约循环称为冠状循环。左冠状动脉分为前降支和回旋支，前者供血给左寀前壁中下部，空旧网前 $2 / 3$ 及二，尖䦣前外乳头肌和左心房；宁者供血给左心房，壬室前壁上部，左室外侧壁和心胜鬹面的左米部或全部，二尖瓣房队乳头肌。标过状动脉供血绘有心室，室间隔后 1,3 和心脏膈陌的在则或企部。受心肌收缩舒张的影响，心肌血流作心动周期的不同阶段是不同的。收缩期心至内的床力高，对心肌造成挤压，尤其是心内膜下心肌所受的压力最大，部分心内膜下毛细伯管甚至会在收缩期因受LE耏间塞。但这种圲象持续的时间短暂，不会损伤心肌。在舒张期，这种心窒内高压得到有效解除，所日主动脉内仍然维持着足够高的血压，心肌血流灌注恢复，所以舒张期是维持心肌血流正常灌泙的主要阶段。

正常心这的过状动脉䘏流量和心肌血流灌注随心脏做功不同，在一定蒲围内变化，也就是说，冠状动脉血流和心肌灌注存在储备功能，以适应机体牛理变化的需要。测童冠状动脉血流储备（coro nary flow reserve，（CFR）可度映㝴脉的储备功能，早期诊断心肌缺血。

二，循环系统的神经体液调节

除心脏本身的自律性以外，循环系统受神经体液岃素的调节，包括交感神经，劋交感神经和邀素，它解质，某些代谢产物等。交感神经通过兴有心脏」：的 β_{1} 受体加快心率和传导，增强心肌收缩。通过兴奋外周血管上的 α 受体使外周血管收缩，最终引起血压增高。与此相反，副交感神经通过兴奋乙酰胆碱能受体使心率和传导减慢，心肌收缩力降低，外㓮血管阻力下降。体液因素中，儿茶酸胺，

钠离于和钙离于起正性肌川和正性心率作用，乙酰胆碱，钾离子和镁离子起负州心率和负性肌 ノ作用：儿茶酚胺，肾素，血管紧张素，血栓烷 $\Lambda_{\text {。 篎 }}$使血啠收缩，激肽，环磷酸腺苦，一磷酸腺苷，前列环素，组胺，酸性代谢产物等使们管舒张。

第2节 心肌灌注显像

心肌灌注显像（myocard al perfusion imaging）是广泛使用的核心脏病学检査／法之一，土要朋子䀡心病的诊断，疗效评估和预后灲断等方面，已片为核心脏病学的重要组成部分。

一，原 理

心肌灌注显像是以放射性核素标记的心肌櫵：清像剂在心肌组织上的分有而成像的，反映与江射显像剂即刻的 心肌血流灌注（myocardial blood
因素：灌注心肌的血流昜和心肌活性。心肌血流量多，心肌摄取小踪剤多，区之则摄取減少，只有保持了完整细胞膜，存代谢的存活心肌细胞才能摄取灌汸舀像剂。此外，由于缺而心肌对某些显像剂的清除慢于正常心肌，注射一段时间后，这些显像剂在心肌发生再分布。利用心肌灌注显像剂的这些特点，就能检测心肌缺血！

为保证心肌灌江显像能准确反映心肌血流灌泣，心肌灌汧䇺像剂应该县各如卜特性：（D）显像剂的撖取和心肌血流㝵一致。不仅在心肌血流灌汗让常时，而」在不同程度的心肌血流灌注减少或增加状态下，心肌摄取和血流量一致：心肌提取率岁，这样在矩暂的血流动）今学变化（如运动试验高峰）时 ．心肌斯刻摄取的显像剂望才能反映当时的心肌血流状况；3在图像采集期间，心肌湿像剂的分布和浓度稳定；（ 心肌摄耻亚像剂不受药物或心肌代谢变化的干扰。否则不能宾灾反映心肌血流状况，

二，显 像 剂

用于心肌灌注显像，一直沿用至今。瀪［ $\left.{ }^{\prime \prime} \mathrm{Tc}\right]$ 标记化合物亚示厅」更好的理化特性，是今辰发展的平点，正电子类化合物主要肘于正电f发射计算机断

层（positron emiswion computed tomography．PFT）心肌灌注亚像。

（一）${ }^{201} \mathrm{~T}$

＂ 1 I 是加速器生 ${ }^{\text {产的放射性核素，哀变类型 }}$为电 6 俘获。物理半衰期为 73 小时 $=T 1$ 发射 $157 \mathrm{k} \mathrm{V}(10.0 \%)$ 利 $135 \mathrm{keV}(3.7 \%) \gamma$ 射线。 B_{3}～ $83 \mathrm{kcV}(94.4 \%$ 的 Hg V 射线。

1．初㢵分布 心肌细胞对血液中： FI 的提收 ＋要収决于冠状动脉血流量和 $\mathrm{Na}-\mathrm{K}$－ITP酸㕕的作井了。静脉注射居与～10分钟。こ丁在心肌及尒身的分布达到平衡．称为初始分布．心肌初始分布式表了正常或缺血心肌的血流灌注。除守心肌近流灌注密切和关外，心肌最初摄取＂… 1 还和心肌如 ${ }^{2.1} \mathrm{Tl}$ 的提取率有关。

在心肌的分布是一个动态过程。盾这一过禁中，心肌不断地从血䘸中掫取 ${ }^{2}$ ． T 1 。同时将 ${ }^{-1} \cdot \mathrm{Tl}$ 洗脱 （washout）至血液如。其 T_{1} 2为 1 小屿。自于缺血心肌对＂， Tl 的洗脱速度低于正常心肌。灿而在达到一定时间有（1 小时左右），缺血心肌和正常心肌之间的＂＂ Tl 浓度养缩小，${ }^{4} \mathrm{Tl}$ 在心肌上发生阵分布，这是诊断心肌缺血的果要指征。

（二）${ }^{99 m} \mathrm{Tc}$ 标记的心肌灌注显像剂

照相机图像采集，组织衰瑊轻，半衰期为 6 小时。能给予更大的剤量，图像质量好，侕了是发生器生产，价栙低廉，标记方便。近 10 年来。已发据出越来越罗的 ${ }^{4 m} T \mathrm{c}$ 标记的心肌濩往显像剂。

类心肌灌注显像剂巾较好的一种。心肌对＂：Tc－ MIBI 的抆取机制尚代完全清楚，多数意见认为 －Tric－MIBI 系通过被动孙教机制进人细胞。并沉积在：细胞线糟体山。心肌对 ${ }^{\mathrm{Nam}} \mathrm{T}_{\mathrm{c}} \mathrm{CMIBI}$ 的首次通过提取率为 $60 \% \sim 70 \%$ 。静脉注射 ${ }^{\prime \prime 4 m}$ 厂c MIBI 合分钟．心肌滞留注射剂量觔 1.2 亿。在心肌向流为
的分有和放射性微球在心肌内的分布䛼线性相元 （ $r=-0.92$ ）。在缺血情况下，心肌对 ${ }^{4 \mathrm{~mm}} \mathrm{Tc}$－MIBI 的摄取减少。 ${ }^{9-m} T c$ MiBI 儿平尤冉分布（ 15° ，以下）。相此有诊断心肌缺血时，就需要分刷进行负荷和静
蒫化符合。但有时在 ${ }^{-m} \mathrm{Tc}$－MIISI 心肌业像上表现为仆叮逆吽缺损区，叮能在 ${ }^{-1} \mathrm{I} 1$ 显像上为可逆吽。

2．＂nn Tc teboroxime 心肌对＂＂rencoboroxime
从心肌的清除极快，正常心肌洗脱火减期为 9.1 分冲，运动尼半堿期仪为 6.6 分钟。
 rofosmin）＂＂t＂Ic terofosmin 在心肌线粒体中浓集，肝耻清除快广 ${ }^{* \mathrm{~mm}} \mathrm{Tc}$－MIPI，无再分布，心肌提取＂＇I＂Te－tetrofosmen 的效率低于＂ Tl 。由于几平没有洗脱，心肌的摄収作和 ${ }^{616} \mathrm{Tl}$ 接近。 F 常。心肌，轻～中度缺血心肌和以＂度血流增加心肌对＂${ }^{\prime \prime n}$ n．Te－te－ trofosmin 的摄取与乌肌血流呈线性相关。但如果心肌的流高于 $2 \mathrm{ml} \mathrm{m}^{\prime} \mathrm{min} \mathrm{A}^{\prime} \mathrm{g}$ ，其相X曲线出现一个中㕕，即低估血流灌汗：如果低下 $0.2 \mathrm{ml} \cdot \min \Omega$ ，心肌提取率又有所增加。

4．锅［ ${ }^{-44 m} \mathrm{~T}_{\mathrm{c}}$ 」furifosmin（Q12）Q12 什 心肌线粒体中浓集。当心肌血流大 2 ml min g 则，心肌对 ${ }^{4 m}{ }^{4} T_{c}$－furifosmin 的摄取利心肌血流古线吽相火，
响不大，肝脏的清除较快，没有再分布。
 （＇＂Tc N－NOET）性，搘脂性，乍再分布，心肌的摄取量高达 .2 汐注射剂量，在相当人的范用
的摄取和血流灌注呈线性相关。

（三）正电子核素心肌灌注显像剂

正电子核素心肌灌注显像剤为配有符合线路的装罱所探测，如 PFII牫符合线路的只光手发射计算机断层（single photon cmission computec tomio－ graphy，SPECT）显像仪。其半衰期都很稫，血时间内可里复注射进行系列显像，但需配各小型加凁器政发生器，PET鼠像剂非常符合业小゙心肌灌汗特性：的需要，PET 比 SIPCO 具存更高的空问分辨率和探测效率，可进行绝对定量•计算心肌灌注储各。

1．氮 $\left.{ }^{-1,3} \mathrm{~N}\right]$ 氨 $\left({ }^{13} \mathrm{~N} \cdot \mathrm{NH}_{4}\right)$ 在生理状念ド，其首次通过提取率为 70% 筸～ 80% 。心肌血流 \therefore $2.0 \mathrm{ml} / \mathrm{min} / \mathrm{g}$ 时，心肌提取率曲线下降速率逐渐减低变为平公。心肌向流在 $0.4 \sim 2.0 \mathrm{ml}^{2} \mathrm{~min}$＇$g$ 范围内，${ }^{1 s} \mathrm{~N}-\mathrm{NH}_{3} \mathrm{PET}$ 测量的心肌血流和微球测里的

血流呈线性相火。血流量在 $2.0 \sim 3.2 \mathrm{ml} \mathrm{min} \cdot \mathrm{g}$（充血）范围内．心肌 ${ }^{13}$ N－ $\mathrm{NH}_{\text {，的摄取一血流井线逐渐变 }}$成半台。 心肌对 ${ }^{3}{ }^{3} \mathrm{~N}-\mathrm{NH}_{\mathrm{i}}$ 的提取，滞贸还受物伎氧化以及行氨酸合成等的影响。

2．氯化铦 $\left[{ }^{52} \mathrm{Rb}\right]\left({ }^{82} \mathrm{Rb}-\mathrm{Rb} \mathrm{Cl},{ }^{\circ}{ }^{\prime 2} \mathrm{Rb}\right){ }^{\circ} \mathrm{Rb}$ 由发生器生产。其吽衰期仅为76秒，可以快速兑战系列 ${ }^{52} \mathrm{Rb}$ 山肌灌注显像图像。 ${ }^{32} \mathrm{Rb}$ 是钾离子类似物，心肌对其的摄取依赖于 $\mathrm{Na}-\mathrm{K}$ ATP酶，在心肌的放射性分布祸微球的分布相关性非常好。

三，负 荷 琙 验

心肌是否缺血，不仪取决于冠状动脉狭窄与否以及狭窄程度，还取决于心肌耗氧量。当过状动脉
灌注均止常：㹫窄为 50% 年 ~ 80 关时，静㤩血流灌注止常，运动所需的耗氧量增加将导致心肌缺血：狭窄 $80 \% \sim 95 \%$ 时。静息状态下也存在心肌缺血；
亚心肌消存活。因此，为诊断心肌钢血就必须先进行负荷试验心肌灌注显像 strcss myocardial perfu sior：imaging，再结合静息显像或延迟显像综合判断。核心脏病学常用的负修试验包括运现试验，潘生「试验，腺甘试验和多巴酚」咹试验等，龺外医院应用次极量运动试验 21000 余例，严重并发减的发生率仅为 0.05%（1 例发生心室纤颤质经抢救转危为安）。虽然负荷试验是安羊的，但仍要严格掌握适学证，禁忌证。开展此项检查时，要行心内科医槛临场指导或具有心内科临床抢救经揄的放师乍场，而且应将病人置于心电图，血䢞，心率等的严密监测之ト。

（一）运动试验

1．原理 最常用．通过増加心脏负荷，增加心肌耗氧量，从而增加冠脉血流量，观察正常相狭䆣冠脉的丘流储备。

2．适应证 胸痛的诊断及鉴品诊断，诊断远心病及其病变的范围，程度，心肌梗死的预有估测，心肬手术前排除冠心病。

3．禁忌证 一周内发牛的急性心肌梗死。不稳定型心绞痛，严重心律失常，严重主动脉瓣狭究，梗阻型肥厚性心肌病，重度心衰，收缩生入 220 mmIIg ，严重企身疾病或运动障䄍。

4．终止指珑 病大要求终止或设备故障，出

率。
（2）${ }^{54 m} T c-M I B I$ 心肌显像：静息显像在注射后 $1 \sim 2$ 小时进行，负荷显像在注射后 $0.5 \sim 1$ 小时进行。注射 ${ }^{39 \mathrm{~mm}} \mathrm{Tc}$－MIBI 后 $15 \sim 30$ 分钟进脂餐。 （1）一日法显像：先在静脉注射 ${ }^{94 . \mathrm{m}} \mathrm{Tc}$－MIBI 25s～ $296 \mathrm{Mrq}(7 \sim 8 \mathrm{mCi})$ 后行静息显像， 3 小时后行负荷显像．剂量 $740 \sim 925 \mathrm{MBq}\left(20 \sim 25 \mathrm{mC} \mathrm{C}_{1}\right)$ ；（2）两日法显像：分別两天行负荷和静息显像，注射剂量 $740 \sim 925 \mathrm{MBq}(20 \sim 25 \mathrm{mCi})$ ；（33）${ }^{99 \mathrm{Mm}} \mathrm{Tc}-\mathrm{MIBI} / /^{211} \mathrm{Tl}$双核素显像：注射 ${ }^{2011} \mathrm{Tl}$ 后行静息显像，随后行 ${ }^{40 \mathrm{wre}}$ Tc －MIBI 负荷显像。
（3）其他 ${ }^{99 n} \mathrm{Tc}$ 心肌灌注显像剂显像：注，射 ${ }^{999} \mathrm{~T}$ c－tetrofosmin 和＂${ }^{4} \mathrm{Tc}$－furifosmin 后 $10 \sim 15$ 分钟即可显像；${ }^{99 m}$ Tc－tcboroxime 必须在注射后 1 分钟内显像，显像后 $1 \sim 2$ 小时可重复第二次注射，显像。

3．PET 心肌濯注显像诊断心肌缺血 采用静息－运动或静息•潘生 $\mathrm{T}^{13} \mathrm{~N}-\mathrm{NH}$ ，槛像：诊断心肌存活，采用静息 ${ }^{15} \mathrm{~N}-\mathrm{NH}_{3}$－氟 $\left[{ }^{18} \mathrm{~F}\right]$ 脱氧葡萄糖（ ${ }^{16} \mathrm{~F}-$ FDG）显像；综合上两种诊断目的，可采用运动 ${ }^{13} \mathrm{~N}$－ $\mathrm{NH}_{3}{ }^{-18} \mathrm{~F}$－FDG 显像。
${ }^{13} \mathrm{~N}^{2}-\mathrm{NH}_{3}$ 显像前 1 小时禁食。首先进行静息显像．静脉注射 $370 \sim 555 \mathrm{MBq}(10 \sim 15 \mathrm{mCi})$ 后 3 分钟开始显像。静息显像完成后 30 分钟再行运动显

像（ 运动高峰注射 ${ }^{15} \mathrm{~N}-\mathrm{NH}_{3}$ ）或静息显像完成后 45分钟再行潘生」显像。

（二）图像采集和重建

心肌灌注显像的采集方法有平面，断层和门控显像（ ${ }^{7 \mathrm{vm}} \mathrm{Tc}$－teboroxime 因清除太快仅作平面显像）。

1．平面显像 于前位， $30^{\circ} \sim 45^{\circ}$ 和 $60^{\circ} \sim 70^{\circ}$ 左前斜位采集，必要时加左侧位或 30° 右前斜位采集。对于需采集两次的平面显像，如负荷－静息显像，两次采集的体位要一致。采集条件：γ 照相机，低能平行孔通用型准直器；采集矩阵 $128 \times$ 128；每个体位采集计数 $\geqslant 500 \mathrm{k}$ ；${ }^{99 \mathrm{~mm}} \mathrm{Tc}$ 显像的能窗为 $140 \mathrm{keV},{ }^{201} \mathrm{Tl}$ 显像的能窗为 $70 \sim 80 \mathrm{keV}$ ；能窗窗宽 20% 。

2．断层显像 探头从右前斜 45° 至左后斜 45°顺时针行 180° 采集，也可进行 360° 采集，椭圆或圆形旋转轨迹，每 6° 一个投影。逐步采集（step－ and shoot）最为常用，探头旋转时停止采集，转到所需角度时探头停止转动并采集。每个投影采集 $20 \sim 40$ 秒（ ${ }^{2031} \mathrm{Tl}$ 显像 $\geqslant 40$ 秒）或 $\geqslant 100 \mathrm{k}$ 计数， 64×64 矩阵，准直器，能窗等同平面显像。均匀性校正后，以滤波反投影进行影像重建，以左室长，短轴方向重建出短轴，水平长轴和垂直长轴断面图像（图6－1）。

图61 心肌灌注断层显像示意图

图像采集过程中病人有无移动是㤏像采集成收的关键之一。可通过查看电影显示各投影图像病人

有无移动，累积投影图像（summed projection im－ age）中左室＂条＂的上下边界是否呈水平状或正弦
\qquad
\qquad －

曲线图（sinogram）中有无不连接现象来判断。对丁移动者可以用系统提供的程序予以校正。如果投影和校正后的重建图像均岁为为正常灌注图像。说明校上成功；如果校止店的重建终像显示心肌灌注异常，应重新采集。

3．门控亚像 以心出图 R 波触发采集爪间心动周期时段的心肌灌汗：图像（gated myocatdial per－ fusion imaging）。广椌显像可以用平面和断层（图 62 ）两种方式进行采集。

图 52 心肌灌注门控显像示意图
门控昆像的采集条件：除电述平面（门控平面显像）或断层鼠像（门控断层显像）条件外，业像剂的剂量要稍高。时段：8～12个，心电图窗宽火 20% 。门控采集模式：一是固定模或采集（fixed mode acquisition），在采集前先确定一个R－R 间期，在整个采集过程中这 一间期不变：一是可变性：采集模式（variable acquisition mode），在采集过程中，计算机动态临测 R－R 间期，以买均心率为标准，确定接受或枑绝某次心跳的门控图像采集：—是列表式采集（！ist mode acouisition），采集印计算机记录舡－•个计数的时间和空间位置以重叠出每时段的灌注图像，它避免厂前两种采集方式可能产年：的因门控采集失误导致的图像模糊，但要求计算机有很高的內存和速度。前两种方式是最常用的采集娭式，要求病人心律基本整齐，心率快慢变化不大，

门控业像采集的质量和下述问题有大：其一。心电图窗宽的设置是聂终能需真实反映每个时段心肌灌汗：图像，是否产生伙影的关键，对于以 8 个时

段采集的门控显像来说，每个时段采集整个心动片
使邻近时段图像的计数基本上不互相重卹：其二，要有足够的计数：其二，对于＂心率变化幅度大，心律明显不齐或不能射受长时间采集的病人，最奸不作门控昆像。

4．PET显像 ${ }^{-3} \mathrm{~N}-\mathrm{NH}$ ，心肌鼠像げ注射后 3分钟开始断层采集，采集时间为 1.5 分钟，泈像重建的滤波函数为 Butterworth，显示短轴，开亩长物，水平长轴的图像以及横截洞图像，也圢速行动态采集，以便绝对定袁心肌漸注。

五，正常显像表现

正常心肌灌注显像的ヶ致显影清晰，放射性分布均会，靠近左室基底部出十心肌向主动脉辨和二少瓣过渡，室壁逐渐变溥，放射性分布较其他部位稍娍低。静息鼠像时有空通労不显影，心店不显影。PCT出于分辨率较高，厶衮可显影，似一病人的㑔荷，静息，延迟心肌灌注显像泈像上。心室放射性分布 无明昆变化。门控断云显像的各时段心肌灌江图像 1. ，左室放射性分布均匀。电影显示左至运动滆度正常，无节段性运动弁常．左空射血分数在 $501 \% \sim 80 \%$ 之间。

在止常图像中常迻到儿种伪影。叮能导致误诊。其 ，软组织㐮减导致的放射性分布桸疏，亡：要见于单光子显像巾。如巨大乳房者导致乳房哀减，务空前壁放射性稀疏，部分尚可累及外侧壁或间隔，采集时如能将乳房移至心脏的 $1: 弓$ 。 则此种影响减轻。膈肌衰减上要导致下后譬放射性分布桸疏，侑防位或左侧位采集图像可使下后壁稀疏现家明显减轻或消失。此外，肥胖也是导致组织衰減的常见原因。组织衰减导致的放射吽分布稀疏在门挖品像屿正常。其二，腹部显像剂滞留导致的伪影：在 ${ }^{2 \mu} \mathrm{Tl}$ 断层显像巾，显像剂主要聚集干肝脏，在 ＂${ }^{\circ} \mathrm{C}$ Tc标记的心肌灌汗断层显像中，显像剂聚集于肝脏，択囊，影响下壁的观察，伏此于显像前 30分钟进食脂餐以促使其排泄。其 \therefore 体左束支传导阻滞病人的室间阳放射性分布稀疏，表现为可逆或不吅道性放射性分布㬺疏，此种情况不能沴断为心肌缺秃。潘生丁心肌灌注出像中这种由左束文传导䧋滞引起的室间隔放射性桸疏璃例减少，涌且椾流的程度也减牷。

观察平面显像肘，从前位图像卜可见左室前侧壁，前尖壁和下壁：左侧位上叮见左室前壁，侧壁心尖段和后壁；在左前斜 10° 左右可见原空（前）间
 （前）问隔，人下壁利下后壁。

通常在展示各断会图像时，从心尖台心底部排列短轴切面，从室间隔至外侧壁排列垂直长轴切面，从上吅下或从下问上排列水平长轴切面，通过＂个轴面可全而反映左室各臂的放射性分布。左室室糪大致可分为 9 个节段：以是否靠近心尖或心底部，将前辟，「壁，空间隔和侧壁各分为两个节段，加上心边为一个节段（图6－3）。正常人 ${ }^{2: 171}$ Il 运动一再分布心肌灌注断运結像见图6－1。

短轴中部

垂直长轴

短轴基底部

水半长轴

图6－3 心肌溜江断芸显像左室心肌分設小゙意终 1，心火：2，心火部前壁：3．基底部前壁：4．下壁：5，后壁： 6．心少部间壁；7，基底部间壁：8．心尖部侧壁：9 㟵底剂侧壁

图 f f－4 正：常人＂Tl运动 阬分布心肌灌江断层显像

六，异常显像表现

根据负荷呢像与静息显像的对比分析，可有下述儿种表现。

（一）可逆性放射性缺损

负荷状态下，心肌灌注显像为室壁放射性缺损，延迟或静息显像可见原缺损区有放射性填充．此种类型为心肌缺血的典型表现（图6－5）。

图65 心肌缺和病人＊ Tl 运动 両分布心肌灌泣断层显像

（二）不可逆性放射性缺损

或称固定性放射性缺损。这类图形的判断要谨慎，有以下几种情况：陈鬥性心肌梗死，局部为纤维瘢痕组织所取代；心肌＂冬眠＂，心肌组织由于严重缺血而处十＂冬眠＂状态，使得血运重建术后该部分心肌可恢复灌注与功能，鉴別诊断分法见本章第 6 节；技术误差，如下后壁心肌的放射性由于：受膈肌衰减的影响。可表现为运动与静息均桥疏，缺损，而实际上该部位的心肌运动，灌注和结构均正常；其他原因所致的心肌纤维化，如局部心肌炎

症，变形均可造成此种固定性稀䟽或缺损。因此不可逆性放射性缺损不能简单诊断为心肌梗死，应作全面分析。

（三）部分可逆性缺损

十原灌注缺损的部位可见部分放射性填充。
（四）反向再分布
印运动（药物）试验的心肌显像正常，向延迟显像或静急显像可见放射性缺损，此种情况较少见。多数情况为运动试验心肌显像放射性较稀疏，静息显像此种桸疏加重。阜外医院分析 11 例
${ }^{\text {Pras }}$ Tc－MIBI显像有反问再分布的图形，并有冠状动脉造影作对照，结米表明此种反向再分布均无明显的冠状动脉狭窄。隹前对这 问题的看法还卡取得统一意見。

（五）其他

心肌灌注显像时脏部放射性摄取增高和俋荷沓像一过性左空扩大，这两种现象预示病人的冠心病严重，预后差。右室显影明显，府空扩大见丁析室负荷过重的疾病。

七，临床应用

（一）冠心病的诊断

相对于其他无创性检查方法，核素心肌灌泫显像对冠心病的诊断有很启的灵敏度，特异性和准觕率，直接反映了病变冠状动脉供血心肌的血流灌注状态和存活状态，可诊断梗死和缺血心肌的部位，范围和严重程度。

1．诊断冠心病的灵敏度和特异性
（1）${ }^{201} \mathrm{Tl}$ 和 ${ }^{5!m} \mathrm{Tc}$－MIBI 心肌楽像： 2413 例曲 Tl 平面运动心肌显像诊断冠心病的灵敏度为 83.6% 。特异性为 88.4% ； 610 例 ${ }^{231} \mathrm{Tl}$ 运动心肌断层显像的灵敏度和特异性分別为 91.7% 和 76.6% ，定量分析结果与之相近（分别为 91.7% 和 84.4% ）。 150 例 ${ }^{99_{n}} \mathrm{~T} \mathrm{c}$－M1BI 平面运动心肌鼠像的灵敏度和特异性分别为 90.2% 和 75.0% ，忿量分析统果分别为 40.2% 和 80.9% ；刘秀杰等报道 100 例 $^{\text {sta }} \mathrm{Tc} \mathrm{c}$－MIBI 运动断层心肌显像，马敏度为 96% ，特异性为 83% 。 308 例同的进行 ${ }^{9, n 1}$ Tr－MIBI和 ${ }^{211} \mathrm{Tl}$ 运动断县鼠像，两者的灵敏度分别为 90.0% 和 88.1 壬
（2）其他显像剂心肌显像研究：一组恼痛人同时进行了 ${ }^{\gamma_{01}} \mathrm{Tl}$ 和 ${ }^{90 \mathrm{~N} x} \mathrm{Tc}$－teboroxime 心肌矰像，结果两者诊断冠心病的灾敏度分别为 84% 和 80% 。特异性均为 67% 。 ${ }^{9 . m} \mathrm{Tc}$－tetrofosmin 诊断的缺血范讳和 －9m Tc－MIBI 相似，比 ${ }^{201} \mathrm{Tl}$ 的小。252 例病人的研究表明，${ }^{9 s_{m a}} \mathrm{rc}$－ $1 \in$ trofosmin（ - 日法）和 ${ }^{3 n 1} \mathrm{Tl}$ 运动－静息显像诊断的符合率为 $80.1 \% ~(\mathrm{Kappa}=0.55) ~ 。$ 149 例病人的研究表明，${ }^{99 m} \mathrm{Tc}$－furifosmin 利 ${ }^{231} \mathrm{Tl}$运动－静息显像对图像是勇异常的诊断符合率为 96%（Kappa $=0.67$ ），对有无可逆性缺损的诊断符合率为 $79 \%(\mathrm{Kappa}=0.54) 。{ }^{299_{\mathrm{m}}} \mathrm{T}_{\mathrm{c}} \mathrm{C}-\mathrm{N}-\mathrm{NOET}$ 有再
和 ${ }^{24} \mathrm{~T} 1$ 的诊断符合率为 $88 \% ~ \% ~(\mathrm{Kappa}=-0.76$ ）
（3）PET 心肌灌注昆像：＊2R1 心肌显像诊断遄心病的灻敂度为 $87 \% \sim 95 \%$ 。 特异性为 $78 \sim$ 100% 。 ${ }^{1 / 2} \mathrm{~N}-\mathrm{NH}_{3}$ 心肌显像诊断远心病的灵敂度为 $88 \% \sim 97 \%$ ，特异性为 $90 \% \sim 100 \%$ ，这两种显像剂的诊断准确性相似。PEI心肌灌注昆像诊断㝴心病

PET显像沴断过心病的最大特点之一是能绝对定年分析心肌灌江，计算心肌血流储备。而且绝对定荲心悓灌注还可用十有冠状动脉弥滞性病变而显像剂仕心肌分布比较均钓的疾病，如冠状动脉造影下常的胸痛病人，心脏移植的病人或冠状动脉病变比较平衡的多文病变病人。

2．病变范围和严重程度的估价 远脉造影与要提供解剖结构的信息，对狭窄所引起的心肌缺血情况，范围以及严重程度难以提供资料。核素心肌灌注：泉像可以明确显示缺血的范围，缺损的严重挰度，为病人的治疗方案提供战略性建议，特别是对心也图，酶学检查等无朋显变化的患者付价值：

3．在急性胸痛巾的㢄用 急性胸痛是急诊室和彆护病房最常见的急症，见于多种心，肺和胸部疾忠，其中急性心肌梗死和不稳定型心绞痛严重后及患者生：命，而及时溶栓或急诊经度冠状氻脉球囊扩张术（percutaneous transiuminal coronary angio－ plasty，PTCA），冠状动脉搭桥术（coronary artery bypass graft，（CABG）治疗能挽救病人。减少心肌棵死范围和程度，甚至使产重缺血的心肌不再发展战棵死，恢复正常。核心脏病学检查能及时从急性胸痛病人中确诊出病人是否为急性心肌梗死或急吽缺血综合征，从而显著缩短规察时间，减少病人费用，并能协助临床医师决定病人是否需要进一步仔院治疗，溶栓治疗后闭塞的冠状动脉是否已央通，梗死心肌内是否残存仔洁心肌等。
${ }^{201} \mathrm{Tl}$ 显像能诊断 34% 的胸痛发作 24 小时内的急性心肌梗死，特別是对心电图，酶学检查等不明确的患者有价值，${ }^{9}{ }^{9 \mathrm{~mm}} \mathrm{~T}_{\mathrm{c}}$－MIBI 对于急症胸痛的诊断地有较离的灵敏度。对于溶检治疗而言，${ }^{u_{m}} \mathrm{Tc}$ MIBI 心肌显像还能动态监测疗效。由十几乎没有冉
毕病人病情稳定后才显像，此时显像的是溶检前图像。第一次显像后再注射 ${ }^{\omega_{\mathrm{I}} \mathrm{A}} \mathrm{T}_{\mathrm{C}}$－MIBI，行第一，次显

像就是溶栓后的图像。根据两次图像上心肌放射性缺损范用和大小的变化就能确定溶栓治疗的效果。

为朋确心肌灌注显像的放射性缺埙是由陈沺性：心肌埂死还是急性心肌埂死所致，可｜可时进行心肌灌注显像和亲心肌梗死显像予以鉴別，如果亲心肌褸死显像阳性病灶的部位和灌泣显像放射性缺损的部位一致（匹配），则说吸心肌梗死是近期发生的；如果灌江显像放射性缺损部位的实心肌㭫死显像为阴性（不顸配），叮能是洂旧性心肌梗死或心肌缺血 （心肌顿抑）所致：如果亲心肌梗死显像䧋性部位的灌注显像放射怆分布正常（overlap），说朋该部位既有环死心肌，又有存活心肌，提小为非透壁性心肌梗死。

（二）冠心病介入治疗的应用

介人治疗是远心病治疗的重要措施，包括 PI CA 和 CABG 。经过介人治将后冠状动脉狭窄得以解除。心肌灌注显像在此治疗起程巾的意义就在于筛选手术病人：监测CABG 病人有无制于术期心肌梗死；确定治接段冠状动脉狭空解除与否，有 片残仔心肌缺血，是否需要再次介人治疗：有无冉狭窄：判断预店。

心肌灌泙显像所用于筛选病人是用药物治皮还是用 PTCA 或 CABG治疗：凡有放射性分布桸疏，缺损节段累及多支血管区域，或是像有有：空功能低下征象（如肺摄収增高，一过性左室打大），或心肭 ${ }^{*} \mathrm{Tl}$ 洗脱普遍减慢的病人，说明病变范制＂，病情严重，预后人佳，需車任管化治疗。心肌灌注显像还能检测㳏死心肌内是否有因严重缺血而讨致的冬眠心肌，后者在再血管化治疗后功能会得到恢复。

心肌灌泙显像是再血管化治疗后疗效评价的首选手段，它简便，尤创，准确，可多次重复检查。体 PTCA 店 $1 \sim 3$ 天或 CABG 后一周内，就可采井约物介人心肌灌注亚像。对于成功的再血管化治疗，术前为可逆性放射吽：缺织的节段。术后 90% 恢复正常•而不可逆性缺损节段中仅有部分改善。

在再血管化治疗后期的疗效监测巾，心肌灌注显像用于观察病人付无再狭究发生。一般㝴状动脉再狭穼发生在： $3 \sim$ ；H内，此时心肌灌注显像运动试验有价值。

（三）预后评价

心肌灌注显像对冠心病病人的预后（prognosis of coronary artcry discase）其有良好的顶测价佰，

它所估价的预后对制定临床长期治疗方案．姐病人是单纯药物治疗还是再血管化治疗有指导意义。

1．冠心病病人和疑诊为㝴心病病人的预后心肌灌汗，显像图像对预后的提示可以从几个方面得到。可逆性缺损病人的心胙事件是灌注业像正常病人的6－12倍；受累心肌范围是预测心源性死亡或心肌梗死的最佳指标；灌注显像是示厌室功能低下，如 ${ }^{\text {＂al }} \mathrm{Tl}$ 图像上肺摄取放射性增岁，一心性左室扩大等，病人的顾后人倩；心肌灌注垅像正常对病人预后良好右很高的预测价值。对 3573 例病例的回顾性总结发现，心肌灌泣显像正常病人的心源性死亡或心肌梗死的发生率低于 1% ，年。对 151例运动心电图ST段压低 $\geqslant 2 \mathrm{~mm}$ 但＂＂］ Il 显像正常的病人追踪 31 ± 17 月，无一例发生心肌梗死或心源性死亡。75例冠状动脉造影证实的冠状动脉狹穼（36 例多支病变）而 ${ }^{2011} \mathrm{Tl}$ 显像正常的病人随诊 2年，心脏事件发生率为 0.7% 。

2．心肌梗死的预后 和运动心电图相比，心肌灌注显像受运幼高峰心率的影响小。心肌灌注显像能鉴別病变心肌是缺血，梗死还是存活：能确定受累心肌的范围，所检测H的缺血，梗死心肌部位易于确定病变冠状动脉；门控心肌灌泙显像能观察左室功能和卢段性室壁运动异常；潘生1＇或腺苷心肌灌汗显像能什。心肌梗死早期（梗死后 $2 \sim 4$ 天）就对病人进行预后评价。凡固定性放射性缺损面积大，左室功能低下或伴随残存心肌缺血（可逆性缺埙）的病人。其预后较差。 ${ }^{2: 1} \mathrm{Tl}$ 显像对心肌梗死病人所有的心脏事件祸再发非致命性心肌梗死的预测准确性出著宂于运动心电图和过状动脉造影。

3．围手术期心肌灌注显像 潜在㝴心病是决定闱于术期病人心源性死亡率和冠心病发病率的主要因素。在：軵心病高发人群中，如高龄男性，糖尿病病人，尤其是血管疾病手术病人 $(40 \% \sim 80 \%$ 同吋患有冠心病），围手术期心朋事件的发生率很启。而且许多冠心病易患病人无明显的临尘症状，屈于无痛性心肌缺血，甚全梗死。心肌灌注显像能很好地節选出閌于术期心脏事件高发的患者，可逆吽放射性分布稀流，缺损病人的围手术期心源性死亡的发生率鼠著高十心肌灌注正常的病人。18例拟血管手术的冠心病病人的潘生 J ${ }^{-201} \mathrm{Tl}$ 显像巾， 50% （ 8.16 例）有可逆性放射性分布缺损的病人发生了心脏事件，而在 ${ }^{201} \mathrm{Tl}$ 显像正常（20例）或表现为固

定缺损的病人中无一例发生心脏事件。 1 们且 ${ }^{2(1)} \mathrm{Tl}$ 显像上可逆性放射性分布缺损范围的大小和囲于术期心脏事件的发生率定正相关。术前进行 ${ }^{20} \mathrm{Tl}$ 显像还对病人的术后远期预后有顶测作用，对外周血管手术病人术前进行潘生丁 ${ }^{201} \mathrm{Tl}$ 显像。从显像正常，固足缺损到可逆性缺损，病人的一年生存率依次降低。
（四）缺血性心肌病和扩张型心肌病的鉴别诊断
抽张型心肌病（dilated cardionyopathy）是临床上的常见病，以心力衰竭为主要临床表现。扩张型心肌病在临床上有可能和缺血性心肌病（ischemic cardi－
omgopathy）相混淆．心肌灌注显像在鉴别两种心肌病上有较好的实用性。通常扩张型心肌昞病人的心空扩大，由于左心功能不全，肺对 ${ }^{201} \mathrm{Tl}$ 的摄取增加，灌注图像没有节段性灌注缺损以，而是心肌放射性分布不均告。如果扩张型心肌病病人的左室扩大明显，可能导致源于衰减的放射性分布桸疏区。 Tauberg 等发现。 94% 无严重放射性分布缺损的扩张型心肌病病人没有并发冠心病，有大范围灌注缺损的心肌灌注显像病人中 97% 有冠状动脉狭窄。扩张型心肌病和缺血性心肌病心肌灌注显像的鉴别要点见表6－2，

表 6－2 扩张型心肌病和缺血性心肌病心肌灌注显像的鉴别要点

（五）在䦆膜病中的应用
心肌灌注显像在瓣膜病中的应用主要体现在两个方面：探测有无合并冠心病，测量心功能。关于心功能与辨膜病将在核素心室显像节论及。

应在介人治疗和外科手术前将瓣膜病合并远心病的病人篣选计来，以减少闱手术期心脏事件的发生，对合并冠心病的病人可在手术时同时完成冠状动脉搭桥术。在冠心病易患人群中的瓣膜病患者。如年龄＞45岁，并发糖尿病，原发性高血压等，术前心肌灌注显像能准确诊断患者是否合并㝴心病。皁外心血管病医院对 27 例瓣膜病病人在外科手术前进行 ${ }^{99}$ me－MIBI 心肌灌注显像和起状动脉造影，结果显示心肌灌注显像和冠状动脉造影结果符合率为 96.3% ，以冠状动脉造影，外科手术后临床结果为标准的阴性预测率为 100% 。相比之下瓣膜病病人心电图的 ST－T 改变常常是由心肌肥厚，心肌劳损所致，没有特异性。以心肌灌注亚像诊断瓣膜病患者是否合并冠心病，可以用药物介人显像，这样就解决了部分病人心功能状况欠佳，难于胜任运动试验的问题。对于有心衰的病人。可选用多巴酚丁胺介人心肌灌注昆像，对于严重瓣膜狭窄的病人以选择潘生丁介人心肌灌注显像为宜。
（刘秀㶨姚稚卧）

第3节 核素心室显像

一，首次通过法

（一）显像原理

时静脉＂弹丸＂式注射示踪剂，利丑 γ 照相机体外探测が踪剂随血液循环依次通过上腔静脉 \rightarrow 厷心房 \rightarrow 右心室 \rightarrow 肺动脉 \rightarrow 肺 \rightarrow 左心房 \rightarrow 左心室 \rightarrow 主动脉的动态过程，可观测示踪剂通过各房室的时间，次序和备房室的大小和位稙。并通过心前区后部感兴趣区（region of interest．ROI）的勾画，产生时间一放射性曲线，经计算机数据处理系统，计算出左，左心室功能的各项参数，如心室射血分数 （ejection fraction．EF），平坞通过时间（mean transmit time，MTT），左问右分流等．还可利用电影显示方法，规测局部室壁运动。

（二）显像剂

日的不同，选择不同的显像剂。

锝［ ${ }^{4914} \mathrm{Tc}$ ］红细胞（ ${ }^{\mathrm{Nrmm}} \mathrm{Tc}$－RBC）：首次通过法和

平衡汰相结合，静脉注射业锡焦磷酸盐（PYP）1－2支． $20 \sim 30$ 分钟斦．冉注射 $710 \sim 92 \overline{\mathrm{MBg}}(20 \sim$ $25 \mathrm{mCl})^{2 \mathrm{mas}} \mathrm{Tc}(\mathrm{O}$ 洗脱液。
 DIPA）：需连续采集两次以上，首次通过显像，如静边和运动（或药物负荷）心功能测定。由于小踪済
分钟公可重复注射。
 MILI）：可同时获得心㘦能和心肌灌注的情况，前
小时后行心肌灌注亚像。

（三）显像仪器

首次通过法昆像（first pass inaging）的可靠吽立要依赖于在极短討间内采集到足够的放射性计数，故要求探测仪器的次䑤度利探测效率要筒。过 公只有多晶休的 γ 照相机（探测效率为 $1 \times 1{ }^{\circ} \mathrm{j} \mathrm{cps}$ ）可满足这一要求。然而新型的数子式 γ 照相机。因有较高的探测效率（高达 $1 . \overline{5} \times 10^{\circ} \mathrm{cps}$ ），过可用于首次通刘少像，而前暃体显通 γ 照相机因其探测效率低（咠人计数 $6 \times$ $10^{\prime}(\mathrm{ps})$ ，需加旧电路并用表式采集方法，将数个心动虎期的放射性引数叠加才可，犾得村间一放射性曲线。

（四）显像方法

1．体位 患者可采取仰卧位与直方位。探头对位多为前位或左前斜位，取决于显像目的和观测部位的不同。

2．采集条件 探头配置低能平行孔通开型准南器或低能平行孔高灭䑤准士器，能峰 1.10 keV ，窗宽 20% ，知阵 64×61 ．Zoom 1～1．5，

3．＂弹丸＂式注射方法 肘的静脉插入 穾积为 $0.5 \sim 0.8 \mathrm{ml}$ 的导管，将放身：性核素注人导管内 （体积小于 0.8 ml ）并 ${ }^{-\mathrm{j}}$ 三通管连接，用全少 10 ml的生理盐水将管内小踪剂快速沖人青脉内，社立即平启计算机采集程序，进行数据采集。

1．注意串项（1）应轪意注人人的肘前静脉， mij非远端小静脉；（2）＂弹丸＂质量的瞥测，上嵱静脉处划 -ROI ，获得时问－放射性折线，计算丮线的半高宽太 1.5 秒，即表明注射合格；超过 1.5秒，＂弹丸＂注射质量不妊，小㞴用丁定䁷测定，倒对定性分析影响较少。

了，采集方式
（1）帧式采㭉（frame mode）：最常用的方法，

即在 一定的采集时问内，将影像分为若干帧（根据心摔淍整），如静息可分为 $40 \sim 50$ 毫秒 帧。运动分为 10～30 毫秒．帧，根据需要采集一定帧数。在采集结农应，需进行时间与颃数的调整，如用于定岿诊断叮叠加至 2 秒／帧。
（2）表式采集（list mode）：根拈㝁个 γ 光子的位监，发牛时间，能量以及心电图 R 波采集图像，之后両分帧。对于心律不齐的患者，可剔隃心律不齐的部分。保留心律整齐的部分，再非行数据处理。也可用于定単分析，但采集数据人，需存高宮星的内份支持。

6．图像处理 首次通过的駐像处理分以下几步：（D）勾画心肺的 ROI，产师初少的时问放射性曲线；厄确认左，有心公时相：（3）少別勾画左，不
底；（5）产生：代衣吽的心动周期：（6）计算左室射血分数（LVEF）和右空射血分数（RVEF）。

7．注慈书项 D肉为 RVEF 的值易受有心房
尽量不包括有心房，使得 RVEF 的测定结果更为可靠，用本法测定的 RVEF 与 MR 电影法的相炎性好（ $\mathrm{r}-0.846$ ）；（2）当心律不齐时。如房勯患者。对十IVEF的计算浴差较大，需选用平衡汰心至显像；和本底的扣除对丁 LVEF 和 RVEF 的计算影响较人，需尽量标准化。

8．图像分析

（1）正常图像
1）次序：上腔静脉 \rightarrow 右心房 \rightarrow 在心窑 \rightarrow 肺动脉•师 \rightarrow 名心房 \rightarrow 左心室 \rightarrow 主动脉。

2）时间：静脉注射 2 秒内，上腔静脉利分心防显影：2． $5 \sim 3$ 秒店右心室显影：肺动脉干在 $3 \sim$ 1 秒枩显影，肺动脉干分成左，不肺动脉，人肺门䒬迅速充盛全肺：肺在 $4 \sim 6$ 秒时昆影． 5 秒左在达高峰；在后期可㒫么心空，左心室显影多在5～ 7 秒；之后到达主动脉。止常灰心通过时间小寸 4秒，左心逝过时间小于 10 秒。
（2）异常图像
由于前次通过法从时间上将心冮结构区分开来。最大限度地减少组织重叠。因此叮较好地显示各瘀室的大小利㜆态以及示踪剂通过各房室的时间。而 1 闰为減少了不心房与右心室，左心室与有心室的重叠对 RVEF 测足的影响，所以此方法获得的 RVEF 的准确吽较高。在心通过时间延长表朋有心功能受损。与心

房室增大芕见 于－先天性心脏病，㸬部疮虫，慢性阻塞性市部疾患，各种原状所致的肺动脉高爪。

肺动脉段突引比 X 线平片里为清晰，提示肺动脉高厈或冠心病多支病变。左到才分流为肺和有心持续显影，左心及主动脉根影淡。 Zr 心房增大常见于一尖瓣病变。左空通过吋问延长，左心公增大，提示左心功能（left vertricular function）受损，常见于冠心病，瓣膜病和心肌病。
（3）临床应出
1）先天性心脏病：随着超卢心动图种彩色 Doppler技术的祭用，目前核素显像法已逐渐不被临宋采用。

2）测定右心叻能（right ventricular function）及肺动脉高压：可反映肺循环阻 〕情况以及评价各种治疗方法对降低肺㢈环阴 」的效果。由于臬次通过法从时间—将心内结构的显示区分井来，避老了组织重叠，因此观察肺动脉段是否突训是评价肺循环高压的一个敏感的可靠指标。比 X 线平卉更为清晰，

3）${ }^{99 m}$ 「c 标记的心肌灌注：显像：因为显像剂允计大剂量 $740 \sim 1110 \mathrm{MBx}(20 \sim 30 \mathrm{mCi})$ 注射，因此首次通过业像可获得静息状态的 IVFFF，同时获得左心窒力能和心肌灌注情况，提㐫对冠心病的沴断价值。

二，平街法

（一）显像原理

静脉注射的放射性核素标记药物在短时间内（2小时）不渗出血智壁外，単用心电图 R 波作为门控讯峙触发 γ 照相机。自动，连续，等时地采集每个心动周期从收缩到舒张的全这程，将数了个心动㧁期的放射性计数叠加在一起，在两个心动周期的 R R 之间，选择 $16 \sim 32$ 帧图像，可以得到放射性计数在左心室腔内由舒张末期 \rightarrow 收缩末期 \rightarrow 舒张末期动态变化的全讨程。来用昌动或手动方法勾画局部 ROI，得到左心室的间一放射性曲线，即左心空容积曲线，并可计算心室的各项心功能参数，如反映收缩功能的 EF，反映舒张功能的裔峰充盈率 （peak filling zatt，PFR）和高峰充盈时间（time te peak filling rate，TPFR）等。

（二）显像剂

${ }^{9 y_{m} \mathrm{~m}} \mathrm{C}$－RBC 应用最多，标记方法有体内，体外和半体内标记法。体内标记法简单易行，临床较为常用；体外标记法较为復杂，多不被临床荣用。剂

量为 $740 \sim-325 \mathrm{MBq}(20 \sim 25 \mathrm{mCi})$ ，

（三）仪器设备

采用 γ 照相机和数据处理系统。低能平行孔高分辨准直器或低能平行孔通用型准直器。
（四）显像方法
1．体位 窝规采用前位（ANT）， $30^{\circ} \sim 10^{\circ}$ 左前斜位（left anterior oblque．LA 0 ）， $70^{\circ} \mathrm{LAO}$ 。其中 $30^{\circ} \sim 45^{\circ} \mathrm{LAO}$ 的角度以左力心窒分开最好为标准，有利于准确计算左，在心空的射向分数。

2．来集方法 γ 照相恌配低能平行孔通用型准直器，能峰 740 keV ．窗宽 20% ，矩阵 64×61 。 Zoom 1．~ 2.0 。可本用计数方法．如岀计算 EF和其他定量指标，需将 R－R 己间的分颃数增加为 30 帧，共采集 800 万计数。如仅定性分析局部室壁运动，R－R 之间帧数选用 16 帧，共采集 500 万计数。为了剔除异常心律，采用缓冲心跳采集为佳，取半均心率二 10 \％。

3．影裏处理 计算机系统软件处理获得区映收缩理能的参数，如 I．VEF，RVEF，13射血分数（ $1 / 3$ cjection fraction，1．3EF），只部射血分数：反映舒张功能的 IPFR，1／3 允盈蚛（13 filling rate，（i3FR），TPFR。
（1）左室射佔分数（Icft ejection fraction）和右室射血分数（right ejection fraction）：根据放射性计数在心窒腔队的动态变化。计算心穻每搏量与心室舒张末期容积的白分数：

$$
\mathrm{EF}(\%)-\frac{\mathrm{EDC}-\mathrm{ESC}}{\mathrm{EDC}-\overline{\mathrm{BG}}}
$$

式巾，FIDC 为舒张来期放射性计数．ESC 为收缩末期的放射性计数，BG 代表本瓜计数。依计算机软件的不同，肱画左心室 ROI 的方法有全白动，半自动和完全手动三利。根据系外医院的长期经验，半乕动方法较为准确。
（2）高峰充盈率：是最常用的舒张功能指标．区映左心室舒张早期充然速率的变化，即左心空容积变化佝最大速率，单位为 EDV／＇s。

4．凧部室壁运动
（1）电影烺示：通过多体位的电影显示，可动态观察后心苇各空壁的运动情况，采用报定量分析广法，将各室壁运动分为正常（0分），运动减低（1分），无运氻（2分）和必问运动（3 分）。运动减低的范围分）局限性和弥浚性。
（2）局部 EF：根据计算机软件，将有心公行为若干扇区，计算每个扇区的 EF，计算公式同整体 EF。
（3）位相分析：包括振幅图，位相图和相角程。振幅图反映各室壁收缩幅度的变化。 $30^{\circ} \sim 45^{\circ}$ L． AO 位时，正常左室的挀幅图呈反＂C’＂字形。位相图反映左，左心室心肌收缩的同步性和协调性，采用颜色色阶和直方图表示，正常左，石心室的位相基本一致，而与心房和大血管的位相相反。直方图显示左，在心室位相呈一尖峰，峰愈窄，反映心至收缩的同歩性愈好，心房与心室的位相相差约 180° 。
（五）图像分析
1．正常图像 $30^{\circ} \sim 45^{\circ}$ LA（）为左，右心空分

图 6－6 正常核素心室泉像
a 首次通过显像 b 平衡法显像显示心室整体功能 c 平衡法易像显示心室局部功能

2．异常图像

（1）室壁运动异常：（1）弥漫性室壁运动低下，是扩张型心肌病和各种原因所致的心功能受损； （2）局限性室壁运动低下，特别是在负的试验后，是诊断心肌缺血的重要依据。
（2）LVEF 的测定：根据放射性计数在心芸腔

内的变化，不受几何形态的影响，灭此与其他受几何因素影响较大的方法相比，准确性高，重复性好，已广泛应用于临床。平衡法测得的 LVEF 的正常值为 $60 \% \pm 7 \%$ ，LVEF＜ $15 \% / \%$ 堤示左心功能受损。 RVEF＜ 40% 提示右心功能受损，但不同实验室应建立自己的正常值（图6－7，68）。

图6－8 左，出心功能受损患者的核素心室显像
a 首次通过亚像 b 平衡法显像

三，核毒心室显像运动诫验或药物试验

（一）显像原理

正常人在增加运动负荷时．由于心肌血流量的

增加，室壁运动增强．因而LVEF 也增加，增加星＞ラ $\%$ 。而冠心病患者，在静息状态下 LVEF 多在正常范闱，但达到一定价荷量左由于心肌缺血，造成局部和整体收缩功能下降，因而 LVEF 及同部室壁运动减低。局部 EF 降低。

核素心空显像约物试验包邦多也酚 」㫨和潘少 J等药物介人。多巴酚丁胺和潘生丁核袁心室易像

 moticin）和整体㘮能的变化，而片者观察局部心肌灌注的变化，从不问角度诊断心肌缺血。但负荷心
较负荷心室显像为高。

（二）显像方法

首光进行基态检查，取 $30^{\circ} \cdots 15^{\circ} \mathrm{I} \mathrm{A}$（），记走心电图，心率和血茞。采集静息状态下心空惯像，之原按 Bruce 万采行踏车试验，旬级3分钟，运动高峰时，以相同条件承集图像，运动结束原 3 分饤再采集 次，彞图像给计算机处理犹得各心班能参数。

药物负荷心室怾像，苦先采集静息状态下的心室显像，静眿汗人潘生丁或多巴酚丁胺，剂让同心肌藋注恨像，以树同条件采集图像，犾得各心功能参数。

（三）适应证

1．心肌缺血的诊断 对静息功能正常的患者，为了解心脏储备功能，选用运动或药物伿荷心空显像。

2．心肌椎死憂者心肌仔活的判断 选用小剂
室显像。

四，门控心血池断层显像

（一）显像原理

采用门控心血池断层㪞像（gated tomographic ventrculography）方法进行平衡法核素心室显像。岳池断层呈像可以通过三维方式帡小心脏结构，擗免务房室之问的車叒，从各个断面显示心房，心室的大小，形态和局部荎辟运动。另外，还可以准确计算反映心功能的各项参数，如舒张末期客积（いnd of diastolic volume．EDV），收缩末期容积（end of sys－ tolic volume，FSV）和每搏堇（systole volume，SV）。

（二）显像剂

；平衡法相 $[$ 问。

（三）显像仪器

SPEC「系统，低能平行孔通用型准 1 器。
（四）显像方法
l．采集条件 患者取仰卧位，探头从石朔斜
45° 到左后斜 45° ，㳬转 180° ，每 6° 采集一个投影。共 30 个投影图，以心电国 R 波作为触发讯步，将每个心动周期分为 $9 \sim 29$ 帧。

2．图像处理 计算机系统重建处埋图像，获得心血池的水平长轴（四腔心），开古长轴和短轴图像。

3．心空容积测定 取短轴冬像。罒左室舒张未期的 ROI，减除最大计数的閉值（实检室丙建立目己的闻值），按公式计算左空容积：

$$
\mathrm{V}=\sum_{=1}^{\mathrm{u}} \mathrm{~T} \mathrm{~N}_{1} \mathrm{X}
$$

式中V为左室容积，I为断层厚度， V 为第 i帧终像 R（）I 中的象素值，X 为每个象奚的长度，In为断云层数，

1．图像分析 水平长轴显かな心斿，个心室，有心房和龙心亦，左，旡心室呈椭圆形：垂直长轴从右侧向左侧，显示右心访，府心窂，肺动脉段，左心房，左心案杜主动脉ら；知轴从心火部到心底部。 心尖部为左心窒和有心窒，心底部为分心瘀和左心防。

对局部空壁运动的分析。门控断层心室显像较平面心空铌像可两好地规察左心室卜壁和心质部的运动，

五，临床应用

（一）在冠心病中的应用

1．冠心病心肌缺血的沴断 与心肌灌注相比。其价值不如后者，但采用负荷核素心空罪像对心肌缺血的诊断有帮助。多数研究报道以负荷后 LVEF降低 5 \％以上作为心肌缺血的标准。对冠心病诊断的灭敏度约 90% 。特先性约 58% 。

静息状态下 LVEF 止常，负做居LVEF 降低。对荙心病诊断的疋敏度较高，但特异性䂭差：而局部室壁运动降低的特异性较高，但灵敏度较辰。因此对冠心病心肌缺血的诊断，的部室壁运动㦈碍比整体功能的下降更有意义。

另外该万法对过心病与心肌病，瓣膜病的鉴別诊断边有一定价值，时为非學心病的其他心脏病也可引起达动后 LVEF 的降低，但较少引起局部室壁运动的障碍。

2．心肌梗死的诊断

（1）急性心肌梗死：急性心肌梗死（acute ms
ocardial infarction，AMI）早期 LVEF 的测定对早期预后有意义。刘秀杰等观察表明，AMI 患者 LVEF $\leqslant 30 \%$ ，半年内的死亡率为 31.3% ；而 LVEF $>30 \%$ ，则半年内无 1 例死亡。心郥梗死的部位与预后也有密切关系，前壁梗死组，LVEF 为 40% ，半年死亡率为 12.8% ，而下壁梗死组， LVEF 为 51.1% ，无 1 例死亡。

对于 AMI 合并右室梗死的诊断：府空梗死患者多伴有下壁梗死，因此下壁运动降低，RVEF 不正常，对右室梗死的诊断有较高的特异性。
（2）陈旧性心肌梗死：可评价整体功能，手术或药物治疗的疗效和判断预后。Shaw 等对 863 例陈旧性心肌梗死患者行静息和运动核素心室显像，所有患者均接受内科药物治疗，随访 $\leqslant 6$ 年，其中 147 例（ 17% ）患者发生心脏事件。危险因子分析提示，静息LVEF，运动 LVEF 和最大价荷量对心脏事件的预测有价值。核素心室显像为预后提供 63% 的信息。

对于接受血运重建术（PTCA 或 CABG）的患者，在不同阶段行运动核素心空显像，不仅可以动态观察左室功能的恢复情况，面且对患者的长期预后也有价值。

对左心室室壁瘤的诊断（图6－9）特点为：左心室增大，左室遍过时间明显延长．位相明显延迟，相角程增宽，电影显示室壁瘤部位呈反向运动，也有部分意者表现为无运动。阜外医院报道 22 例经

图 6－9 室壁瘤患者的位相分析图心尖部位相明显廷迟，室壁运动呈反向运动，直方图示相角程増宽

冠状动脉造影和手术确诊为室壁瘤的患者，核素心室显像阴性 20 例，灵敏度为 90.9% 。

（二）在其他心血管病中的应用

1．扩张型心肌病 双侧心腔明显扩大，LVEF和 RVEF 均明显降低，室壁运动普遍低下，不呈节段分布，心肌灌注显像表现为左心室各室壁的放射性分布普遍不均匀。如以左室受累为主，可见左室扩大，LVEF 降低。而冠心病患者的室壁运动降低呈节段性，与冠状动脉供血区相平行，心肌灌注显像相应芳段呈灌注减低或缺损区。因此核素心空显像对鉴别左心室缺血性心肌病和扩张型心肌病有一定价值。

核素心室显像对致心律失常的右室心肌病的诊断地有帮助，表现为右室扩大和 RVEF 的降低。 Le Guludec 等报道 53 例经右室X 线造影确诊为致心律失常的右室心肌病，核素心室显像主要表现为右室扩大，右窒弥漫性或局限性室壁运动异常，对致心律失常的右室心肌病的诊断灵敏度为 $94.3^{c} \%=$

2．肺心病 慢性阻塞性肺部疾病患者当治现右心功能受损时，RVEF 降低，而且随着心功能受损程度的加重，RVEF 的降低更明显。张金谷等报步 30 例正常人的 RVEF 为 22% 。 51 例心版能 I～II 级 RVEF 为 40% ， 13 例心功能 III 级为 $27 \%, 11$ 例心功能 V 级为 16% ，各组间均有显著性差异（ $\mathrm{P}<0.001$ ）。而且对急慢性肺动脉血栓栓塞及其他原因所致的肺动脉高店，右心室功能受损程度的判断有帮助。

3．瓣膜性心脏病 可观察各房窒的大小，形态，有无肺动脉段突出，左，右心室功能，瓣膜返流程度的佔价，瓣膜置换术适应证的选择和疗效评价。颜珏等报道对 39 例行二尖瓣替换术的二尖辨病变患者，核素心室显像观察了手术前后左室整体和局部功能的变化，发现保留二，尖㲔结构的二尖辨关闭不全的患者术启局部室壁运动（包括侧壁和尖下壁）较不保留组改善明显，因此为患者手术方案的选择提供了重要信息。

> (刘秀杰 张晓丽)

第4节 亲心肌梗死显像

所谓来心肌梗死显像（infarct－avid imaging）系指急性心肌梗死病人静脉内注射某种显像剂后，梗

死的心肌可选择性浓集该虽像剂，体外显用 γ 照相机或 SPECT 进行心耻显像，显示梗死心肌的浓集灶，而正常心肌不显影，故义称为心肌＂阻性＂显像或心肌＂热区＂显像（hot spot imaging）。目前临床上大致有两类亲心肌梗死显像剂锼磷酸盐（ ${ }^{34}$ 年 Tc－pyrophosphatc．${ }^{\circ} \mathrm{m}$ Tc－PYP）和钢
 ＂tm Tc－A．M）。

—，${ }^{99 m} \mathrm{Tc}$－焦磷酸盐亲心肌梗死显像

（一）原理

AMI主要是因为心肌细胞缺血缺氧的死亡，封致钙的输入并形成各种磷酸钲盐化合物沉积在坏死的心肌细胞内，注入体内的 ${ }^{\% \mathrm{~m}} \mathrm{Tc}$－ PYP 袗人磷酸钽盐化合物并维持足够的时间，使用 γ 照相机或 SPECT 可进行体外显像。坏死心肌浓集PYP 的童也取决于坏死心肌呿围的残留血流最。小踪剂通过弥散作用进人坏死的心肌细胞内。由于梗死中心血流缺如，故坏死心肌组织的亚像足现開边放射性：高，中心放射性低的＂炸面圈＂等。＂mTc PYP显像阳作的最早时间为心肌硬死后 12 小时，最高的浓集一般在梗死庍 48～72小时。以店阳性率逐渐降低，一周左有阴转，但个別病人心肌梗死 14 天后还可亚像阳性，

（二）检查方法

1．病人准备 无特殊要求，最好将左肺前心电图毎联移去，并嘱病人排氺，以减少璃胱鎘射剂点。

2．昆像剂的制备 将 ${ }^{\circ \pi \mathrm{cm}} \mathrm{Tc}$ 洗脱液直接汗 人含有 PYP 和氯化亚锡的药盒内，形成 ${ }^{2} \mathrm{~T} \mathrm{c}$－焦磷酸盐螯合物，但标记过程中应避免引入空气以免降低 \because Tc－PYP 的标记率，一般要求标记率在： $95 \% \sim$ 98% 之间。静脉注射 ${ }^{39 \mathrm{~m}} \mathrm{Tc}$－PYP $710 \mathrm{MBq}(20 \mathrm{mCi})$ ， $1 \sim 4$ 小时后显像。

3．图像采集 采用低能平行孔高分辨或低能平行孔通用型准直器。取 ANT， $30^{\circ} \sim 40^{\circ} \mathrm{I}$ AO， $70^{\circ} \mathrm{LAO}$ 或左侧位，矩阵 128×128 ，计数 $800 \sim$ -000 K ，休位。有条件的单位，半面显像后可进行 SPECT 显像，应用低能平行孔通用鋫准直器，从 45° 右前斜位到 45^{\prime} 左前斜位共 $180^{\circ} .6^{\circ}$ ，侦，每颃采集时间为 $25 \sim 45$ 秒，矩阵 64×64 。

（三）正常图像表现

骨骼均清晰可见，正常图像可见胸骨，助骨以及脊柱，心脏部位未见明显放射性浓集，但隐约可见心 Ifl池影，特别是早期（ 1 小时）显像。

（四）异常图像表现

根据心肌浓集 ${ }^{09411}$ Tc PYP 的情况可分为：你散性与局灶性浓集。

1．弥散性浓集 多先于前壁广泛吽心肌梗死。有时候呈＂炸面圈＂形，周讳放射性增高，中心放射性降氐，此种类型提示预后较差。此外弥散性心腔放射性增高，可能足心胜血池影，容易与心肌㤦死相泥浠。鉴别的方法是进行多次楽像。早期（注药右 1 小时）可见弥散性心脏影，晚期（ 3 小时后）该影变淡或消失，提示为心间池影：相反如 3 小时以后局部浓集更明显则提小゙为心肌上不死，

根据樌死心肌浓集 ${ }^{99 \mathrm{ctu}} \mathrm{Tc}$ c－PYP 的浓度，可来用火至量评估法。心肌摄取 0 为正常， 1 －可见淡影 （多付心血池影），2＋表示心肌摄取 PYP 等于肋骨的浓度，3 则心肌摄取大十肋胃㳸度。

2．局灶性浓集 根拼心肌梗死在不同室壁， ${ }^{4 * m}{ }^{4} \mathrm{c}-\mathrm{PYP}$ 浓集的部位亦有所不同。前壁梗死可丁 ANT， $70^{\circ} \mathrm{LAO}$ 显示局灶性＂＂Inc－PYP 浓集。问壁㳏死多见十 $30^{\circ} \sim 40^{\circ} \mathrm{I}$ AO 垠内侧缘放射性增高。侧壁梗死与间壁梗死的部位相对应，部位靠外。ト后壁梗死的形态行往奌长条形，部位靠卜方。

关于＂${ }^{2}$ tr PYP 亲心肌梗死显像是否㞴用来估价梗死的范韧，意见尚不一致。目前大多数学者认为，它不能准确反抰心肌梗死灶的入小。 ，般过高地估价梗死菭围。至十多少不死心肌才能亚像雨性，实验证朋，至少要有 3 克的心肌组织坏死灶。
（五）临床应用
AMI的诊断，绝大多数叮以根据临床病史，血清酶测定和心电图的动态演变图䚲。因此 ${ }^{\text {vam }} \mathrm{T}_{\mathrm{c}}$－ PYP不是一个常规检查分法。只是在临床上诊断比较困难，失去了酶学检查的有效时间。＂mmc－ PYP 才有其並用价值。例如（1）病人有左束支传导阻滞而病史怀疑有心肌梗死，此时 ECG 的诊断不可峜；（2）病人疗状发作已有数天。酶学测定的高峰时间已过去：3心脏外科手术后或不疑有心脏创伤的病人；4心以膜下心肌梗死（非 Q 波型）：合陈旧性心肌梗死与急性期鉴別：（6）右室梗死。

大于＇vin Tc－PYP 沴断AMI的灵敏度与特异性。一般认为 Q 波型心肌梗死的弜敏度高，可达 $901 / 5 \sim$

95：\％：而非 Q 波型的炎敏度降低为 60%～ 65% 。 。
以下情况可能守致假际性：（持续阳性的陈旧性心
软骨钙化；需心肌心包炎；（放射损伤：心版疗；处化疗用的 Adriamycin 所致：电电转复：

二，抗肌凝蛋白单克隆抗体亲心肌梗死显像

（一）显像原理

心肌肌凝蛋白（myosin）是心肌结构蛋们的重要组成之一，具有两条舟链和屾条轻链，当心肌细胞坏死时，细胞膜失去完整性，轻链即释放人血液循环。而分子量大的重链则留在坏死心肌细胞内，如果给病人注射核素标记的 八M，与myosin 的車链结合．形戈抗原抗体复合物，体外可用 γ 照相机进行显像。表现为亲梗死灶的热区。

（二）检荲方法

1．显像剂 有 ${ }^{31} \ln$ 或 ${ }^{[1]} \mathrm{T} T \mathrm{C}$ 标汇的抗肌凝蛋门单抗两种核素显像剂。 ${ }^{11}$ In 的物理半衰期为 2.81天，γ 射线能量为 173 keV （ 93% ）约 247 keV （ 100% ）；而 ${ }^{\circ m} \mathrm{C}$ c的半衰期为 6 小时，γ 射线能䭪为 140 keV 。 H_{4} 子核素的能连不同，作仪唯要求上，前者用中能准直器，而后者用低能准自器。

2．检查方法 可采用平面显像与断层业像。主要收决于仪哭。如仅有 γ 照相机，一般平面显像即呵，有SPECT 的单位可采用断层业像。两者的探测效率无朋鼠差别。

（三）临床应用

从临保实用的观点。本法日前常未得到厂＂泛应用。主要作在以问问题：（1）行射＂＇In－AM后显像的时间太长，一一般需要 24 小时，＋要原因是血液本底太高，信噪比低， 24 小时后降低了血液本底，提高了对比分辨率。 ${ }^{n 4}{ }^{2} \mathrm{Tc} \mathrm{C}-\mathrm{AM}$ 的显像时间虽提前为 $3 \sim-6$ 小时，仍不能满足临床要求。而临床上对 AMI 的诊断应该越早越好，以便及时采取治疗措施。（2）从理论上讲虽然 ${ }^{11}{ }^{1} \mathrm{l}_{\mathrm{n}}-\mathrm{AM}$ 沴断 AMI 的特异性高，但在实际工作中发现不稳症型心绞痛及心肌炎患者．抗肌凝蛋白单抗业像可能为阳性。而且不少AMI患者 ${ }^{[1]}$ Im－AM 阳性持续数周甚至数月之久，已失去了诊断 AMI 的意义。

总之，研制效价更高，特异性更强并能早期最

像的示踪剂仍是学前的一个热点课题。
（刘秀杰）

第5卢 心脏神经受体显像

一，显像原理

心脏神经分布末雷，受交感神经（ S_{H} ）和副交感神经的文配。两者均通过术档释放神经递质作用」心肌绌胞浆䠑 4 的事体而j发挥调节心肌细胞功能的作形，Sn 本梢释駇去出肾上腺系（NE）和肾 1 ：腺系。作用与 心肌细胞中的及一肾上腺案受体（及一要体）。引起心肌收缩与心率加快：副交感袖经末梢释放已酰胆碱（ Ach ），作用于゙心肌中的毒草站受体（ 11受体），使心脏收缩减慢。用放射性核素标记入E类似物或沐一受体，M－受体的配体。可通过特吕的受休－配体结合，使心脏神经受体显像（neuroreceptor imaging），此种技术称为心胙受体或心耻柛经受体晃像。 辡了＂神经心脏病学＂（Vecrocardiologr）：

二，显 像 剂

心脏神经受体显像剂不如心肌灌注显像剂
样广泛监用，其临床价值也在研究探索中－个理想的心脏受体显像剂必须只备如下条件：可划心脏神经受体其有高度的亲和力：全对心脏神经受体具
低，在一定时间内具有较高的信噪比值：（王它不贾或少栄其他心而管药物及代谢的影响。

由前研究比较多的心服受体显像剂是用 ${ }^{123} 1$ 标记的 NE 类似物间磺苄胍（MIBG）。可通过与 VE摄取相类似的途径进入神经木梢并储存于囊泡中，其他还有一些妥体显像剂，如碳 ${ }^{[11} \mathrm{C}^{-}$－羟基麻黄素
第间轻胺（ 6 －${ }^{28}$ F－flourometaraminol，${ }^{*}$ FiFMR）。均处于•研究阶段，距临床应用还有一段物离•其临片价值也不确定。

三，显 像 方 法

以 W MIBGG 心脏受体品像为重点描述。 $^{\text {I }}$

（－）${ }^{123}$ I－MIBG 的生化与物理特点

${ }^{12}$ I 的物理半衰期为 13.2 小的.$~$ 尤 3 糖子．γ

射线叫能量为 1.59 keV 。本显像剂是抗岁血床药胍乙．啶（guanethidine）的类似物，通过心肭交感袜经未梢 神经元（nemron）摄取与储各，释放时可能［问时有内源性去甲怿上採索。由于此化合物静脉注射届早期有较岁的心肌非特异性技収，因此心脏显像的时问应有古期（30 分钟）与晚期（4 小时）两次。

（二）病人准备

为了防止患者出状腺摄取 ${ }^{[゙ i} \mathrm{I}$ ，•般要求给 I I MIBGG前 二天，后两天口服伐化创 100 mg ； d 。益于当天检查前停服钙通道阻滞剂与础朘酯类约物。

（三）注射剂量

－－般为 $111 \sim 185 \mathrm{MBq}(3 \sim 5 \mathrm{mC}$（ $)$ 。

（四）显像方法

 L． Z O 3 个体位，铂个体位采集 500 K 计数，閿用低能平行孔高分沙准山器，64． 64 矩阵，窗宽20\％。 γ 能量 159 keV 。

2．断思显像 采用 180 旋转，每 $5^{6} \sim 6^{\circ}-$－顼。家帧采集时间 10 秒，知阵 6.1×64 ，低能平行孔高分辨准直器，备的设䈯「可上，间用滤波反投影法和 Butterworth 滤汳器，频率 0.35 ，order5达行心脏的图像重建，可得到亚直长轴，水平长轴与短轴二细图像。

四，正常与异常图像的分析

1．正常图像 心脏受体䓪像的正常终形与心肌潾注亚像类似，即心肌部位显影清贁，心腔内放射性低，未旭明灵的节段性放射性减低风。图像的
㫣法。即设置心腿（H）与肺（L）区两个 R（II，计算 HL比值。
拄肾上腺能受体分什情况以及受体活性的呚变，大致可分为称散荘与局限性放射性减低两和类型。沵散吽放射性减低多见于心胧受体功能你漫性受损。例如心脏移植术后或糖水病患者心脏神经受体功能受损，可见心肌放射性普遍性减低，局限性放射性：城低多见于心肌梗死或心肌缺䑤患者，根据心肌梗死的部位可分为前壁，下后壁，间壁以及侧壁等，缺抧的范閑往征较心肌灌注亚像的缺损范围更大。

五，临床应用

口前为止心脏神经受体显像主要足研究T作。临床上还未广泛采用。但从现有的工作和发展方向看，此项技术有广泛的为用前景，可能有以下儿个万面的潜在临床修用价值。

动物实验表明，心肌神经元的功能与结构对心肌駃血非常敏感，边就是说早期的心肌缺血可能引起心脏神经受体显像的品常。Schwaiger 报道，应用 ${ }^{18}$ F－FMR 心肌受体 PET 亚像表明• 过性心肌缺血（20分仲）并不引起心肌不可逆的组织受损，但 ${ }^{18}$ F－FMR局部业像异常和神经元加能失调是一致的。 监用 ${ }^{1-2} \mathrm{~T}-\mathrm{MlBG}$ 心肌显像表朋，MIBG缺损区大 J：＂${ }^{1} \mathrm{~T} 1$ 灌注缺损区，特别寻非 Q 波型急吽心肌梀死患者的此种表现更明显。这一现象的临床意义日前还不清楚。有学者认义缺血心肌神经受体功能头调可引起交感神经张力不均的从而易唀发恶性心律失常，㐰此观点尚木被证实。最近 Ha JW 报道。应用 ${ }^{123}$ I MII3G 心肌樶像对检测冠状动脉痉竓有价值。10例正常对照考的 I MIBG SPECT 全正常， 18例应用友角新碱诱发试验阴性患者（过脉造影证实）ゆ， 13 例可见 ${ }^{152} \mathrm{I}-\mathrm{MIBG}$ 心肌显像异常， 60 个九冠脉痉帘的供血忊，${ }^{12 \mathrm{a}} \mathrm{I}-\mathrm{MII} 3 \mathrm{G}$ 心肌胒像正常。总的探测冠状动脉痉挛阳阳性率为 72.2% ，特异性为 100% 。作者认为安静时典型心绞痛忠击，
挛，尤须用考角新碱冠状动脉造影诱发试验。

扩张型心肌病立用 β 受体阻断剂可改善扩张型心肌病态者的左空功能。 ${ }^{123}$ I－MIBG心肌显像衣明，扩张型心肌病患考的小踪剂摄取明显降低，降
 MIBG；心脏神经受体业像可能对预测心肌病患者的预后有意义。
（刘秀杰）

第 6 节 核素显像测定心肌存活

一，病理生理

当冠状动脉供血减少或心肌对能量的需求增加却得不到满足时，即可发生缺血。心肌缺血吽损伤是一个从可逆性到不可逆性的动态变化过程，心肌

缺血图缺血程度，速度，缺血持续时间以及周边组织血流状态的不同，可洲现一利情况：心肌顿抑，心肌冬眠和心肌梗死。

（一）心肌顿抑

心肌顿抑（myocardial stunning）是指短暂的心肌缺血后心肌收缩功能的可逆性降低，再灌活后，经一定时间的恢复，心肌坊能可恢复正常。恢复时间的长短主要依据缺血持续吋间和 $j^{\text {tu }}$ 重程度。

另外，在临沐慢吽过心病患者中有一种＂反复顿抑＂现象，即在冠脉血流储备明显受限的心肌有一过吽，频繁发生的心肌需氧增加的，血流的供应不能满足这…需要，导致反复发作的心肌缺血与心肌顿抑。

（二）心肌冬眠

心肌冬眠（myocardial hibernation）是指冠状动脉血流持续降低，心耻可白发吽地减少做功，使下调的心脏收缩功能与降低的心肌丘流灌注达到新的平衡状态，以维持基本的细胞代谢．即＂冬眠＂状态。通过改善心垷血流灌注，使得心肌的氧供需关系得到改善，心机功能将部分或完全恢复正常。

最近 Vanoverschelde 对心肌冬踤的概念提出新的看法，他认为心肌冬眠可山反复发作的心肌顿抑引起。其机制为当心肌氧供减少或冠状幼脉储备功能降低，或者有冠状动脉痉挛时，反复发作的心肌缺血声致心肌的反复顿抑，继而可起心肌功能持续性降低。但心肌血流量在发作间際期可正常， Opie 称其为＂假冬眠＂。

总之，无论是顿抑心肌还是冬眠心肌均属于仔活心肌，心肌细胞的损害是可逆性的，一口供应这些心肌的血流最得到恢复或氧供得到增加．心肌的种供需大系得到改善，心脙局部和整体功能将部分或完全恢复正常。而心肌梗死是指心肌的灌注，功能和代谢均明妿受损．心肌组织坏死，纤维组织形成，心肌细胞的损点是不可逆的，即使血运得到重建，也不可能改善局部和整体功能。

因此，从临床角度出发，及时恢复冠状动脉血流，阻止心肌从可逆性损伤向不可逆性损伤发展，是治疗的关键和日的所在。而准确尤创地鉴别存活心肌和梗死心肌，对选择再血管化适硭证，估测疗效和判断预后有省极其重要的临床意义。

二，检测心肌存活的方法

探测心肌仔活（myocardial viability）的指标有：局部室壁运动，局部心肌灌注，细胞膜的完整性，心肌细胞的代谢。检查心肌仔活的方法有：（1）心肌灌注显像对心肌血沇状况和细胞膜完整性的估测： （2）心肌代谢显像对心肌代谢的估测：心肌氧代谢，心肌脂肪酸代谢，氨基酸代谢显像和心肌葡䘖糖代谢品像：（3）心肌灌活门控断层显像和小剂量考巴酚丁胺介人的核索心室亚像，以及多也酚」胺趙声心动图对心肌收缩储备功能的检测；磁共挀显像对心肌代谢和局部恢能的检测。

早于如何验证心肌有活，大多数研究以血运重建术（revascularization）后局部室壁运动的改善和恢复正常为标准。采用的方法主要有超声心动图和核素心空显像，也有研究以心肌灌注的故善为标准。

三，${ }^{201} \mathrm{Tl}$ 心肌灌注显像

${ }^{26(1)} \mathrm{Tl}$ 作为心肌灌江业像的示踪剂。心肌细胞对 ${ }^{2: 1} \mathrm{Tl}$ 的摄取为一主动耗能的过程。前有 V i K－ATP酶泵的参年，前提是心肌细胞膜的完整性与再分布的特性，因此可评佔存活心肌，

201 「1 心肌灌注显像的分法通常右：运动－延达 （3～1 小时）显像，运动－晚期延迟（21 小时）显像，运动一延些（3～1小时）一再注射昆像，运动•即刻再注射，延迟灵像，静息一延迟显像。侕大量的研穵证明，运动一延迟一再注射显像和静息一延迟显像为有价值的评估心肌存活的方法（图6－10）。

运动一延迟一再法射显像方法：运动高峰时，注射 $74 \mathrm{MBq}(2 \mathrm{mCi})$ 的 ${ }^{201} \mathrm{Tl}$ ，行运动即刻和 $3 \sim 4$ 小时后的延迟显像，如延达显像示原缺损区无再分布。即刻再注射 $37 \mathrm{MBq}(1 \mathrm{mCi})$ 的 ${ }^{3911} \mathrm{Tl}$ ， 15 分钟后行再注射显像。其探测心肌存活的机制为：再注射示踪剂使血液巾 ${ }^{201} \mathrm{Tl}$ 的浓度增加，以利于再分布到延迟显像时的严重灌注缺损区。1990年 Dilsizi－ an 首先报道了对 100 例冠心病（coronary artery disease，CAD）患者的研究结果，运动显像所示的灌注减低区中 33% 的节段在延迟显像仍为固定缺损区，再注射后有 49% 的节段放射性摄取增加或恢复正常。其巾 20 例患者 PTCA 术后复查超声小动图，再注射显像吅性的心肌节段有 87% 的室辟运动得到改善，而再注射显像阴性的室壁运动无改善。同一研究小组对 41 例患者的研究表明，延迟显像所示的固定缺损区，再注射后有 31% 的节段对 ${ }^{2 n 1} \mathrm{Tl}$ 的摄取增加，延迟和再注射显像探测心肌存活性的一致性达 85% 。（Ohtani 对 24 例患者的研究表明，再注射显像对灌注和室壁运动改善的阴性预测值分别为 92% 和 98% ，明显高于 3 个时延迟显像（分别为 69% 和 $62 \%, ~ P<0.05$ ）。

Bonow 等比较运动－延迟－再注射显像与 ${ }^{18} \mathrm{~F}$－ FDG PET 代谢显像对心肌存活的沴断价值，延迟显像的固定缺损区。再注射显像时有 38% 的节段对 ${ }^{201} \mathrm{Tl}$ 的摄取增加，而 ${ }^{18}$ F－FDG PET 显像有 51%的节段摄取 FDG，二者探测心肌存活性的一致性达 88% 。同样，Tamaki等比较这两种方法的结果为：延迟显像的固定缺损区，再注射后对 ${ }^{201} \mathrm{Tl}$ 摄取增加的心肌节段 100% 摄取 ${ }^{18} \mathrm{~F}$－FDG，相反再注射显像所示的固定缺损区仅有 25% 摄炆 ${ }^{18} \mathrm{~F}-\mathrm{FDG}$ 。

尽管 ${ }^{201} \mathrm{Tl}$ 再注射显像对预测血运重建术后局部功能的恢复有较高的灵敏度，但其特异性相对较低，表明 ${ }^{201} \mathrm{Tl}$ 再注射显像过高地估测了某些心肌书段局部功能的改善。而且因患者完成显像所需的时间较长，因此一些学者提出运动显像原即刻平注射 ${ }^{201} \mathrm{~T}$ ， 1 小时后采集图像，可免去 $3 \sim 1$ 小时的延迟显像，缩短采集时间，但其临床价值有待进一步研究。

对心肌梗死而积较大，心功能较差的患者，不宜行运动心肌显像，因此可采用静息一延迟显像或静息－延迟－再注射显像检测存活心肌。何作祥等提出 ${ }^{201} \mathrm{Tl}$ 再注射加硝酸酯介人可增加 ${ }^{201} \mathrm{Tl}$ 再注射探

测存活心肌的能力。
对存活心肌的判断多数采用定量方法，以延迟显像时心肌放射性摄取值 $\geqslant 50 \%$ ，或延迟显像放射性摄取值较静息亚像增加 $5 \% \sim 10 \%$ ，或以二者相结合为标准。Bax JJ 等以延迟显像时心肌对 ${ }^{201} \mathrm{~T} 1$的放射性摄取值 $\geqslant 75 \%$ 为标准，对心肌存活的诊断灵敏度为 78% ，特异性为 59% ：而以延迟泉像放射性摄取值较静息增加 5% 为标准，对心肌仔活的诊断灵敏度和特异性分别为 67% 和 77% ；以二者相结合为标准，夷敏度和特异性分别为 78% 和 59% 。国内林景辉等报道 ${ }^{2 \omega} \mathrm{Il}$ 再注射和再注射后 24 小时的延迟心肌显像对心肌存活的检出率无差异（ 38.1% 和 $40.5 \%, P>0.05$ ），二者相结合的检出率提高到 $49.2 \%, 15$ 例 PTCA 术后复查．对心肌仔活的阳性预测值（positive predictive value． PPV）为 70.6% ，阴性顶测值（negative predictive value，NPV）为 81.8% 。各作者报道的研究结果见表 6－3。

表6－3 ${ }^{201}$ T1 静息－延迟显像对血运重建术后
 室壁运动改簎的 PPV 和 NPV

学	，K1 \％	1／VM1	KM:
Mori	13	\％（\％）3\％）	
Wasmalt	if	\％73，\％\％	98： 12 4
temermex	15		\％ก13 \％
kigsoms	2！		
	13		4268 10n
Chartiey	10		

四，${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{MIBI}$ 心肌灌注显像

（一）静息 ${ }^{99 \mathrm{~mm}} \mathrm{Tc}$－MIBI 心肌显像

Altchoefer 等对 43 例 CAD 愚者比较 ${ }^{99 m}$ Tc－ MIBI 心肌显像与 ${ }^{18}$ F－FDG PET 显像探测心肌存活的价值，表明静息 ${ }^{9 \% \mathrm{~mm}}$ Tc－MIBI 低估 $47 \% \sim 52 \%$ 的存活心肌。Sawada 等的研究表明，${ }^{4}{ }^{4} \mathrm{ta} \mathrm{T}_{\mathrm{C}}-\mathrm{MIBI}$ 心肌显像的重度灌注减低区有 47% 的节段摄取 ${ }^{18} \mathrm{~F}$－ FDG，表明这些心肌节段是存活的。因此静息心肌灌注显像低估了存活心肌的探测。
（二）硝酸酯类介入的 ${ }^{y y m}$ Tc－MIBI 心肌灌注显
\qquad ．

采用矿酸酯类介人的 \boldsymbol{j} 法如吉卜含服硝酸サ油或静脉滴注硝酸酯类，可以提高对心肌仔活的诊断价值。其机制可能为硝酸酯类叮教善心肌的呞部灌泙，降低心脏前，后负荷，收普心内膜的血流濩注，因此可增加对存潶心肌的诊断完敏度（图611），

后外侧壁心悓以顺死火主

李胜亭等报道 27 例陈旧吽心肌柚死患者在接
肌严像。对仔活心肌的探测灵敏度为 83.3 ＂広，特异性为 81.4% ，其他作孝有类似的报道，对心肌存活的检测率较静息显像增加 $40 \% \%$ こ 1% ，探测心肌存活的录敏度为 $82 \% \sim 95 \%$ ，特异性为 $76 \% \sim 89 \%$ 。
床上对其心肌存活吽的判断一直比较困难。而 ＂Tc－MIBI 是白良好的物理性能和心肌细胞内的稳定性．允许穼用门控心肌断层显像，可司时观察心肌灌汗，心肌收缩增近率和整体功能，为心肌仔活的诊断提供 $\overline{\mathrm{I}}$ 一种有价值的方法。姚稚明等对 62 例疑为冠心㾈的患者行门控心肌断层显像，对下后壁的固定桸疏缺损节段观察其室壁运动，有助于鉴别心肌存活和心肌梗死。

（三）心肌灌注缺损的程度与心肌存活的关系

张晓丽等对 90 例陓旧性心肌梗死（old myo－ cardial infarction）患者行 ${ }^{99_{n}}$ Tc MIBI 心肌灌注显像利 ${ }^{14}$ F－FDG 心肌代谢显像，将 ${ }^{* 9 \mathrm{an}_{\mathrm{n}}} \mathrm{T}_{\mathrm{c}}$－MIBI 灌汗娍低程度根据放射性摄取值分为电度（＜50\％），中度 （ $5-\% \sim 60 \%$ ）利轻度（ 200% ）：种。结果表明，心
心服，品像所示的轻度灌注減低区，术后尚部以能叮以得到改善，而对吅度和重度灌汁減低区很难作计判断。并不反映心肌为不可逆吽损伤，需要结合 ${ }^{18}$ F－FD（；心肌代谢显像确定，Rossett1 对 2 例 （AD 患花行 ${ }^{9-m}$ Tc－MIBI 运动和静息心机亚像， ${ }^{\prime \prime}$ Tl静息－延迟显像和 ${ }^{18}$ F－FDG PET 心肌代谢显像，结果表明 ${ }^{3411 T c-M I B I}$ 灌注减低的程度与心肌对 ${ }^{2 n / 6}$ TI种 ${ }^{1 " F-F D G}$ 的摄収值龺反比关系。在轻中度
活，但作重度整注减低区均低估存活心肌：

五，正电子发射型断层心肌灌注显像和代谢显像

（一）PET 心肌灌注显像

采朋定量分析的方法。包括通过测走心肌对 Rb的清除凉，${ }^{15}$ O H_{2}（ ）作为昆像剂可灌汶的组织指数 （perfusion tissuc index．${ }^{2}$ TI），以奴测定心肌对 1．NNII，的放脷性摄取值，来鉴别仔活心肌和棈死心肌。偍是因为没有建立公认的标准的＂平常血流侑＂。可逆性受损的心肌血流值的变异很大。因此，存活心肌和㳏死心肌有很大的重叠性，影响结果的灯断。而进由于近年米研究发现，反复发作的心肌顿抑可引起心肌冬眠。心肌向部垖能受损，而心肌血流量相对正常，只是其冠脉血流储备功能降低，因此无论 SPECT 还是PET 灌汗显像对心肌存活的诊断均有一定的有限性。Duvernoy等的研究结果认为，心肌节段刘 ${ }^{*} \mathrm{~N}$ •NII，的摄取值 80% 时为存活心肌。《 10% 时主要为㳏死心肌。而在 $40 \% \sim 80 \%$ 之间则可能为冬眠心肌，也可能为正常心肌和梗死心肌并存，而对这些心肌节段，心肌代谢的情况对于心肌存活与否有着北常重要的意义。丙此临床上公认的有价值栭义可靠的沴断心肌
心肌代谢PET是像相结合，也有报道采用 ${ }^{n} \mathrm{Mc}$ MIBI 心肌灌注 SPECT 显像和 ${ }^{8} \mathrm{~F}-\mathrm{FDG}$（心肌代谢 PFT 显像相结合的） j 法。

（二）${ }^{18}$ F－FDG PET 心肌代谢显像

1．原理 正常空腹情况下，心肌所需能童的 $70 \% \sim 80 \%$ 来白脂肪酸的有氧代谢，餐届和心肌发生缺血缺氧时，脂肪酸的氧化受限，此时无昰糖醉

解增加，因而缺血心肌对㘽葡糖的滠取增加。 ${ }^{\circ} \mathrm{F}$ FDG；作为尃萄糖的类似物可被心肌细胞摄取，进人细胞后被 6－磷酸粿糖激酶磷酸化成 ${ }^{18}$ F－FD（j－6－磷酸，但并不能被进一步氧化，因而滞留在纽胞内，可以用来显像。当心肌灌注减低区对 ${ }^{-\varepsilon} \mathrm{FFDG}$ ；的授取 1 正常或朋显增加，称为＂灌注－代谢不匹配（mis－
match．MM）＂，表明心肌存活（图 5－12）：当灌注减低区对 ${ }^{18} \mathrm{~F}-\mathrm{FDG}$ 的摄取亦受损，称＂灌迬－代谢相匹腿（match，M）＂，表明心肌梗死（图6－12）：还有部分心肌为灌注－代谢部分不匹配（partial mismatch，PM），可能为梗死心肌和存活心肌并仔。

图6－12 ？Tre－MIBI 静息心肌涝江显像利 ${ }^{18}$ F－FDG PET 心肌代谢显像

左侧：卜甹䏲心肌深汗一代谢匹配，提示心肌梗死

2．临床应用
（1）预测局部功能和灌汗的改善：综合各研究小组的报道，心肌灌注 PFT 或 SPEC＂显 像 和 ${ }^{18}$ F－FDG心肌代谢 PET 昆像对局部室臂运动的 PPV为 $68 \% \sim 95 \%$ ，NPV 为 $63 \% \sim 92 \%$（表6－4）。

表6－4 心肌潅注•代谢显像预测冠状动脉血运面建术后局部室壁运动改善的情况

 歴澄： （素蟣）			
		Wav（\％）	
Thlm¢	1＂：\％${ }^{\prime \prime}$ ：	4\％6＂\％｜l	\％29．4\％
			めt？
T30\％3离		＂ncos but	960 6 －
wamtym	S\％ m	－1\％6\％	स\％ 11 ：
	｜hes．		习盛
finter	3te3：		3610
尞缕梅	\％ 4101	S＊．\＃i \％	31.1106

${ }^{13} \mathrm{~N}-\mathrm{NH}_{3}$ PET 泉像应用较多，但 ${ }^{1.5} \mathrm{~N}-\mathrm{NH}_{3}$ 半衰期短，需就地加速器生产，价格吊贵：而＂知 TC－ MIB1临床极易茯得，价格较便宜，因此有些研究采用 ${ }^{97 \times \mathrm{m}} \mathrm{Tc}$－MIBI 心肌灌注显像和 ${ }^{13}$ F－FDG心肌代谢PET虚像相结合的方法来评估存活心肌，张哓丽等对 36 例陈旧吽心肌梗死患者似研究表明。 ${ }^{8}$ F－FDG心肌代谢 PE＇「显像对局部室壁运动呚善的 PPV 和NPV 分别为 87.5% 和 71.4% ，对心肌灌注改善的PPV 和NPV 分別为 83.8% 和 84.6% 。
（2）对云心室整体功能改善的预测价值：㝴心

病患者在血运重建术前评估存活心肌，对预测局部功能和灌注的改善有重要意义。但从患者的整体考虑，对左心室整体功能改善的预测价值更为重要。临床研究歨明，LVEF 是评价冠心病患者整体功能和长期预后的重要指标，因此心肌存活的研究对预测术左I．VEF 的改善有重要价值。Tillisch 等对 17例患者的研究表明，心肌存活（MM）组的患者。 I．VEF 由术前的 30% 增加到术后的 45% ，心肌梗死：M）组的患者，LVEF 在术后无明显变化（30）：和 $31 \%, ~ P>0.05$ ）。综合 4 个研究小组 94 例患者的结果问，MM 组的 LVEF 由术前的 $320 / 5$ 增加到 45% 。而且功能的恢复与 MM 的节段数和程度有关，MM 的节段数越多，程度越高，术后功能的改善越明显。Di Carli 对 26 例接受血运重建术的患者，根据不远配萑韧占左心空的大小分为 $<5 \%$ ， $5 \% \sim 20 \%$ 和 $>20 \%$ 三组，术后 LVEF 的增加随不比配萢围的增加而增加。
（3）长期预后：功能改善的最终目的是改善患者的长期预后，对心功能严重受损的冠心病患者存活心肌的研究，不仅能探测到可逆性缺损的存活心肌，而 F ：对是否应作冠脉血运重建术提出了指导性意见。 Eitzman 和 Maddahi 等分别对 11 例和 43 例 C $A \mathrm{D}$ 患者进行观察， $\mathrm{M} M$ 组患者的 1 年死亡，率。接受药物㳙疗组明显高于接受血运重建术组（ $33^{3} 0$和 $1 \%, ~ \mathrm{P}<0.01$ ）。张晓丽等对 107 例陈汇性心肌

㮴死患者随访 22 个月，灌注代谢不匹配的心服事件发生率，接受药物治疗组明显高于接受血运重建术组（ 41.8% 和 $2.9 \%, ~ \mathrm{P}<0.0001$ ），而 M 组接要血运重建术的患者并末明显降低心睛：事件的发生率 （ 12.5% 和 21.1% ．P＞0．05）。Di Carli 等对 93 例 （ AD ）患者随访 13.6 月，接受约物治疗的患者生存率。 MM 组明显低于 M 组（ 50% 和 92% 。 $\mathrm{P}<$ ： 0.01 ），而 MM 组的患者，接受血运重建术后的生存率明显高于 M 组（ 88% 和 50% ）。根据 Cox 生存比例模型分析，不匹配的程度对生存有点著的负效篮（ $\mathrm{P}=0.02$ ），而血运重建术对生存存显著的正效应（ $\mathrm{P}=0.04$ ）。太此灌注 代谢不 T 配的总者如能及时接受血运重建术，将明显减低心脏事件的发牛率．改善预后。
(刘秀杰 张晓丽)

第7节 大血管核素显像

一，动脉显像

（一）原理

放射性示踪剂经外周静脉，以＂弹丸＂技术快速注人，由于＂弹丸＂首次通过中心和外告循环时几事没有本底的影响，可以供此较清晰地呺が肺幼脉，主动脉及基主要分文，从而可以对其形态，走行进行观察。

（ニ）方法

$1 s m \mathrm{Tc}$ 标记的化合物均可应用。＂弹丸＂技术的豆用，要求有较高的比活度．－－般为 $740 \sim$ $1850 \mathrm{Mbq}(20-30 \mathrm{mCi}) / \mathrm{ml}$ ，体积最好在 0.5 ml 左左，一般采用时静脉注射。根据 ROI 的不可，可分別采用不同的体位，佊大血管充分暴露于采集视野，依据部位的不同分别以 $0.5 \sim 5$ 秒／侦连续采集 $15 \sim 20$ 秒，愈接近中心部位采集时间愈短，每帧时间也愈短。

（三）正常显像表现

1．肺动脉 肺动脉圭十与分心室流出道相连，从右下指向左上，顶端分戊左，右肺动脉后即与肺血管床相连。

2．主动永及大分支动脉 主动脉起始部与左室相迶，然后依次分为升，与，降蔀，之后为腹妄动脉。正常显影时．动脉苗影迅速，走行自然，

徍由上到下逐渐变纸，内壁光滑。其它较大分支动脉一般均为坌右对称，显像时问，走行，管径大致相同。
（四）异常显像表现
异常的动脉显像问衣现火血管走行，口径，内壁的改变，以及充嗫速度，放射性滞留或动脉外的放射吽充盈。

（五）临床应用

核素大动脉显像（arterial imagirg）时用于资察先大性心脏病动脉走行的变化，夹层动脉瘤的诊断及动脉内外占位性病变的定位。

二，静 脉 显 像

放射珄核素静脉显像多应用于壬，下肢静脉以及 F ，，下孯静脉病变的沴断。

（一）下肢静脉及下腔静脉

1．原理 从青脉系统远心端汭人的示踪剂。按静脉系统压力梯度的关系随血流流吅有心。在注：射点的近心端扎缚止血带，小踪剂便通过交通支进人深静脉．从而可对深静脉进行昆像（deep venous imaging）。

2．方法
（1）示踪剂：根据临床需要可选用不同的示踪剂。几于所存的锅！${ }^{-9 m} T c _$标记的が踪剂均可用于
 ${ }^{1}{ }^{131}$ I－1标记的纤维蛋白㷧叮用于标汇阴吽血桿：钠「 ${ }^{11} \ln 7$ 标记的白细胞则可显示血管炎症。
（2）采集方法：方动态物像，静态显像和全程显像。
动，静态显像：从足背静脉注人示踪剂．探头对准采集区域，采集时间为 $1 \sim 3$ 秒；帧，共 $15 \sim 20$秒，之扂行静态采集，一般采集 5×10 计数。

全程显像：从注射点平始向近心端扫描，显像范闱应包括双侧静脉直至心房水平，扫描速度 $31 \sim$ 40 为厘米；分；然㞓活动下肢，并在相同条件下行延迟显像。

3．正常影像表现 双侧下肢深静脉，喀外静脉及下腔静脉显影清唽，通畅，影像呈倒＂Y＂形，内壁光滑，无明显侧支循环，延迟显像无放射性滞留（图6－13）。

4．异常影像表现 一般表现为：直血流中断： （2）侧支循环形成：（3）示踪剂名现延迟；（1）延迟显像有放射性：滞留（图6－11），

图6－13 止常下肢深静脉㱏像双下肢深静脙回汧通畅，延迟显像无放射性滞留

图614 异常ド肢深静脉显像
双侧小腿竫脉迁曲扩张，回流欠通軾，股静脉处有侧文循环形成，廷迟显像可见明显放射怆滞留

5．临床应用 下肢静脉血检形成，静脉曲张，血栓性静脉炎，静脉瓣功能不全等都是下肢静脉的常见病，而且是引起肺栓塞的主要原因。与 X 线静脉造影相比，本法为无创性，且灵敏度较高，费用低，不失为肺栓塞查因，判定疗效，随诊的奴方法。

（二）上肢静脉及上腔静脉

原理，方法与下肢静脉显像相似，若要获得双侧静脉的影像，则需采用大视野探头或扩散孔准直器。

上肢静脉核尞显像可清晰显示贵要，腋窝，锁骨下，头臂及上腔静脉，因此对上述静脉的阻塞有很高的诊断价值。另外还可用于对胸廓出口综合征的诊断，一些单位还用该项技术观察化疗及静脉高营养病人静脉管道的通畅情况。
（史蓉芳 杨敏福）

第8节 核素显像在心血管病无创诊断中的综合评价

一，核豕心肌濩注显像与电子束 CT 的对比

核素心肌显像是对诊断冠心病很有价值的无创性检查方法，可提供心肌血流灌注，心脏功能，心肌存活等方面的信息。电子束 CT（electric beam computer－ ized tomog raphy， FBCT ）是近年来发展起来的一种 CI技术，它有较高的时间及空间分辨率，可清楚显示心脏及冠状动脉的解剖结构，观察室壁运动和心脏功能，特別是可对冠状动脉钙化的程度和范围进行定量，通过定量检测冠状动脉钙化积分来诊断冠心病。

冠状动脉钙化与冠心病的关系早就受到人们的重视，钙化是动脉硬化发展中的一个过程，检出钙化意味着冠状动脉粥样硬化的存在，但它并不直接反映冠状动脉狭窄的程度。美国一多中心 EBCT 诊断冠心病价值的研究结果表明，灵敏度为 95% ，特异性为 40% 。国内两组心肌 SPECT 显像与 EBCT 对冠心病诊断的对照研究表明，以冠状动脉造影为诊断冠心病的标准，心肌 SPEC ${ }^{\circ}$ 「显像对冠心病的诊断灵敏度为 $91 \% \sim 94 \%$ ，特异性为 $86 \% \sim 93 \%$ ，准确性为 $86 \% \sim 94 \%$ ；EBCT 对冠心病的诊断灵敏度为 $55 \% \sim 81 \%$ ，特异性为 $100 \% \sim$ 73% ，准确性为 $76 \% \sim 78 \%$ 。同时研究发现 EBCT 钙化奻的检出受年龄，性别，种族等多种因素的影响。 Agatston 等研究了年龄对冠状动脉钙化判断冠心病的影响，在 $40 \sim 49$ 岁和 $50 \sim 59$ 岁的患者，以冠状动脉钙化积分 50 为判断冠心病的标准，其灵敏度为 71% 和 74% ，特异性为 91% 和 70% ，但在 $60 \sim 69$ 岁年龄组，㝴状动脉钙化积分需达到 300 时才能达到相似的灵敏度和特异性，即 74% 和 81% 。因此，以 EBCT 检测㝴状动脉钙化来沴断冠心病时，必须考虑到年龄和性别的影响。EBCT 和 SPECT 检查均属非创伤性，EBCT 无需作负荷试验，对冠心病的筛选，特别是对无症状高危人群除外冠心病具有重要意义，中年以上患者出现多支冠脉高积分钙化时，冠心病的可能性较大。

二，心肌蒮注显像与磁
 共振成像的对比

磁共振成像（MR）是无创诊断心血管疾病的重

婴影像学方法，对心脏及大血管疾病的诊断共有重要作用，MR 还可显示泺旧性心肌梗死及继发空壁瘤的涪位，落围，亦可进行心肌灌注成像，用－下评价心肌缺血•但与核素心肌灌泟显像朴比还有一定的距离。 万熟用核素心肌灌汗显像检测心肌血流灌注：
前国际上公认的检测手段，MR 对心肌血流濩注约测定日前尚处于研究阶段。MR位心血管病的的主
测：（3）心包疾病诊断：（1）心内膜附壁血栓或心脏肿物；（3）诊断瓣涘返流；（6）先心病诊断：3）主动脉㐁云诊断：（8）冠脉血流测足。

三，综 合 评 价

近年来，心血管病的发病率呈上列趋势，已成为人类疾病中的重要杀手。现有的㝴心病影像诊断检查方法很多，如核心脏病学（核素心室亚像，心肌灌注业像），超殸心动图（包括经胞，食管内和血管内超声心动咸），X 线（T（异括 EBE＂「，撚族（ C ），磁共振成像等，随着冠心病诊断技术的不断提高。可供临床选怪的余地越来越大，如何选用最合适的技术解决实际的临床问题，确实是当前影像学的个重要课题。作必影像学对辉心病的临床诊断，应该提供以下几个方面的重要信息，即心脏及血算的解剖形态学，心挝功能，心肌血流灌江，心肌代谢变化，心脏组织定征等方面。

（一）对解剖结构的评价

病变部位解剖结构的诊断主要与仪器的空间分辨率有炎，各种影像检查仪器有各自不同的空间分辩率。

核素心室显像，心肌灌汗业像织可大体提供些心耻大血管战版态特点，但由于核素业像仪器的空间分辨率相对不高，组织重恽影响，因而对心血管解剖结构的诊断价值不如其他显像技术，业小解剖结构不是其强项。

（二）对心肌血流灌注的评价

趃状动脉迲影是诊断㝴心病的重要子段，它解决了冠状动脉及其分支的解剖形态变化，确实是行心病介入治疗和外科冠脉搭桥术前不的缺少的检查。但是冠状动脉造影并不能解决元心病沴断中䗉全部问题。近年来，越来越多的学新认识到，㝴状幼脉造影地有其一定的局限性，刌为过心病的渗断

代单纯是需要了解兮状动脉的侀部变化，还篅要了解㝴心病病人的心肌血流灌注，心肌存活，心肌缺向血的积度与范围等力面的问题。

用核絜＂1 Tl 或＂：Tc－MIBI，＂4：n Tc tetrofosmin行 SPECT 心肌灌注显像是无创性检测心肌血流灌汇的曾选方法。其诊断过心病的灵敏度，特异性利
的病人足否需近一步作㝴状动脉造影，心肌灌注步像其有＂gatekeeper＂的作用。即心肌灌汗亚像正常的病人，基本上不再需要进行有创的毞状动脉䞗影，而显像有心肌缺血域心肌㳏死的病人则篎要进行冠状动怺造影。以确定其狭窄部位利是不行每血管化治为＂，比 SPECT 心肌显像更进一步的㫔 PE：心肌灌注祝像，可用下对局部心肌丘流进行绝对宝昜分析，计算心肌灌汗储备，当先状动脉狭窄达到
起状动脉汼行厂成功的球囊扩张术，其冠状动永的 161．流储备只只能逐步恢复，PET 心肌濩注舀像是量分析府利十临床医师厂解病埋生理变化和病情发展。

此外，门电路心肌灌汁断层显像还叮闪时提供左心功能可心肌血流灌注的双宣信舁，这是其他仟何技术所不可比拟的。

核素心肌灌泣显像不仅对沴断过心病有较高的灵敏度和待异吽，血且还问预测㝴心病患者的预兵。当核素心肌灌汗显像异常时．对心脏不良禹件，如不稳定型心绞病，牛次心肌校死，心源怆猝死等，其预测作值高于单纯临床诊断战临床常规渗断加运动心电图，也高于超声心动国

（三）对心脏功能的测定

心脏功能测定是影像学研它最广泛的领域，但仍有不少术解头的问题。核素心室显像，超声心动图，超高速 CT，磁共振成像，门搈心肌灌注尼像等检查叮采用不同的方法测定心脏功能。

在：日前众多的无创性心功能测定技术中，平衡法核素心空昆像仍不失为一种行之有效，简单叮啡，重复吽好，可提供多种心功能信息的好店法。在皁外医院经历厂 15 年的㨫床业用，日前仍然为临床医生所采用。本法有以下特点：（1）测量的基本原理是基于测忩左心室姓内血池计数侑的变化。而不是根㨝几何面积的改变，因为儿何面积法受多种因素䄪影响，其中包括人为的终素。核尖可衡法测

足左室射血分数，与 X 线左室造影对比，取得了良好的相关性（ $\mathrm{r}=0.85 \sim 0.95$ ）。（2）重复性好。个方法是否可啡，重复性的好不是其主要指征之一。平衡法心室显像测定的 I VEF，如果仪器页控正常，万法及步骤正确。其重复性相关系数在 0.95 以上，测㫫者本人或测留者之间的两次重复测定误差在 0.04 以下。（3）一次测量可获得多种心加能指标，其巾包括左室收缩功能，舒张功能以及心室各部位肌㤔收缩的协调性或同步吽。（4）可「呵时测量左，右心室的上述功能指标。平衡法核素心室显像在显示心室整体和局部收缩，舒张功能的同时，还可塹供心室收缩的时相和搹度分析（相位图，相位直方图和振幅图），为心室节段性收窖办能异常提供了更为直观和数楛化的信息，在很大程度J：避免了人为因素对室壁运动的误判。

首次通过法核素心室显像最重要的㢈用是测定 RVEF，由于在心室腔形态不规则，呈半月形，当在室肥大时。半月形态可变形消失，采用测定 LVEF 的几何形态法不能得到准确的结果，而计数法在平衡法核素心窒显像时由于左，在心室阴影的重䁷而失真。近年来大家公认首次通过法是测定右心射血分数的首选方法，囚为首次通过法核素心空显像避免 「解剖重叠，以心空收缩，舒张期计数变化为射血分数的计算依据，是比较准确的方法。

其他影像学方法也可测定心功能。采用的方法

多为几何形态学法，如超声心动图，MR，门控心肌灌注显像，EBC厂和螺旋CT 等．主要根据心空挖駗念变化计算心空容积，尃计算出心室射血分数，室壁运动参数等。

前已提及，门控心肌灌注显像有其特殊的优势，一次检査价显小心肌血流灌注的同时还可观察左室整体功能和室壁运动，对于冠心病的诊断可提供更多的信息。

（四）心肌代谢变化的测定

心肌代谢显像是核素显像中最引人注目的独特的显像力法之一。其中 ${ }^{15}$ F－FDG PET 显像在临床上府肘最广，研究也较成熟，其次是脂肪酸代谢显像。其他检测心肌活方的方法存 ${ }^{201} \mathrm{Tl}$ 心肌显像， ${ }^{3} u_{\mathrm{m}} \mathrm{T} \mathrm{C}$－MIBI 心肌並像，各巴酚丁胺超声心动图，多巴酚丁胺磁共振成像等。与心肌PEI代谢显像相比，这些显像不同程度地低估了心肌活力，所以目前认为心肌 PET 灌注－代谢显像仍然是估价心肌活力最可靠的方法，被作为比较其他检测心肌活力方法的＂金标准＂。

综上所述，冠心病患者的心脏解剖结构形态，心肌灌注及伈谢，心脏功能变化，对于冠心病患者的临床诊断，预后估价，治疗方案的确立有着重要的指导意义。核索显像对冠心病患者的心肌血流灌注及代谢，心脏功能可提供一定的帮助（图6－15． 6－16）。

图6－15－例冠心病陈旧性心肌梗死悬者心肌灌注，代谢和功能变化

c炕衡法核袁心室皿像小左心室整体收缩舒弗功能降低

图 6－16 一例冠心病陈旧性心眀梗死患者，平衡法示左心室整体及局部功能降低

其他无创性检查技术对冠心病的不局病理改变和不同病期也可提供不同侧面的诊断信息，这些重要信息义可指导，修正治疗方案。临床工作中应该全面分析，优选最佳和切实可行的检查手段，以满足现代临床工作的需要。
(刘秀杰 田月琴)

参 考 文 献

1．刘秀杰，等．左室功能与急性心肌梗死近期预后的关系．中国循环杂志，1991，6：536
2．张金谷，等．肺心病徳者核素左右心室收缩与舒张功能变化 125 侧临床观察．中华核医学杂志，1991，11：223
3．张晓丽，等．${ }^{19}$ F－FDG 心肌PET显像检测存洁心肌的临床评价．中华核医学杂志，1998，18： 196
4．林景释．等．${ }^{209} \mathrm{Tl}$ 再注射心肌显像和再注射后延迟显像检测心肌存活的对比研究．中华核医学永志，1997， 17： 146
5．刘秀杰．马寄晓．临床心肺核医学，北京：北京医科大学中国协和医科大学联合出版社，1993，133～152
6．李伟，等．核表心肌灌注显像与电子東 CT 诊断冠心病的对比研究．中华核医学杂志．1998，18： 156
7．Zhiming Yao，et al．A comparison of ${ }^{94 m} \mathrm{Tc}$－MIBI myocar－ dial SPECT with electron beam computed tomography in the assessment of coronary artery disease．Eur J Nucl Med，1997，24： 1115
8．Zaret BL，et al．Myocardial perfusion imaging with ${ }^{99 m} \mathrm{Tc}$－tetrofosmin comparison to ${ }^{201} \mathrm{Tl}$ imaging and curo－ nary angiography in a phase III multicenter trial．Tetro－ fosmin International Trial Study Group．Circulation， 1995，91：313

9．Iskandrian AS，et al．Independent and incremental prog－ nostic value of exercise single photon emission computed tomographic（SPECT）thallium imaging in coronary ar－ tery disease．J Am Coll Cardiol．1993．22： 665
10．Schwaiger M，Hicks R．I be clinical role metebolic ma－ ging of the heart positron emission tomography．J Nuel Med．1991．32： 565
1i．Mariani MA，et al．Identification of hibernating myocar－ dium：a comparison between dobutamine echocardo－ graphy and study of perfusion and metabolism in patients with severe left ventricular dysfunction．Am J Card lma－ ging，1995，9： 1
12．Bonow RO，et al．Identification of viable myocardum in patients with chronic coronary artery disease and left ventricular dysfunction．Comparisun of thallum scintig－ raphy with reinjection and PET imaging with $18-\mathrm{F}-\mathrm{F} \mid u$ orodeoxyglucose Circulation，1991，83： 26
13．Tamaki N ，et al．Metabolic activity in the areas of new fill－in after thallium 201 reinjection：Comparison with positron emission tomography using fluorine－18－deox－ yglucose．J Nucl Med．1991，32： 673
14．Bax JJ，et al．Comparison of Fluorine－18－FDG with rest－ redistribution thalliurn－201 SPECT to delineate viable myocardium and predict functional recovery after revas cularization．J Nucl Med，1998，39： 1481
15．Sawada SG，Allman KC，Muzik O．et al．Positron e mission tomography detects evidence of viability in rest technetium－99m sestamibi defects．J Am Coll Cardiol． 1994，23： 92
16．ZX He，Vcrani MS．Evaluation of myocardial viahulity by m：yocardial perfusion imaging：Should murates be
tsed？J Vuct Cardiol．1998，5：527
li．Kosselt．C．et al．Assessment of myordrdal perfusion and siability with lechnctium 99 m methoxyisobutyl isontrile and thallium 201 rest redistribution in chrome （＇）ronary attery disease．Fur J Vucl Med，199ㅎ．．22： 1306

18．wom Dahl I，et al．Recovery of regional Ieft ventricular dysfunction after coronary sevaseularizatuon．I Am Coll Cardiol，1996．28： 1988
19．Tijlisch JH，at Reversibility of cardiac wall motion abnormalities peredicted by positron emisston tome graphy．N Eng J Med．1986．311：884
2u．Tamaki N．et al．Positron emisston tomugraphy using fluorine－18 dcoxyglucose in cevaluatiot of cormary arlery bypass grafting An！Cardiol，1989，64：860
2l．Cornel JII，el al．Prediction of improvement of ventricu－ lar function after revasculariztion．is F fluorodeoxyglu－ cose singte photon emisson computed tomography ve Luw dose dobutamire echocardiagratphy．Eur［Iart ］． 1997．18：4＜1

22．Di Carli MF，et al．Valae of metabole imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventroular dysfunction．Am J Cardiol，1994，73：527
23．Fitzman D，et al．Clinical outcome of patienta with ad－ vanced coronary artery disease after viabality studies with
positrion emission tomography．J Am Coll Cardiol． 1992．20：539
24．Maddahi J，et al．Prognostic significance on PET assess－ ment of myocardal viability in patients with left ventru ular dysfunction．I Am Coll Cardiol，1992．19：112．A
25．votn［phli J，et al．Effect of myocardial viability assessed by terhnetium－99m－sestamibi SPECT and fleorine－18 FDG PET on clinical outcome in coronary artery discase． J Nucl Med ．1997．38：， 42

26．Hambe AS．et al．Diagnosti：value of and incrementel contribution of bicycle exercine．firat－pass radnonuchale angiography，and ${ }^{30 n}$ Te labeled sestamibi single photon emission tomography in the identification of coronary ar－ lery disease whout infarction．J ．Vucl Cardiol． 1996. 3： 664

27．Shaw L．J．et al．Prognosis by measarements of left ven－ tricular function during exercise．Duke N ：mnnvasive Re_{t} search Working Group．J Vuel Med．1998．3：11！
28．Borges－Nrto S．ri al．Usefulness of serie．radionuctide angiography in predicting cardac death after voronary artery bypass grafting and comparivon with clinteal and cardiac cathetcrization．Am J Cardiol．1997．79：85：
29．Lu P．et al．A ：omparison of radionuchide amaging and MRI in the evaluation of myocardial infarcton．Wed Re－ vicw．1992．39：20

第7章 呼 吸 系 统

第1节 解剖生理基础

胋及其辅助结构是人体与外界环境进行气体交换的器官，肺的主要功能是完成氧和二氧化碳的厅体父换。气体代机体内的运输依靠血液循不来空成，机体的组织，细胞从血液或問用组织巾摄収氧并排治－氧化碳。

肺所完成的气体交换㘦能取次一于訽部肺组织的血流和通气的に配关系。

一，解部概要

成人的左，右肺由多个肺叶组成，在肺分为上，中，下三旪，左肺分为上，下两叶，双肺义分别由 10 个肺段组成（图 7－1），它们均出相应的动脉，静脉和支气管支配，气道由考级分支构成，即气管，支气管及细支气管等。末梢细支气管的平均直䄱约为 6 mm ，又分为 $2 \sim 7$ 支嚅吸性细支气管。以下接肺泡管，肺泡襄和肺泡。珎泡总数近 $7 \times$ 10^{8} 个，肺泡的平均直径为 $150 \mu \mathrm{~m}$ 。容积义 $0.004 \mathrm{~mm}^{3}$ ，其总面梖约为 $50 \sim 100 \mathrm{~m}^{2}$ 。与未梢纽支气管烃伴随的小动脉的直洤约为 $100 \mu \mathrm{~mm}$ 。向下逐级斿支直至在肺泡表䁌形成毛细如管网。胋毕细血管大约有 $2.8 \times 10^{.1}$ 文．直径为 $7 \sim 10 \mu \mathrm{~m}$ 。邻坏肺泡之间有很多交诵，叮以防止阻塞的肺段或西肺
 $1 \mu \mathrm{~m}$ 的肺泡一毛细血管漠，即呼收膜，血液内和肺泡内的气体交换在此处进行，气道和腑的营养由支气管动脉供应。

呼岋道包括鼻，咽，喉，气管，支气管到至肺泡，气管以上为上呯吸道，气啠以下为下呼吸道。气管和支气管是连接喉与肺之问的管道，其末㟨㹥胸腔分为左，在支气管，由肺门进人肺。何肺下为灯膈肌下有肝脏，故常较左肺宽耐短：左肺下斿因受心脏影响而偏冬，较左眠窄。

二，生 理 概 要

呼呚运动是机体与外界不境间的「体交换过

埕，是涟持机体新陈代谢和抄能活动所必简的基本

容积：（ W 氯和一気化碳跨过气血屏障的扩散。

㛒吸的企过程包括二个相红联系的不节。即 （1）外呼昅：指外界环境与血液在肺鄗实现气体交换，它包括肺通气（肺与外界的（气体交换）和肺换气 （抪池与血液之间的气体交换）：号气体在血液中的运输：（3）内呼吸：血液或组织与组织，细胞之间的气体交换，真中肺道气定肺与外界的气体父换过程，呼收道，肺泡种胸漷等结构参均这一过程：呼吸道是沟通肺泡与外界的管道；肺泡是气体与血液非行交换的场所：而呼吸机收缩，舒张形成的胸案节律性呼败运动是实现肺通气的动力。四此，肺通气是由呼吸肌的作用力。大道和远端呵吸单死的机械作用以及一，系列中枢与周闱神经的调节作用所决定的。

肺循环为终末呼吸单元提供的流从面实现一体交換，它由众多问匡细血管床倬血和多流的大小䍀
的 $85 \% \sim 95 \%$ 。肺而流量与肺通气量维持透当比例是笑现有效肺换气过程的关键性因素。吸人一定容积的空气必然有一企容积的血液与之相还应，这样才能保持正常的气体交焕。否则会形成所谓的 ＂功能性分流＂或＂死腔样道气＂，

值得提护的是，吸人的空气并不是均领的分布在肺组织内，特別是老年人和体嵶者。肺内吸人空
养弁，气道通畅性的差异以及气体扩散受限等。正：常肺内恤流分布也不暏的，其影响国素很名。肺胙环不同子体䛻不，它是一种低庄力利低阻力系统。肺动腺平均压力 $(15 \mathrm{mmHg}){ }^{\mathrm{j}} \mathrm{j}$ 左房平均后力 （ 6 mmHg ）之间的压差明业低于体胙环快差 （ 9.5 mmHg ），而檞息状念 ${ }^{-5}$ ，肺内的血流辛与体循环的岶流量却基本相同。在确定体循环战肺循环蓉积，血流和长力之间的关系时，血管外的因素具有很亨要的作用。呼吸时肺内容积的周期性变化会影

响肺内血流的分布，此外，由于重力作用文生流体静压力，也会影响肺血管压力上肺血流的分布。流体青力学研究表朋：敏侧肺由上律下可分为 1 区，第一区为肺尖部，肺泡压超过肺动，静脉屚，会引起肺毛细血管闭塞导致血流分布明䍐减少或无血流分布；第二区肺动脉压超过肺毛细血管原及肺静脉失，血流自上而下逐渐增加；第二以的肺静脉压大于肺泡压，血流分布地是自卜而下逐渐增加：第四区的大部分肺泡闭塞，组织间压增加．导致肺（fic流进行性减少。由于上述原因，当病人取坐位注射放射性示踪剂后，肺尖部与肺底部的放射性分布稀疏。当然肺底部的放射性分布减少地受幵吸运动的影啲。

第2节 肺灌注显像

一，显像原理

大于肺毛细血管直径的放射性蛋由颗粒经静脉注射后，随血流进人有心系统并与肺动脉血流混合均匀，一过性并随机雄顿在部分腑毛细血管内。由于嵌顿在肺毛细血管的量与肺灌注血流量呈正比，因此对肺内的放射性分布进行显像，即可显示各部位的血流灌注重，从而判断肺血流分布状况和受损情况。

二，显 像 剂

肺灌注显像（pulmonary perfusion imaging）常用的示踪剂主要有锅 「＂m Tc．］聚合自蛋白（＂）「c macroaggregated albumin，${ }^{79 \%}$（ $\mathrm{C}-\mathrm{MAA}$ ）和 锟
 microsphere，${ }^{3 \mathrm{grn}_{\mathrm{m}}} \mathrm{T}_{\mathrm{c}}-\mathrm{HAM}$ ）。 ${ }^{99 \mathrm{~mm}} \mathrm{~T}_{\mathrm{C}} \cdot \mathrm{HAM}$ 的优点是颗粒大小比较均会才（直径 $10 \sim 60 \mu \mathrm{~m}$ ）。 ${ }^{18 \mathrm{sm}} \mathrm{Ic} \mathrm{c}$－MAA的颗粒直径为 $10 \sim 90 \mu \mathrm{~m}$ ，注人相同数量的颗棓时，MAA 的登的质量远较 IIAM 为低，所以日前应用 ${ }^{99 m}$ Tc－MAA 较为普遍。

三，显 像 方 法

（一）显像前准备

惫者先吸氧 10 分钟，若有条件一直吸氧至静脉注射示踪剂完毕，以减少肺血管痉穹造成的肺部放射性分布减低。

1．注射体位 常规取仰卧位泣射小踪剂。以减少重力㷧响。

2．注射剂量 一次注射 $111 \sim 185 \mathrm{MBq}(3 \sim$ $5 \mathrm{mCi})$ ，含蛋白颗粒 $2 \times 10^{5} \sim 4 \times 10^{\circ}$ 个。平均为 3.5×10^{5} 个，汗射体积不小于 1 毫质，每次泣射前必须先将混悬液摇匀，以免颗粒沉注在下゙而。

（二）平面显像

常规取 6 个体位，即前位（ANT），「位 （POS），左后斜位（LPO），右侷斜位（RPO），左侧位（LI）和右侧位（RI）。 必要时增加左前斜位 （ $\mathrm{I} A O$ ）和右前斜位（RAO）。前位仝肺受心影 1 泊 （尤其是心脏护大者）的影响较大，君位塧合观察双肺的整体血流分布，侧位可以判断盽段的血流分布，但往往有两肺放射吽影像重叠。因此左，有后斜优显像确定肺血流的受损部位一个分必要，效果也咠传。采集条件：将双肺同时包括在探头视野内，探头配犆低能平行孔通用留准直器。钲个体位采集 $5 \times 10^{\circ}$ 计数，侧位采集计数叮适当減少到 $4 \times 10^{\circ}$ 。采集矩陦为 64×64 或 $128, ~<128$ ．Zcom 为 $1 \sim 1.5$ ，窗宽 20% 。

（三）断层显像

病人取仰卧位，双臂抱头。探头配咢低能平行孔用用刑准直器，旋转 360° 。每 $6 \sim 10^{\circ}$ 采集 1 帧。隹帧采集 $15 \sim 20$ 秒，采集矩阵为 64×61 或 128 ， 128，Zoom 为 $1 \sim 1.5$ 。采集过程中漏病人呼吸均匀平稳，以减少呼收运动对肺显像的干扰。原始数据经滤波后行反向投影重建，制作横断面，矢状面和冠状闻影像，忶厚 $6 \sim 8 \mathrm{~mm}$ 。

（四）呼哟门控肺显像

1．原理 肺体积在呼吸过程中周期性扩大与维小，常规肺平面或断层显像存在着肺组织随岼吸运动的重㚗伤影，垁真较明显，尤其是肺底部，利用密者呼吸过程巾某一特定时相（如吸气末）作为门控采集的触发讯号，䇝呼吸周期分为若 7 个时相进行采集，即可得到呼吸周期中与特定时相对应的一。系列静止影像。本法一方面减少了影像的失真，另一方面可对这一一系列影像进行连续㤨速的电影显示，并可对肺胧整体和局部血流灌泣进行定量分析。

2．昆像方法 仪器条件同上，并应用呼吸信号检井器配以压力传感器。采集条件：取前该或后位，将压力传感器依患者呼吸方式（胸式呼吸㖪腹

式呼吸）固定在胸部或腹部。嘱患者平稳呼吸，待信号稳定后开始采集。矩阵为 64×64 或 $128 \times$ 128，Zoom 为 $1 \sim 1.5$ 。每个呼吸周期分为 10 桢采集，共采集 $2 \times 10^{6} \sim 5 \times 10^{6}$ 计数。

四，正常影像所见

（一）平面影像

正常肺灌注显像如图7．2所示。
1．前位 右肺影呈长－角形，形态完整，肺底呈弧形，受呼吸影响丽稍有不齐。肺尖和肺底的放射性分布略稀疏。左肺上野与在肺对称，下野内側有心脏压迹，受心脏搏动的影响而略有不整，心尖以外有 2 cm 左右宽的肺影，在心脏扩大时此影更窄或消失。左肺放射性一般较右肺稍淡，以左肺下野明显。双肺放射性分布由于周边变薄而呈渐进性减低。

2．后位 双侧肺影大小相近，双肺中问的空白区呈条状，受心脏影响较小，但左肺内下部仍可

见心脏所致的放射性减低。该体位全肺野暴露较好，便于全固观察肺內血流的分布情况，尤其对左肺下野血流的判断更好。

3．侧位 右则位时，右肺形态大致呈椭圆形，后缘较直，约呈 160° 的瓞线，前缘较突出，约呈 120° 弧线，该体位对显示右肺中叶较清晰。左侧位时，左肺形态与右侧位显示的右肺形态相似但方向相反，前下缘受心脏的影响略向内凹陷。由于常规取仰卧位静脉注射显像剂，受重力影响双肺后部放射性分布有时较浓。分析左，有侧位显像图时，还要考虑到对侧肺影的放射性干扰。因此，斜位显像更有利于判断病变部位和进行鉴别诊断，尤其是后斜位。

4．前斜位 左前斜位能清渐显示左肺的舌段；右前斜位显示右肺中叶较清晰。

5．后斜位 左后斜位显示左肺下叶后基底段，外侧基底段以及舌段较清唽；右后斜位显示右肺背段，前基底段，外侧基底段以及后基底段较为清晰。

图7－2 正常肺灌注显像图
ANT：前位 LL：左侧位 LPO；左绍斜位 POS：应位 RI：右侧位 RPO：右含銤位

（二）断层影像

1．冠状面（由前 \rightarrow 后）依次显示双肺 \rightarrow 纵隔 \rightarrow 心影 \rightarrow 肺 门各层。脊柱后区可见双肺，脊柱，肺门影渐淡。

2．矢状面（由左－右）左肺下野先开始亚影，以后依次可见肺左侧位像 \rightarrow 肺门结构和纵隔空白区 \rightarrow 右肺影渐增大 \rightarrow 右侧位肺影 - 右肺下川外侧影像。

3．横断面（由上 \rightarrow 下）依次显示双肺尖及纵隔，然后双肺影逐渐增大，同时可见脊柱，肺门，心影，肺门以下心影增大，最后为双肺底。

五，异常影像所见

肺动脉血栓栓塞时肺灌注显像呈肺叶，肺段或亚段性缺损。

肺组织受压或被推移时，如心脏向左扩大压迫左下肺动脉，可引起周限性肺灌注缺损；肺门肿物压迫一侧肺动脉，甚至可引起一侧肺不显影。

肺部充血，水肿或炎症时，由于周部肺血流灌注减少可导致放射性分布稀疏或缺损。肺泡缺氧时常可引起局部小血管反射性收缩，导致局部肺组织血流灌注缺损。

支气管动脉与肺动脉间有侧支循环形成时，肺

动脉血流倒流人支厅管动脉．使泉米正常的血流灌汗部位出现放射性稀疏或缺损区。

心脏内存在㕣 \rightarrow 有分流，肺动，静脉瘘诫肺动，教脉昒合的 ，放射性示踪剂通対肺静脙直接进人体胙环，且而肺内放射吽分布晞疏，肺动，静脉吻合局部古现灌注缺损区。

一侧肺动脉发育不良，先天性肺动脉发育不全，一侧肺动脉迅源于胸主动脉等，均可造成肺灌注显像上一侧肺或肺局部放射性桸疏蚊缺损。

六，注意事项及安全性

检查前要询问过敏史，有严重过敏史者原则 f不做此项检查，但病情需要者要先进行度试。皮试液配制：取 $0 . \therefore \mathrm{ml}{ }^{19 \mathrm{~mm}} \mathrm{Tc}$－MAN溶液加生理盐水至 10 ml （桸释 100 倍）混全，用皮试针収 U． 1 ml ］于前辟皮内作皮试迬射。观察 15 分役无阳性反山者即可进行肺灌汗显像，但需严密观察，并备存急救药品。

婙脉注射前吸氧 10 分钟，避免版血管痉栾造成的假阴性。

静脉注射显像剂速度要慢，要少抽可岶，以绝回血与品像剂凝戊较大团块阻塞肺小动脉。一方面可造成肺显像中的弁常放射性热点，影响硆杏绉果：另一方面过多地阻塞服血管会它致忠者出现憋气等不良反应，对过敏体质患者以及肺血管床已经明显受损的患者，注药过程中强现近状吋还立即停止汗射。

对一侧肺缺如，肺旪切除或已知肺血管床明第受损的患者，注射颗粒要相宣减少。儿童作肺灌这显像的的注药量要参照体重计算，一般按龕公斤体重 $2 \sim 3 \mathrm{MBq}(0.05 \sim 0.08 \mathrm{mCi})$ 注射。

负然显像剂蛋向颗粒可－－过作阻塞部分肺小血管，但其阻断的肺小血管数仅占怎数的 $1,3000 \sim$ 1＇1500．因此不会引起明显的肺循环血流动力学改变，白蛋白颗粒的最小中毒剂量为 $20 \mathrm{mg} \cdot \mathrm{kg}$ 体車，一次显像洼射蛋白量为 $1 \sim 10 \mathrm{mg}$ ，仪为最小中毒剂量的 $1 / 1000 \sim 1 / 100$ ，囚此肺灌注显像是十分安全的。

七，${ }^{133} \mathrm{Xe}$ 肺㳸注显像

（一）显像原理

静脉注射氙 $\left.{ }^{[1,33} \mathrm{Xe}\right]\left({ }^{1 \cdot \hat{s}} \mathrm{Xe}\right)$ 生理盐水溶液，示

踪剂随血流到达肺一细血管，有 95 谷逸入肺泡内，随后被呼品体外。静脉汗射后 15 秒内。忠者屏住呼吸行体外 γ 显像县可反映双肺的血流分布情况。

（二）显像剂

${ }^{12} \mathrm{Xe}$ 生理劫水洨液，静脉注射剂哩为 370.1 MBq （10m（i），

（三）显像方法

1．检查前准备 患者咬氧后夷鼻，衔口器，护遖过管道接废气收集袋，收集患者呼出的含 ${ }^{1.3} \mathrm{Xe}$ 的气体，以㑆污染周国坏境。

2．给约方法 ${ }^{1: 3} \mathrm{Xe}$ 可溶于生理盐水，但一旦与空气接触，则大部分挥发于空气け（ 90 ：，，因此要有特珠包装窝器，一般采出多剂量注射器：注射时取一支不漏气注射器，预先㣙取少量生理盐水充满针头－等空腔，消赤后将针头迅速刺入多剂量注射器内，抽取品像所寧体积的注射液后，当即进行右肘静脉＂弹丸＂式泣射， $10 \sim 15$ 秒内令病人艮气行体外连续显像。

3．采集方法（1）肺灌江显像：静脉注射 Ie溶液后，即以 2 秒；颃的速度连续采集，共采集10帧。（肺灌泣呼吸显像：静脉注射 ${ }^{3} \mathrm{Xc}$ 溶液后斯行动态采集，不始以 2 秒 帧的速度采集，待犻动脉出影时改为 15 秒，帧，共采集 4 颃， 2 吵帧采集的影像为右心影像， 15 秒，颃采集的第 1 帧图像为肺灌注相，第 $2 \sim 4$ 帧为肺呼吸相。 由于取前位作肺显像时，厷肺受心影的影响，故常取后们进行采集。探头配置低能平行孔道用型准直器。竹阵为 64×64 或 128×128 ，Zoom 为 $1 \sim 1.5$ 。易像前将探头紧贴患者背部，探头对位时，其上界与双肩平行，下界与后肋马下缘对齐。

4．正常影像所见 第一阶段（2秒帧）为わ心像．最先见到石侧锁骨下静脉显影。然后出现上悾静脉 \rightarrow 右心房 \rightarrow 右心窒 \rightarrow fi室流出道（肺总动脉）的影像，构成＂L＂当形影像。从上腔静脉显影到肺总动脉显影的间陑时间为右心通过的间．正常值为 2 ± 0.23 秒。老年人1：限为 2.8 秒，第二阶段（13
师灌注后位影像相问。第二阶段的第2，8帧图像肺影减淡， 1 分钟木时放射性下降至 20% 左叴．肺影已不清唽，亦无局限性放射性滞留，称为肺呼气像。

5．异常影像所见 第一阶段影像见到右心空扩大，肺动脉段突出时考虑有肺动脉高压存在。第二阶段第1帧图像上见到放射性分布稀疏或缺损，提示该区域的肺血流灌注减少或缺如。第二阶段第

2，3 桢影像内放射性减淡延迟表明肺通气功能受损。其余特征与 ${ }^{99 m} \mathrm{Tc}$－MAA 肺灌泙沗像大致相同。图7－3 显示了 1 例局限性肺气肿 ${ }^{13,3} \mathrm{Xe}$ 肺灌注呼吸显像图。

图 7－3 局限吽肺乞肿 ${ }^{1+5} \mathrm{Xe}$ 肺濰注呼吸显像济
肺灌泣相：在肺上钎放射忤分布惐低；
肺呼 ${ }^{2}$ 相：右肺上野效射性清除延迟，右肺下野局限性肺气肿

第3节 肺通气显像

一，显 像 原 理

将放射性情性气体或气溶胶吸人气道和肺泡内，然后呼出，用放射性显像装置体外探测双庥各部分的放射性分布。由于放射性在肺内的分布与局部通气量成正比，因此可以估价肺的通气功能，了解气道的通畅性以及肺泡与气体的交换功能。

二，显 像 剂

肺通气显像（pulmonary ventilation imaging）的示踪剂分为两类。一类是非水溶性放射性惰性气体，如 ${ }^{133} \mathrm{Xe}, ~{ }^{127} \mathrm{Xe}, ~{ }^{81 \mathrm{~m}} \mathrm{Kr}$ 等，它们被吸入气道和肺泡后，随即被呼出体外，不会进人血液。另一类为放射性气溶胶，常用锝［ ${ }^{999_{m 1}} \mathrm{Tc}$ ］喷替酸盐（ ${ }^{199 \pi} \mathrm{Tc}$－ pentetate，${ }^{99 \mathrm{~mm}} \mathrm{Tc}$－DTPA），经超声寧化器雾化为气溶胶，雰粒大小在 $1 \sim 30 \mu \mathrm{~m}$ ，反复吸入后沉积在支气管一细支气管和肺泡内。近年来发展了一种用 ${ }^{99 m} \mathrm{Tc}$ 标记的超细碳颗粒放射性气溶胶——Tech－ negas，颗粒大小均匀，吸入入体后， 20 分钟内呼吸道内的放射性分布基本不变，其操作简便，图像质量好，是理想的通气显像剂，但设备价格昂贵，国内尚未推广应用。
${ }^{133} \mathrm{Xe}$ 是 ${ }^{235} \mathrm{U}$ 的裂变产物．γ 射线能量为 80 keV 。能用一般 γ 照相机显像，生产较易，价格适中。使用较方便，因此早在1955年首先应用于肺通气功能的测定。但由于 ${ }^{134} \mathrm{Xe}$ 的 γ 射线能量较低，影响空间分辨率，且有一定的脂溶性，吸入肺泡后有少量经肺泡上皮和毛细血管内皮细胞进入血循环，还有部分进入脂肪组织中，影响肺通气功能测定的准确性。 ${ }^{129} \mathrm{Xe}$ 的半衰期长．γ 射线能量为 170 keV （主要）， 230 keV 与 375 keV ，由于半清除时间长，适用于充盈后的肺通气显像。 ${ }^{31 \mathrm{~mm}} \mathrm{Kr}$的半衰期仅为 13 秒，$\gamma$ 射线能量为 190 keV 。适用于反映单次呼㖟的通气显像．但由于供货困难，国内尚未应用。
${ }^{4} 4 \mathrm{man} \mathrm{Tc}$－DTPA 气溶胶由于价格便宜，只要雾化器好，所生产的雾粒大小即可满足显像要求，因此目前仍为国内常用的肺通气显像剂。其最大的优点是可以作多体位显像，其粘膜吸收剂量远小于 ${ }^{153}$ Xe，故既可估价肺的通气功能，又能测定气道粘膜纤毛肃清功能和肺上皮细胞的通透性•但不能得到肺清除影像。

三，显 像 方 法

$(一)^{133} \mathbf{X e}$ 肺通气显像

1．显像前准备 ${ }^{133} \mathrm{Xe}$ 肺功能仪，包括 ${ }^{183} \mathrm{Xe}$ 吸入与回收装置。大视野 γ 照相机，低能平行孔高灵

敏准直器。患者取坐位，背靠探头，视野应包括全肺。

2．采集与显像 分吸人，平衡与呼出一个时相。
（1）单次吸人显像：于恵者呼气末期时，＂弹丸＂式将 ${ }^{133} \mathrm{Xe}$ 注人仪器人口，同时令患者深吸气并屏气 $3 \sim 5$ 秒．立即启动 γ 照相机进行采集，一般预犆计数为 $1 \times 10^{5} \sim 1.5 \times 10^{3}$ 。
（2）平衡期显像：单次吸人显像后，患者反复呼吸密闭容积内的 ${ }^{134} \mathrm{Xe}$ 混合气体 $3 \sim 5$ 分钟，使肺部与容器内的放射性达到平衡，预置计数为 $3 \times$ 10° ，采集平衡期像。
（3）洗脱期显像：呼出的 ${ }^{133} \mathrm{Xe}$ 气体被吸附，同时吸人室内空气，肺内放射性逐渐减少，此时进行动态采集，每帧图像采集 $5 \sim 10$ 秒，共采集 $5 \sim$ 10 分钟。

3．影像分析

（1）正常影像表现：（1）单次吸人影像亦称通气像，反映肺各部位的吸气功能和气道通畅情况，由于肺上部顺应性较差，每次吸人 ${ }^{133} \mathrm{Xe}$ 亦少，因而正常人影像也可见放射性分布的自上而下由低向高移行，但无局部放射性异常分布。（2）平衡期影像反映肺各部位容量。由于反复吸人，使胸腔内负压的不一致，肺组织顶应吽的不一致以及重力影响得到克服，因而正常人肺部的放射性应为均匀分布。 （3）洗脱影像反映肺各部位的呼气功能和气道通畅性。正常人肺内各部位的放射性同步减少， $2 \sim 3$分钟基本消失。
（2）由 ${ }^{133} \mathrm{Xe}$ 通气显像可计算出下列参数： （1）肺通气量，肺活量，平均通过时间和通气率：（2）由洗脱显像可通过计算不同时相各感兴趣区（ROI）的计数，得到各 ROI 的洗脱曲线，反映该部位肺对 ${ }^{133} \mathrm{Xe}$ 的清除能力，用半排时间 T_{1} ：表示：（3）由单次吸人像中各部位的计数（ Vf ）除以平衡像相应部位的计数（ Ve ），即可得到 VF 值（ $\mathrm{VF}=\mathrm{Vf}, \mathrm{Ve}$ ）．它反映该部位单位容量肺泡一次吸人的气体量，若气道不畅，VF 值下降，降低的程度可反映气道不通畅的程度。

（二）气溶胶吸入显像

常用显像剂为 ${ }^{99 m} \mathrm{Tc}-\mathrm{DTPA}$ 。
1．显像前准备 患者取坐位．吸人气溶胶う～ 8 分钟。气溶胶的雾化需控制氧气流速 $(8 \sim 10 \mathrm{~L}$ ． $\mathrm{min})$ ，使 ${ }^{9 \mathrm{~m} \mathrm{~m}} \mathrm{Te}-\mathrm{DTPA}$ 充分雾化，产生颗粒均匀的气溶胶。

2．采集 吸人气溶胶后，患者仰卧于大视野 γ照相机探头下，采用通用型平行孔准直器。常规取 ANT，POS，LPO，PRO，LL，RL 六个体位显像，必要时加 LAO，RAO 位。每个体位预置计数为 4×10^{5} 。

3．影像分析

（1）正常显像表现：双肺内放射性分布基本均匀，周边略低（图 7－4）。气溶胶受气道内气流的影响较大，有时在较大气道内沉积较多，以气道分又处明品，但无明显放射性稀疏铁损区。有时喉头与岁显影。

图7－4 正常肺通气显像图
ANT：前位 ILI：左揦位 LPO；左后斜位 POS：后位 RL：右䑁位 RPO；右后料位
（2）异常显像表现：
1）气道狭窄：狭窄部位的两侧有涡流存在，

该处部分有雾粒沉积，旺现放射性浓聚，而狭窄远端的放射分布可以正常。

2）气道完全阻塞：雾化颗核不能进人远端，呈放射性缺损区；而阻塞近端因无涔流存在，故无明显放射性浓聚。

3）气道和肺泡内有炎性物或液体充盈或肺泡萎缩：雾粒进人很少，呈放射性稀疏或缺损区。

有些作者将气滚珓吸人异常影像分为二种，即轻度，中度，重度。轻度异常，指大气道内有少量雾粒沉积或双肺野放射性分布不均匀区的面积小于

双肺总面积的 25% ；中度异常，指大气道内有较多的放射性沉积，双肺野有 $25 \% \sim 50 \%$ 的区域放射性分布不均匀；重度异常者可见大，小气道内均有放射性沉积， 50% 以上的肺野呈放射性稀疏或缺损区。通气显像异常多见于慢性阻塞性肺疾患（chronic obstructive pulmonary disease． COPD）（图7－5），支气管畸形，肺衰性纤维化等疾病。

图7－5 异常肺通气显像图
ANT ：前位 L．I：左侧位 LPO；左后斜位 POS：后位 RL：右侧位 RPO：右后䱁位
双肺显影不完整，主多发性缺损改变

4．影响肺吸入显像的因素 气溶胶在肺内分布的影响因素主要为气溶胶颗粒的大小与重量，吸人方式，气道的解剖结构和患者的肺容量等。气溶胶颗粒越大，受重力影响越明显，越容易沉积在中央气道内。呼吸频率快而浅，也易造成大气道内的沉积增加。支气管痉李，支气管扩张或气道内异物等，使气道内气流方式发生异常，导致该局部放射性气溶胶沉积增加，病变远端的放射性分布朋显减少或缺损。在分析气溶胶吸人显像图像时应考虑到这些影响因素。

四，肺上皮细胞通透性的测定

（一）原理

${ }^{99_{m}} \mathrm{Tc}$－DTPA 从肺泡内渗透入血液是个随机弥散的过程。吸入具有渗透能加的放射性气溶胶，可

在体外测定其从肺泡弥散越过气血屏障进入血液循环的过程。由于肺泡上皮的屏障能力明显富于毛细血管内皮，故测得的半清除时间 $\left(T_{1 / 2}\right)$ 主要反映肺泡上皮对气溶胶的通透能力。

（二）测定方法

患者吸人 ${ }^{44_{m+1}} \mathrm{Tc}$－DTPA 气溶胶 $(40 \sim 100 \mathrm{MBq}$ ，颗粒直径 $0.5 \sim 1 \mu \mathrm{~m}) 3$ 分钟左右，病人即取坐位背靠 γ 照相机探头，视野包括全肺。计算机以 $15 \sim$ 30 秒／帧连续采集 $15 \sim 30$ 分钟，用 ROI 法测得双肺放射性清除曲线，由曲线求出全肺平均 T_{1} 。以及風部 T_{1} 。。正常人肺上皮细胞通透性测定的放射性浓度一时间明线呈单指数曲线。 ${ }^{94 m}$ Tc－DTPA 平均 $\mathrm{T}_{1 \cdot 2}$ 的正常参考值为 86 ± 26 分钟。
（三）影响肺上皮细胞通透性测定值的因素主要影响因素包括气溶胶沉积的部位，在体内

的稳定性以及吸气的姿势等。侕气溶胶沉积的部位又与气溶较颗粒大小，呼吸的速度与㴶度密切相关。过度平静的吸入会出现最大的外周沉积，快速吸入会引起较多的中央性沉积。吸入气溶胶的时间和记录肺部放射性的时间过长也会影响清除瘵的测定，吸入时间过长可能会掩盖快速䛼期清除。此外，脯通气功能，肺上皮细胞本身的功能状态以及肺容量的大小均会影响测空值。

（四）异常所见

间质性肺病变，如尘肺，特发性䄮纤维化，肺结苦病等，由于肺泡毛细血管䈂障的破裂，使气溶胶清除加快，放肺，上皮细胞通透性的测定可反映肺的病理生理变化．期肺上皮细胞的通透性于病变早期就可出现异常改变，随着病情的恢复清除率也渐正常。对于严重急性肺损伤的患者，最常见的是成人呼吸弿迫综合征利婴儿透明膜病，于急性期内均见通透性增加，随病情好转而改善直至玥常。因此对于以上病变的诊断，治疗庁条的制订与疗效的判断，肺上皮细胞通透性的测定均有重要价值。

此外卡氏肺囊虫肺炎，人类免疫缺䐄病毒 （HIV）感染后，吸烟后以及支气管哮喘虫者，肺上。艮细胞的通透性也可增加。

五，呼吸道粘朠纤毛廊清試验

（一）原摆

粘膜纤毛廊清功能息呼吸道内各种生理机制共同作用的结果。呼吸道粘膜下腺体和粘膜内杯状姃胞数以及分泌粘䘸相水分的量，粘膜表面单涖面积纤无的数日，纤毛长短，纤毛和粘膜表面分泌物之间的关系等因素均知纤毛功能有关。下呼吸道的细支气管到气管的䊀膜纤毛具有清除呼吸道内分泌物及显物的功能。澈射性核素标记的不呮渗透性的气溶胶在呼吸道粘膜表面不被分解代谢，当气溶胶吸人气道时，用电影方式迭行体外显像，通过观察气溶胶与气道粘液形成＂热团＂的时间，运动方式及排恬速度，可了解粘膜纤毛僱清功能。

（ニ）方法与数据处理

婁者经に吸入气溶胶 ${ }^{99_{\mathrm{m}}}$ Tc－DTPA 740～ $925 \mathrm{MBq}(20 \sim 25 \mathrm{mCi}) 3 \sim 5$ 分钟，气溶胶颗籼直径大于 $5 \mu \mathrm{~m}$ ，以减少沉积于远侧非纤声气道的颗粒数回。然后仰卧于 γ 照相机探头下，视野包括㫝及全肺。计算机以 30 秒／帧的速度连续采集 120 帧，

司时在 20 分钟内，每 5 分钟摄片 1 张，其后每 ${ }^{(1)}$分钟摄片1张，直至 60 分钟。

从计算机中调出 120 帧图像，以电影方式显示气道内放射性＂热团＂的形成，运动及报出过程。计算＂热固＂的运动速度，并可计算肺内放射性滞留率，气道滞留率，气道沉积率，肺泡沉积率以及气道清除率。气事溶胶廍清出线县放射性浓度一时间曲线一般为多指数的，多因子的 T_{1} ：反映不同气道总的廊清，用作图法或对数据进行多指数回归庁程分析可将曲线的各组分开。

（三）异常所见

呼吸道粘膜纤毛廊清功能降低多见于䯺性支气管炎，哮喘，流感，原发性纤毛无运动，囊性纤维化，支尛体肺炎，支气管肺癌以及権摭球蛋白缺陷等症。此外老年人及服肝阿司匹林，阿托品，麻醉药物者呼吸道粘膜纤—譠清的功能也降低。

> (史㟯芳)

第4节 肺动脉血栓栓塞阳性显像

血检性疾病的血检阳性显像主要，包括下肢深静脉血检显像和肺动脉向检检塞显像，其显像的基本原理是一致的。但是日前多数阳性显像剂主要应用于下肢深静脉血检栓塞显像，用于肺动脉血栓栓塞的阴性显像剂还只有 ${ }^{59 \mathrm{~m}} \mathrm{~T} \mathrm{C}$ 标记的脦类，且只处于初步的临床研究阶段。

一，显 像 廊 理

放射性核素血检阳性泉，像是应用根据血检性疾病的病理生理特点制备的参与扎血，凝血，纤溶等不闰过程的特异性阳性显像剂而进行的血栓灶显像。针对血栓不同成分含成的各种息像剂不仅可显示血检的存在与部位。还可判断血栓形成是急性或是慢性过程，是近年来发展起来的诊断血栓性疾病的特异性新方法。

曾有不少研究用放射性核素标记的抗血小板和抗纤维蛋白单克隆抗体及其片段进行血检的放射免疫显像。然而由于抗体分子量大，血液清除慢，血本底高，亚像时阿长（ $4 \sim 24$ 小时），且抗体的抗原性问题也未得到很好的解决，时而应用结果不理想。

为了克服抗体分子革大的缺点。同时又保留对血栓诊断的特异性，近午有研究到对活化血小板糖
原和抗血小板 GPIIbiIIa受体的抗体PAC1 的卫补决定区（CDR 3 H ）的结构，合成了含有精氨艐－ サ氨酸一天门冬氨酸（RGD）序列的 系列活性忲。出于 RGI）序列与抗体 PAC1 的活性部储RYD 序列（啃氨酸 酪氨酸一天门冬氨酸）类似，歭此的特异性地与 GP II b／II a 受体相结合。另外这些肤类含有上还原锝络合的 KC．CCA 氨基酸店列，${ }^{4 m} \mathrm{Tr}$标记宫可用于新鲜血栓的沴断。主要优点是合成的胝类分子量小，比大分子的抗休蛋向血液清除快。血液本底低，可早期获得洁晰图像，达到快速检测日的。

二，显 像 剂

理想的血检显像剂与带器官育具有高亲和力和高度的结合特异性，绎合部位相划稳定，不受而栓发展和抗凝治疗的影响；同时向液清除快，血液本底低．短时间内可获得较高的血检；血液（T，B）比偵，使血检出必清唽。不同的放射性核素标汇们层的底物，可得到不同种类的が踪剂。ま要有以下儿
板，纤维峚血原，纤维蛋白及纤维蛋门原和纤维蛋
维蛋白抗体及其片段，好59D8，T2G1S 和 GC4等： $3^{1: 1} \mathrm{In}$ 或 ${ }^{5 \% m} \mathrm{Jc}$ 标记的抗血小板抗体，如抗 GPII biIII a 受体的抗体 7 E3 和P256，抗（；MP 140的抗体 SZ－51 等：（可组织纤溶酶原激活剂（ $1-\mathrm{PA}$ ）标记物 ${ }^{11} \mathrm{In}-\mathrm{t}-\mathrm{PA}$ 和重纽组织型纤维蛋白溶酶原激活
要为＂mTc标记的 P280和P357。P280思由26个氨基酸组成的一聚体，P357是由13 个氨基酸组成的，分 f 量为 3.4 千道尔顿的活性肽，二者均可特

同内卓外医院与美国 MIMC 公司合作我担 $J^{17 m} T c-P 357$ 急性肺动脉血栓显像的临怽研究，现以 ${ }^{19} \mathrm{~m}$ Tc－P357 为代衣，介绍其出像方法，开常和异常显像所见。

三，显 像 方 法

20 mCi ），分別在 1 小时和 2 小时行肺平面知断层
 RPO，LPO 5 个体位，矩阼 256×256 ，每个体位采集计数 $8 \times 10^{\circ}$ 。

断层显像。揬头 360° 旋转，每 6° 采集 1 帧图像。矩阼 128×128 ，每帧计数 $\geqslant 200 \mathrm{~K}$ ，放大倍数为 1.0 ，重建后获得冠状面，矢状面纹横断面图像。采用 ROl 法，计算肺血桿；血本底（ T B）的放射性比俏。

四，正常显像表现

根推初步临㣺研忩。静脉注射 1 小时厉听见心脏和大血管的血本底影，随时间延长。血本底影逐渐减淡，而双肺野未见异常的放射性浓聚影。

五，异常显像表现

除有正常的心血池影外。一侧肺或双肺血恮部位有异常的放射性浓聚，其放射性浓度高十或相学于心血池影。皋外医院发观的 3 例 ${ }^{4 \pi m} \mathrm{~T}_{\mathrm{c}}$－P357显像阳吽的急吽肺检塞患者，均可见双肺内有多发性的放射性浓藂灶，溶检前 T / B 比值为 2.96 ± 0.56 。滚栓后 T•R比值降低为 $1.73-0.15$（P－0．0001）。
分布的放射性缺损区。 3 例急者均经肺动脉造影或电 f 束 CT 证实为急性肺检塞。

因P357分子量小，故峈早期（1 小时）误得清晰图像，可早期检出肺动脉血检栓塞，使患者得到早期治疗。初步临床实践证哊 ${ }^{00.1 .1 T c}$ TP357 血检显像方法安全，简单，快速，为临床诊断急性肺血检悍塞性疾病提供了一种特异性的新方法。同时 P3元免疫原性，闪重复检查，用于溶检等疗效的检测，也具有一定的价值。

> (史蓉芳 张跷卧)

第5节 临 東 应 用

一，肺 栓 塞

（一）临床概述

肺动脉栓塞（肺检塞•pulmonary cmbolism）是因内源性或外源性侩于阴塞肺动脉或其主要分文引起肺循环障碍的临床和病理生理综合征。如果检塞

动脉相应的肺段出现缺血和坏死则称肺梗塞。最常见的检了主要是来白下肢或盆腔静脉系统的血检 （如下肢静脉炎，静脉曲张，外伤，长期卧床等），血栓也可米自其他体静脉或右房室（如三尖瓣病变）。血栓形成的主要原因是血流淤滞，血管壁损伤，血液高凝状态（如妊娠，口服避顼药）等，脂肪或羊水栓子较少见。

肺捡塞的发病率在心血管系统疾病中仅次于冠心病和高血压。在美国每年有 70 万例患者，其死亡率位于肿瘤和心肌梗死亡后，居第三位。肺检寒在我国的发病率尚无确切统计，过去认为较少见，这主要是由于对该病的认识不足和诊断技术的限制，误诊率高，国内一组 82 例的诊断分析，误诊 63 例，占 77.8% 。近年来，随着现代诊断技术的发展，特别是核素肺显像和肺动脉造影等技术的应用，越来越多的肺检塞病例被正确诊断，证实肺栓塞是一种严重危害我国人民健康与生命的常见病和多发病。

肺栓塞临床表现多样，症状和体征可不典型，可引起血流动力学改变（肺动脉高压，右心衰，休克）和呼吸功能障碍（低氧血症，酸碱平衡紊乱）。急性肺检塞如未经及时治疗，死亡率高，但 89% 能存活到 1 小时以上，多数患者有机会诊断和治疗。如及时诊断，正确治疗，死亡率可降低至 $1 / 5 \sim 1 / 6$ ，因此迅速正确的诊断是肺栓塞治疗成功及取得良好

预在的（键。核素肺显像技术在这方面有着不可替代的作用。

（二）显像表现

1．肺检塞的诊断 实验证明，肺栓塞早期肺灌注显像即可早于其他形态学诊断出现异常，而 X线胸片 $24 \sim 48$ 小时店才会有异常表现。肺检塞的肺显像主要特征是肺段性或亚肺段性灌注缺损和肺通气／灌注（V／Q）不乣配。
（1）肺段性灌注缺损：由于血栓阴塞血管，肺血管供应的肺叶，肺段和亚肺段呈放射性缺损改变，缺损范围与解剖结构的肺叶，段分布相一致。灌注缺损的肺段数目和范围对肺栓塞有不同的㐱断价值。有学者进行过统计，发现单个亚肺段缺损，仅 33% 为肺栓塞，而多个亚肺段缺损，肺栓塞的可能性上升为 88% ，多个肺段缺损则肺栓塞的可能性接近 100% 。因此多肺段的灌注缺损，特別是最大的缺损区在一个肺段以上时，有明确的肺栓塞诊断意义。相反单个亚肺段的灌注缺损则肺检塞的可能性不大。

然面，灌注缺损并非肺检塞的特异表现，其他许多原因同样可引起灌注缺损，如单侧膈肌抬高，叶间裂，气胸，胸腔积液，占位性病变压迫，心脏扩大或血管扩张，肺实质性病变等（图7－6）。因此单纯肺灌注显像对诊断肺检塞的特异性较低，必须认真加以鉴别。

图 7－6 胸主动脉瘤压迫左肺致灌注缺损

> ANT: 前位 Ll: 左制位 LPO: 左后斜位 POS; 后位 RI: 右侧位 KPO: 右后斜位肺灌注显像示左肺上野古放射吽缺损改变，经手术证实为諊主动脉流压迫左肺所致

目前，肺通气 灌注显像相结合可提高肺栓塞的诊断准确性，但部分急性肺栓塞病例发病较急，

为了争取时间，应尽快进行溶栓治疗。灌注显像结合 X 线胸片和临床表现，亦可对大部分病人作出

较为正确的诊断。
部分患者 X 线胸片可有异常表现，灌注缺损相应部位出现浸润或渗出阴影，透亮度降低。研究发现：灌注缺损范围明显大于胸片异常区，则肺检塞的几率在 80% 以上；而灌注缺损范围等于或小于胸片异常区，则肺栓寨的几率相对较小。

同时也可密切结合临床情况，当出现典型的肺栓塞症状，如呼吸困难，胸痛，咯血，有明显的心电图改变，而肺灌注显像出现大于一个肺段的灌注缺损，则肺栓塞的诊断基本可以成立，可立即进行溶栓治疗。有研究证实，呈肺叶或肺段分布的灌注缺损，当临床情况中度和高度怀疑肺栓塞时，肺栓塞的可能性分别为 80% 和 96% 。
（2）V／Q 不匹配及肺栓塞的诊断标准：尽管肺灌注显像结合临床表现和 X 线胸片可以较准确地进行肺栓塞的诊断，但由于部分患者的临床症状和体征不典型，X 线可表现正常，因此肺灌注显像

的诊断特异性仍需提高。通气＂灌注显像相结合可进 步提高诊断的准确性。肺栓塞的通气／灌注显像的主要特征是 V / Q 不匹配，即肺段性分布的灌注缺损与正常的通气同时存在。

在实际应用中，通气／灌注显像的表现更为复杂多样，为了便于临床监用，1990年 PIOPED（prospec－ tive investigation of pulmonary embolism diagnosis）制定了诊断标准，并被广泛应用，1993年和1994年先后进行了小的修订，将其内容简化归纳如下：

根据通气／灌注显像结果分为：肺栓塞高度可能性，中度可能性，低度可能性和正常四级。

1）高度可能性：（1） 2 个或 2 个以上肺段的大部分（ $\geqslant 75 \%$ ）V／Q 不匹配（灌注缺损而对应部位通气正常），X 线胸片正常或灌注异常范围大于通气或胸片异常范围（图7－7）；（2） 1 个肺段的大部分和 2个或 2 个以上肺段部分 $(25 \% \sim 75 \%) V / Q$ 不远配； （3） 4 个以上肺段部分 V / Q 不匹配。

图77 肺动脉血栓栓塞（PE）肺通乞／灌注显像图 ANT：前位 1，L：左侧位 LPO：左店斜位 POS：后位 RL：右制位 RPO：右后斜位上图：肺灌注显像显示左肺舌段，前基底段，后基底段及右肺后段背段至放射性铁相改变，在肺基底段放射性分布明显稀硫；下图：肺通气显像大致正常。

提示：通气／渑迬明显不匹配，呈典型的多发性肺检塞改变

2）中度可能性：（1） 1 个肺段大部分和 1 个肺段部分 V / Q 不匹配；（2） $1 \sim 3$ 个肺段部分 V / Q 不匹配；（3） 1 个肺段 V / Q 不匹配，X 线胸片正常。

3）低度可能性：（1） 1 个或 1 个以上肺段灌注异常，异常范围明显小于 X 线胸片；（2） 2 个或 2 个以上 V / Q 匹配的肺段，X 线胸片正常；（3）肺灌注缺损区是因胸腔积液，心脏扩大，肺门突出，主动脉增蒬，纵隔增宽和膈肌抬高所致；（4）小于 1 个肺段范围的灌注异常而 X 线胸片正常。

国内也制定了更为简便易行的诊断标准，简述如下：
1）高度可能性：（1） 2 个以上肺段灌注缺损，肺通气显像和 X 线胸片未见异常，或灌注缺损区大于异常的通气显像和 X 线胸片；（2） 1 个肺段和 2个以上的亚肺段灌注缺损，肺通气显像和 X 线胸片无明显异常；（3） 4 个以上的亚肺段灌注缺损，肺通气显像和 X 线胸片无明显异常。

2）中度可能性：（1） 1 个亚肺段灌注缺损，V／ Q 不匹配；（2）肺灌注显像灌注缺损区不呈典型的肺叶和肺段分布，但有明显的临床症状。

3）低度可能性：（1）肺灌注显像异常，同时合并较大而积的 X 线胸片异常；（2）肺灌注与通气显像均异常， X 线胸片正常或异常而积小于肺灌注缺损区；
（3）肺灌注缺损范围较小，且不呈肺段或亚肺段分布。
高度可能性临床正确诊断的几率为 90% ，基本可以确定肺栓塞的诊断；中度可能性临床正确诊断的几率为 $20 \% \sim 40 \%$ ，需要进一步进行肺动脉造影确诊；判断为低度可能性，则排除肺栓塞的正确率可接近 90% 。但即使肺灌注显像大致正常．也不能完全排除肺栓塞，仍有 4% 的可能性。Hen－ 1 yd 等认为，低度可能性和接近正常的肺灌注显像，即使肺动脉造影发现肺栓塞，也不需要进行溶栓治疗，并且不会有不良的后果。

2．肺栓塞的疗效观察 肺灌注显像是一种简便，无创性的诊断方法，因此可以用来进行随诊观察。㚖外医院对 50 余例肺栓塞患者进行了溶栓前店的肺灌注显像对比观察，均与临床情况相符合。一般认为急性，年龄较轻，无其他心肺合并症，溶栓及时的患者溶栓效果较好。血流灌注可以部分苷至完全恢复正常（图7－8）。而年龄较大，有心肺合并症且慢性机化血栓形成的患者，溶栓效果行往不佳。近年来，肺动脉内膜剥脱取栓术在国内已有开展，并有用核素肺灌注显像评价疗效的报道，发现该手术对中心型肺栓塞的效果较好（图7－9）。而对多发性的周围型栓塞则效果相对久佳。

图 7－8 肺动脉血检栓塞溶栓前后肺擎注显像对比图 ANT：前位 LL：左侧位 LPO：左后斜位 POS；店位 RL：有侧位 RPO；右后斜fi\％上風；溶拴前仅右肺基底段有部分放射性分有，厷肺其余部外及左肺血流濉注缺顅；

下图：溶检层双肺血流灌洋阴显改善

氛 7－9 肺栓釜肺动脉取㻇术前后肺灌注显像对比图
ANT：首位 LL：左侧位 LPO：左局斜位 POS：后位 RL：在侧倍 RPO：右石斜位
慢性肺栓寒经肺山脉取栓手术店双肺血流明显政善（手术证实为机化血栓检塞）

3．与下肢深静脉显像结合诊断肺栓塞来源下肢深静脉血检是肺栓塞的主要束湶，皁外医院应用肺灌注显像结合双下肢深静脉显像发现： 171 例下肢静脉病变巾有 98 例合弁肺栓塞（ 57.3% ），与 DSA，MR 和 X 线下肢静脉造影对比，符合率分别为 $88.9 \%, ~ 86.7 \%$ 和 90% 。应用下肢深静脉显像可及时发现下肢深静脉血栓，为选择安装滤器，防止新的栓子栓塞肺动脉提供了诊断依据（图 7－10）。

（三）鉴别诊断

1．慢性阻塞性肺疾患 典型的慢性阻寒性肺疾患（COPD）病例 V / Q 匹配，与肺栓塞不难鉴別，但某些显像情况较为复杂，局部 $V / Q \pi$ 匹配与不匹配同时存在。尽管COPD 可产生小的血栓，阳寒远端小动脉，表现为亚肺段的 V / Q 不匹配，但有学者认为局部 V / Q 见配与不见配同时存你不能仅仅用 COPD 解释．认为 V / Q 匹配的部分为局限性肺疾患，而不匹配的部分可能为肺柱塞引起。一般认为，仔在 2 个或 2 个以上肺段 V / Q 不匹配时，

肺检塞的可能性大；而通气异常范围较大，有 2 个或 2 个以上肺段不匹配，则肺栓寒的可能性较小，必要时应进行肺动脉造影加以鉴別。

2．肺栓塞合并肺梗塞 肺栓塞合并肺梗塞 （pulmonary infarction）同时存在局部 V／Q匹配与不匹配，灌注与通气缺损玸呈肺段分布，X 线胸片往往有阴影出现，反应性通气低下。如果 V／Q 开始匹配，而后出现不匹配，则提示早期肺梗塞的可能性大。

3．多发性大动脉炎 多发性大动脉炎（takayz－ su＇s arteritis）是主动脉及其分支的慢性，进行性，非特异性炎症，好发于青年女性，其主要病理变化是病变动脉纤维增生引起管腔不对称性狭窄，甚至完全阻塞，病变呈节段性分布。根据受累部位的不何，分为头臂动脉型，胸腹主动脉型，肾动脉型，肺动脉型和混合型。

大动脉类累及肺动脉的核素显像特征与肺栓塞相似，受损肺动脉所支配的肺段灌注缺损，缺提区与解剖肺段的分右一致，通气显像大致正常． V / Q

图 7－10 肺栓塞溶栓前后双下肢深静脉显像对比图左图：溶栓前双下肢深静脉回流不畅，侧支循环形成；右图：溶检后双下肢静脉回流明昆改育
（与图7－8 痁捡前后肺灌注显像为司一病例）
不匹配。但由于肺动脉型主要累及大，中肺动脉，常可见整个肺叶或多个肺段受损，范围较大（图 7－11）。单纯肺动脉型较少见，但大动脉绅累及肺动脉的却可达 $14 \% \sim 50 \%$ ，因此常合并相应的症状和体征，不难鉴别。如累及肾动脉时，合并肾动态显像异常，开博通试验阳性。对于已确诊为大动脉焱的患者，肺灌注显像是了解肺动脉是否受累的重要管选方法，同时对了解肺动脉累及的程度和范围有一定临床意义。

图7－11 大动脉炎累及肺动脉肺灌注显像图左肺仅眠尖部有少量放射性分布，其余部分为放射性缺损改变；右肺后段可见一棒形够担区，大动脉类累及左肺动脉及右上肺动脉分支

（四）比较影像学

除核素显像外，CT，MR 等也是重要的无创性诊断方法。增强 CT 与 MR 均可显示左，右肺动脉及较大分支的血检检塞，CT 表现为腔内＂充盈缺损＂，MR 表现为中一高信号的结节状或条索状影。近年来应用的电子東CT 进一步提高了时间分辨率，并有效消除运动伪影，可以准确地进行血检定位。但 CT 与 MR 在显示亚肺段支以及远小分支方面较为有限。

在肺检塞的影像学诊断中，X 线平片与肺灌注显像均简便易行，二者结合基本可满足诊断和观察疗效的需要。对于核素显像不能明确诊断的病例应进行肺动脉造影，肺动脉造影可显示肺动脉阻塞的部位（图7－12）。电子束 CT 与 MR 的应用尚不普及，有待于积累更多的经验，电子束CT 与核索显像相结合可提高诊断的准确性。肺动脉内膜剥脱取

图7．12 肺栓塞肺灌注显像与肺动脉造影对照图上图：肺霍注显像，右肺上野及左肺部分古段，基底段血流灌注缺损：
下图：肺动脉造影（右肺）显示右上肺动脉自起始部完全阻塞

栓术前需进行定位诊断，CT 对此可能有更高的应 用价值（图 7－13）。

图 7－13 肺栓塞肺灌注显像与电子束 CT 对照图
上图；肺灌注显像显ぶ左肺实后段，舌段及右肺尖段，后段，的段，基底段血流灌注缺损；下图：电子束CT 显示右肺动脉远端及左䀑动脉近吉叶动脉开口处充盈缺担（箭头所示）

二，慢性阻蹇性肺疾蚛与肺心病

（一）病理生理

1．慢性阻塞性肺疾患 是指慢性阻塞性支气管炎合并阻塞性肺气肿。这一概念目前尚未统一，也有人将单纯慢性支气管炎和单纯哮喘包括在内。

慢性阻塞性肺疾患（COPD）早期通常经过长期的慢性支气管炎过程。随病程进展，炎症由支气管壁向周围组织扩展，粘膜下层平滑肌束断㲠，萎缩，失去对管壁的支架作用，同时周围纤维组织增生，造成管腔的偠硬或塌陷。吸气时支气管扩张，气体尚能进入肺泡，而呼气时由于支气管狭窄，闭塞，阻碍气体排出，肺泡内气体积聚，压力升高，造成肺泡过度膨胀，肺泡壁破裂，形成阻塞性肺气

肿。慢性炎症也可直接破坏肺组织和肺泡壁，导致肺泡破裂，融合，形成肺气肿。

慢性支气管炎进展缓慢，早期肺功能可无明显异常，随着气道狭窄病变加重，通气功能出现异常，如 1 秒钟用力呼气容积，最大通气量降低。当并发肺气肿时，上述指标进一步降低，肺组织弹性减退，肺泡弹性回缩障碍，残气量持续增加。肺泡膨胀压迫肺毛细血管，导致毛细血管床大量揭伤，丧失，造成弥散功能障碍。小气道阻塞导致通气不良，V / Q 比例失调，以致换气功能障碍。缺氧和二氧化碳潴留可引起不同程度的低氧血症和高碳酸血症，甚至呼吸衰竭。

2．肺心病 反复的慢性阻塞性炎症和肺气肿可引起肺小动脉的痉窂和阻塞，肺泡内压增高，压

迫毛细血管造成管腔阻塞，同时肺泡壁毁损导致大量肺泡毛细血管丧失，均使肺循环阻力增加，引起肺动脉高压（pulmonary hypertension）。同时缺氧，高碳酸血症和呼吸性酸中毒使肺小动脉收缩痉挛，促进肺动脉高压的形成。

肺动脉高压形成后，右心负荷加重，右心室代偿性肥厚，随着病情加重，右心功能逐渐由代偿转为失代偿，右室腔逐渐扩大，最终形成右心功能衰竭。

（二）显像表现

COPD 患者由于肺血管损伤，肺灌注量像可出现明显昇常，并随病情进展逐渐加重，表现为斑片状的放射性减低区或缺损区，均不呈肺段分布，这一特点可与肺检塞相鉴别。但由于 COPD 肺循环系统的血流动力学改变，可产生微小血栓，检塞远端微小动脉，在肺外带形成小的楔形缺损区（或新月形缺损），称为＂裂隙征＂。Eaton 研究发现，肺灌注显像显示外带橪形缺损的病例，经尸检均证实

了微血栓的存在。有文献报告， 76.9% 的 COPD患者有血流灌注昇常，有局部放射性缺损的占 14.4% ，均不呈肺段分布， 45.2% 肺外带出现楔形缺损（或新月形缺损）改变，

COPD 患者由于气道狭窄，阻塞•月粘膜表面不光滑，使气体流速减慢，弁产生湍流，吸人的放射性颗粒可沉积于狭窄阻塞的气道中。由于病变程度不一，通气显像放射性多呈斑片状分布．其间可有散在的放射性稀疏，缺损区。慢性阻塞性支气管炎由于肺内各部位通气受损的程度不同，放射性分布明显不均杓，但大气道沉积较少．多形成边缘性沉积。而肺气肿患者出于远端支气管和细支气管阻塞，放射性多沉积于较大气道中，甚至肺门附近亦有较多的放射性聚积，表现为中心性沉积。COPD息者通气／灌注受损的部位基本一致，呈＂匹配＂特征，但两者的受损程度可不完全相同，通气显像有时受损更明显（图 7－14），反映了从通气异常到血流灌注异常的病理生理发展过程。

图 7－14 慢性阻塞性肺部疾患（COPD）肺通气 $/$ 灌注显像图 A．NT：前位 POS：后位 LPO；左后斜位 RPO；右后斜位双胧血潅灌注与通气功能均受损，以通气受损为著

随着肺动脉高压的形成，通气／灌注显像可有进一步的变化。肺内血流重新分布，改变了由于重力作用形成的肺尖血流灌注少于肺底的分布特点。由于肺动脉压力増高，灌注显像双肺尖可见明显的放射性浓聚，呈＂逗点＂形态改变。由于肺血管床的严重破坏，灌注异常进一步加重，不旺肺段分布的局部放射性缺损区明显增多（图7－15）。国内研究报道， 87 例 COPD 伴肺动脉高压的患者， 90%存在肺灌注异常， 65% 有灌注缺损，肺血流受损比例玸明显高于慢支肺气肿。另一项研究对比了肺灌

注显像放射性分布均匀，肺尖放射性浓聚和灌注分布明显不均匀伴不呈肺段分布的稀疏缺损区三种图像的特征与肺动脉平均压和肺小动脉阻力间的关系，测得三者肺动脉平均压分别为（ 16.8 ± 3.8 ） mmHg ，（ $21.3 \pm 3.8) \mathrm{mmHg}$ 和 $(42.0 \pm 11.6) \mathrm{mmHg}$ 。肺小动脉阻力分别为（ 110 ± 64 ）dyn $\cdot \mathrm{s} \cdot \mathrm{cm}^{-5}$ ， （ 113 ± 48 ）dyn • s • cm^{-5} 和（ $490=271$ ）dyn •s• cm^{-5} ，反映厂肺血流灌注随肺动脉压力升高的依次变化过程。结合核素右室功能测定，可更为准确地反映肺动脉高压与右窒功能受损的程度。

庝 7－15 顼动脉高压肺灌注亚像图
$\mathrm{A} N \mathrm{~T}$ ：前位 LL：左侧位 LJO：左后斜位 POS：后位 RI：在侧位 RPO：右后鈄位双肺政射性分布明显不均匀，双匝上野放射性分布较浓聚。呈典型的肺高压改变

由此可见，肺通气／灌注显像对 COPD 的病程分期，疗效观察及预后判断具有一定的价值，与 X线相结合，可比较准确全面地判断病情，指导有效的治疗。

其他肺实质病变，如特发性肺问质纤维化，矿肺等，也可出现肺通气／灌注显像的异常，受损部位不旺肺段分布， V ； Q 常＂匹配＂，但结合病史和 X 线胸片不难鉴别。原发性肺动脉高压与（OPD）引起的继发性肺动永高压在肺灌注影像上也无朋显的特征性差异，但 COPD 患者有较长的愽支病史，病程进展较慢，结合 X 线胸 j_{H} 及病情变化情况，也不难作出判断。

三，先天性心血管疾病

（一）先天性心脏病肺动脉高压的定量分析

肺动脉高压是先天性心脏病（congenitial heart disease）的重要并发症。肺动脉高压和肺血管床受损的程度直接影响手术适应证的选择和预后的判断。目前主要依靠右心导管检查和肺组织活检，但均属创伤性检查。近年来国内外开始探讨运用肺灌注显像评价肺血流异常范围和肺血管受累程度，以期寻找到一种准确，简便的无创性诊断方法。

在房间隔缺损，室间隔缺损，动脉导管未闭，右室双出口等常见的先天吽左向右分流型心脏病中，由于肺血流量增加，肺动脉压力增高，发生反

应性肺血管收缩，引起肺小动脉肌层增号，内膜细胞增生。此时肺小动脉尚有一定的弹性收缩能力，如及时手术治疗，预后较好；如病变进一步发展，内摸普迴纤维化闭塞，进而普遍性扩张性病变形成，甚至出现环死性动永炎，形成不可逆性重度损伤，手术预后差，死亡率高。因此准确判断肺动脉高压及肺血管损伤的程度，具有重要的临床意义。

肺动脉高压使肺内血流重新分布，双肺上部血流灌注等于甚至超过双肺下部，肺动脉灌汗显像定堇分析，双肺上下野放射性计数之比可增高。由于全肺阻力增加，血流受阻，随血流进入双肺的放射性示踪剂低于正常，降低程度与肺阻力明显相关。部分先心病的肺动脉高压发展到一定程度形成右向左分流，放射性颗粒可直接进人体循环，双肾显影明显（图7－16）。

近年来，国内学者利用肺灌注显像对先天性心脏病肺动脉高压的定量评价指标进行了初步探讨，先后提出了双肺放射性总计数（LRC），双肺上下野放射性计数比（UI，R），将区放射性计数与双肺放射性总计数之比（KCR）等定量分析指标，研究结果显示双肺放射性总计数和肾区放射性定量分析对估测肺动脉高压及肺阻力的程度有一定价值。其中一项研究发现重度肺动脉高压组患者 LRC 明显低于轻中度肺动脉高压组。在另一项研究中，依照心导管检查分为全肺低阻力组和高阻力组，两组之间

图 7－16 先天性心脏病右向左分流肺灌注亚像图 POS：后位
双肾放射性浓聚，昆愿昉品
的 LRC 和 KCR 均存在明显差异，其中 KCR 分别为 $1.44 \% \pm 0.58 \%$ 和 $5.0 \% \pm 1.9 \%$ 。用前列腺索 $\mathrm{E}_{1}\left(\mathrm{PGE}_{1}\right)$ 治疗后，低阻力组 LRC 升高，KCR 朋显降低；而高阻力组 LRC 则变化不明显，KCR 虫降至 $3.4 \% \pm 1.3 \%$ ，但仍明显高于低阻力组， PGE_{1} 对低阻力组的疗效好于高阻力组。上述定量分析只是初步探讨，还有待于进一步的深人研究。

（二）肺动脉先天性发育异常

肺动脉先天性发育异常（pulmonary artery congenitial anornaly）中，单侧肺动脉缺如较为罕见，多元明显的血流动力学改变。但由于右室排出的血液全部进人一侧肺血管床，严重病例可造成一侧肺血增多，肺动脉高压形成。肺灌注显像一侧肺不显影（图7－17），但通气功能正常，对侧肺可呈

图 7－17 先天性右肺动脉缺如肺灌注显像图 ANT：前位 POS：后位
肺濩注显像右肺不显影

肺高压图形，应注意与单侧肺检塞相鉴别。
一侧肺动脉发育不良由于血管纤细，发育不完善，该侧肺血流灌注明显低于健侧，肺灌注显像可发现双侧放射性分布有明显差异。此外 侧肺动脉起始异常，如一侧肺动脉从主动脉发出，也可造成一侧灌注显像的放射性缺损。对于上述肺动脉先天性发育异常，肺显像具有辅助诊断价值。

四，肺 部 肿 痛

肺部肿瘤发病率高，多为恶性。特別是近年来肺癌（pulmonary carcinoma）的死亡率持续上升，其早期诊断是争取手术机会和决定预后的关键。肺癌的临床诊断多依靠 X 线和纤维支气管镜检查，核素方法并非首选方法。当 X 线不能明确诊断时。借助核素显像可获取有价值的诊断信息。新的亲肿瘤显像剂的研制及断层显像技术的发展，特别是正电子发射计算机断层显像技术（PET）戊功应用于临床，使核素显像在肺癌诊断方面有了新的进展。在肿瘤良恶性鉴别，肺癌转移及术后观察等方面显示了良好的应用前景，越来越受到广泛关注。

（一）肺通气／灌注显像

肺癌恵者由于癌肿浸润或直接压迫支气管肺动脉及气道，可导致肺通气／灌注的改变，相应肺段的放射性减低甚至缺损。中心型肺癌灌注显像异常的放射性分布区较 X 线显示的范围为大，当癌肿侵及肺门，纵膈甚至可导致全肺的血流灌注缺损，但周围型肺癌的通气／灌注显像与 X 线显示的受损范围可以大致吻合。肺灌注显像可反映肺癌的浸润范围及肺血管的受损程度，对于决定手术切除范围及评估手术预后有一定的价值。一般认为，患侧肺正常血流灌注面积 $<30 \%$ 时，手术效果往往不佳：面 $>40 \%$ 时则手术切除的机会较大，预后相对较好。

利用肺灌注显像可测定术后残存的肺功能，计算公式为：

术后肺功能 $\mathrm{FEV}_{1}=$

术前肺活量 \times 残留肺组织放射性计数

双肺放射性总计数
$\mathrm{FEV}_{1}>1$ 升时，术后肺功能可维持机体的正常需要。

此外，肺灌注显像还可用于肺癌放疗患者的选择及预后估测。严重肺血流灌注受损的患

者往待难以达到预期效果。而放疗或化疗左通气，灌注均明显改普伴肿瘤缩小，则提示治疗效果较好。

（二）$)^{67} \mathrm{Ga}$ 和 ${ }^{201} \mathrm{TI}$ 亲肿瘤显像

${ }^{\text {i／}}$ Ga 自60年代木开始症用于肿瘤业像，临床应用证明对肺癌有较高的阳性率。综合有关文献报道的近千例肺癌的 ${ }^{67} \mathrm{Ga}$ 显像，与病理对照的阳性率为 86.9% 。肺槅的病理类型与显像阿性率的关系各家报道不完全一致，尚无确切定论。对自径＞ 2 cm 的刖癌，阳性率可达 $80 \% \sim 90 \%$ 公，而肖径 2 cm 者，阻性率仪为 $4 \frac{1}{3}$ 。虽然对良性肿瘤少有假阴吽，但活动性炎症喖 Ga的摄取增高较明显，因此 ${ }^{6 j} \mathrm{Ga}$ 显像的特异性相对较低。
${ }^{231} \mathrm{Tl}$ 从 70 年代起地捕于肿瘤显像。近20年研究认为，平面显像的阳性率为 $70 \% \sim 88 \%$ ，断㧁业业像可提高诊断的灵敏度。1992午 Matsuno 报道了 34 例肺癌 ${ }^{231} \mathrm{Tl}$ 平面与断层显像，平面显像阴性率为 82% ，而断层显像达 100% 。
${ }^{59} \mathrm{Ga}$ 和 ${ }^{201} \mathrm{Tl}$ 显像均可用于诊断肺癌纵隔和肺门淋巴结转移，Lunia 曾观察厂75例有纵隔和肺门淋巴维转移的肺癌患者，${ }^{67} \mathrm{Ga}$ 显像诊断的敏感性和特异性分别为 92% 和 70% 。由于 ${ }^{\circ} \mathrm{Ga}$ 业像的走位较模糊，因此结合CT可存效提高诊断的准确性。
在诊断的敏感吽，特异性和对肺门淋巴结转移的准确性等方面都优于 ${ }^{b i} \mathrm{Ga}$ ，特別是对于直洤く $<3 \mathrm{~cm}$ 的肺㿋，${ }^{231} \mathrm{Tl}$ 显像的阳性率高于 ${ }^{87} \mathrm{Gra}_{6}$
（三）${ }^{99 \mathrm{~m} \mathrm{Tc}}$ 标记的示踪剂显像
山与 ${ }^{9 \times m} \mathrm{Tc}$ 优良的物理性能。其标记的示踪剂用于肿瘤显像的研究逐渐增多。研究发现锝
 4，且有较高的癌瘤；本底（T／B）放射性比值，图像质量较好。有学者曾把CT，纡涟支气管镜㕲 ${ }^{3 n} \mathrm{Tc}$ C－MIBI 显像进行厂对比，三者的肺嗝检生率分别为 87.5% ， 6.9% 和 92.3% 。虽然田前还有待于进一步的研究和资料的积崇，但足以说朋 ＂．＂．＂Tc MIBI 显像对肺癌的诊断价值。国内㖊有作者报道了 17 例肺癌单发病灶的 ${ }^{\prime \prime m} \mathrm{Tc}$－MIBI 业像结果，平面显像的 14 个病灶向部放射吽朋业增高，㘯 3 个病扯尤明显放射怍摄取，灭敏度为 82 个 个。目诊断的永敏度上肿瘤大小相关，显小放射性浑聚

的㿋肿直径为（ 5.2 ± 2.5 ） cm ，而术能虽像的癌肿直径为（ $1.6=0.7) \mathrm{cm}$ ；但断会显像的 17 个病灶均为阳性，敏感性为 100% 。其中最小的癌肿直祆仅为 $1 \mathrm{~cm}, ~ 4$ 例经病理证实有中心坏死，核素显像均可显示肿瘤巾心的放射性缺损。

淂 ${ }^{99411} \mathrm{Tc}$ ］槆疶糖酸盐（ ${ }^{90 \mathrm{~m}} \mathrm{Tc}$－gluioheptonate， ${ }^{38}$ ， $\left.\mathrm{Tc}-\mathrm{GH}\right)$ 显像与＂${ }^{7} \mathrm{Ga}$ 有大致相同的沴断灵敏度。虽然研究认为其特异性较低，但对炎病减烟的假阳性明显低于＂${ }^{7} \mathrm{Ga}_{6}$

（四）PET 显像在肺癌中的应用

PET显像是近体来医学技术的新进展。刏肺膈诊断具有独特的价值。一方面可以进行代谢步像，反映肿瘤内部的代谢特征；另一方面 PEI较 SPECT 有嶪高的分辨率，并可进行定童分脈。肉此PF．T在肺部肿瘤的良恶性鉴别，肺噟转移及分期，肺癌治疗效果观察等方面均有较好的准确性常用的正驰子小゙踪剂主要有氟 $\left[{ }^{[8} \mathrm{F}\right]$ 脱氧葡匋糖
酸 ${ }^{16}$（ $)$－methionine．${ }^{11}$（ MET）。

由于肿瘤组织的糖酵解作用増强，葡缶糖代谢高于正常组织，因此可进过观察肿瘤组织中 ${ }^{18} \mathrm{~F}$－ FDG 的摄取望确定肿瘤组织的性质，悪性肿瘤的摄取明显离于良性病变和正常组织。在氨基酸代谢方面，MET的摄取量与肿疰的恶怍程度明显相关，恶性程度越高，摄取越明显。 ${ }^{18} \mathrm{~F}-\mathrm{FDG}$ 显像国外已有不少报道，Gupta 等用PET研突厂 32 例肺部肿瘤患者，并全部与病理对照，证实局部放射性餅常浓聚对肺癌的诊断敏感性为 $95 \frac{1}{3}$ ，特异性为 83% ，准确性为 92% 。另一项研究进行了定量分桩，发圲良恶吽肿瘤的 ${ }^{18}$ F－FDG 摄取指数分别为 1.5 ± 0.3 和 4.1 ± 2.2 ．有明显的差异，但 ${ }^{14} \mathrm{~F}-$ FDG 的浓聚量与组织学分型无直接关系，活动性结核和肺部炎症可产生假阳性。导外医院应
检出 2 cm 的肺癌病灶。＂C－MET的良恶性肿瘤的掫取指数分别为 $1.9=0.9$ 和 5.3 ± 2.10 ，诊断肺癌的敏感性为 93% ，特异性为 60% 。准确性为 79% 。

C丁虽然能发现肿大和淋已结并准确是住•但并不能确定是㔯为转移灶，PET 显像在这力面具有一定的优势。PET可发现小于 1 cm 的淋巴结的放射吽浓聚，病理证实为转移淋巴结。13raam 等比

较了 ${ }^{18} \mathrm{~F}-\mathrm{FDG}$ PET 与 MR 在诊断淋也结转移方面的作用，并与病理对照，认为在灵敏度方面明显优于 MR（ 91% ： 36% ），而特异性略低于 MR （ 88% ： 94% ）。

国内已有 PET 用于肺癌分期的报道， 9 例手术治疗的患者，PET 的显像分期与手术分期完全一致，南 CT 与 MR 仅 6 例与手术分期一致， 1 例肺门淋巴结与 2 例纵隔淋巴结转移 CT未能发现。

此外，PET 显像用于肺癌手术和化疗，放疗及肿瘤复发的诊断，同样有较高的准确性和实用

性。

五，肺 移 植

近年来，国内已经开始开展肺移植（lung transplantation）手术。术店排异反应及肺组织存活情况需要定期监测，肺通气／灌注显像为临床提供了了解移植肺功能情况的有效手段。北京安贞医院应用肺通气／灌注显像检测了 3 例肺移植的术后状况（图7－18），取得了初步的满意效果。随着肺移植的推广，这方面将积累更多的经验。

图 7－18 肺䔟植前应肺通气／灌注监测图上图：移植前；
下图：双㧊移植术届，患者感憋气。临床证实右肺上叶支气管狭窄，中，下叶支气管闲塞，左师支气管狭窄；灌注显像显示右肺丘流灌狺明亚受损。左肺灌注淌好，双肺通气明显孚损
（史蓉芳 方 纬）

参 考 文 献

1．刘秀杰．马寄晓．临保心肺核医学，北京，北皂医科大学中国协和医科大学号版社．1993．203～222

2．谭无秩，临床核医学．北京：人民卫生出版社， 1993．592～622

3．潘中允．临床核医学．北京：原子能出版社，1994． $349 \sim 368$

4．中华人民非和国卫生部医政叮．核医营诊断与治污规范．北京：科学出版社，1997．171～182
了．张晓丽，等，血检性疾病的放射免疻虽像。相外医学放射医学核医学分册，1996，20：128
6．张晓丽，等．${ }^{93 \mathrm{an}} \mathrm{Tc}-\mathrm{P} 357$ 近硂显像诊断急性肺检塞的初步临床研究．中华核医学杂志，1997．17：80
7．史类芳，等．急性肺血栓桎塞的核素诊断匀疗效判断 （附10例报告）。中华核医学杂志，1998，18：153
8．潘世伟，等．肺潄泙亚像对 PGE_{1} 治疗先犬性心眺病合并肺动脉高压肺血管病变的评价。中华核电学杂志， 1997，17：57
9．田月琴，等，核来肺灌注显像对八山先大性心脏病伴肺动永高退肺血管病变的评价．中华核医学杂志．1998， 18：48
10．李家敏，等．${ }^{18} \mathrm{~F}$ •FOG PET显像鉴别肺部单发肿块尘质及肺福分期的价值。中华核医学杂志，1997，17：77
11．工辉，等．${ }^{99 m} \mathrm{~T}_{\mathrm{r}}$－MIBI SPFCT 显像诊断肺痖的临体评价（与 ${ }^{\text {L }} \mathrm{F}$－FDG PF，对比）。中华核绕学杂志，1996， $10: 257$

12．黃恻．正生千发射引算机断层显像在肺熇中的应用。国外医学放射医学核医学分册．1998．22：11
13．R．F．Miller，M．J．OToherty．Pulmonary nuclear med． cine．Eurcpean Journal of Vuclear Medicine． 1942. 19：355
14．Danielar Manganelli．Antonio Palla，Vittoro Donnamaria and Carlo Giuntini．Clinical features of pulmonary ent． bolism．Chest 1995 ，107：25S
15．The PISA－PED lnvestigator．Invasive and nonnvasive diagnosis of pulmonary embolism．Chest 1995．107： 33 S
16．Edwin J．R．van Beek，Monque M．C．Tiel van Buui． The value of lung scintigtaphy in the diagnosis of pulmos nary embolism．European Journal of Nuclaar Medicine． 1993．20：I73

17．Tomas A．Catania and Vicente J．Carıde．Single perfu sion defect and pulmonary embolism：angograpiaic cor relation．The Journal of vuclear Medicine，1990， 31 ： 296

第8章 神 经 系 统

第1节 解剖生理基础

一，脑 解 剖

神经系统的中枢部分由脊䇝和脑组成。脑可分为大脑，间脑，中脑，脑桥，延髓㕲小腑。其中中脑，脑桥和延髓合称脑干（㤏8－1）。在核素脑显像中。常用的则是断层解剖学，参考沈芸文，郑思竞 20 例国人户体头部断层解剖研究材料，选抄其图解如图 82 所示，所用的基线为 RBL 线。

二，脑血液循环和血脑升障

脑是人体内新陈代谢最旺盛的器官：正常人脑
流傕约占心脏搏仙童的六分之一，其枆氧量可占到全哥耗氧量的 20% 。成人的脑血流量平划每分钟 $750 \sim 850 \mathrm{ml}$ ，灰质的的流量高于f质，是底所血

c

d
图 88 脑断层解新图
（断层4，6，8，4分别㢟颅顶 $4, ~ 5, ~ 8, ~ 9 \mathrm{ct11}$ ）
2う标本断而1（氟口3）上出观
1．额上回 2．新中回 3．中只前回

 11．5．矢状晏 12 ．柂洲 1 ；顶枕裂
 17．扣带沟 18．人脑镰 15 ，上人状突 a（ 1 （mil）

 19．外则製 20．唌岛环厸 21．透朋隔 22．大脑镰 23．下人状窦

$$
b(\sec (1)
$$

25° 标本断面 8 （㮏1」7）上面观
1．肼胝体 2．屋状核 2．内㗕 1．可状核
\therefore 前连合 6 ．下角 7．脚问窝
c．乙状要 4．大脑导水畾 111 ，小病蜴新

11．绅掖 15. 黑㖞 16. 第一船室

> 20. 大脑鐮 21. 1-大状案

$$
c(3 \mathrm{~cm})
$$

9．無四脑空 1 C ．乙状穻 11 ，小脑葉 12．脂桥 13．下角 14．大脑非动栐
 d（9）．．n）

流量的 $3 \sim+$ 倍。健捸成年人的脑血流量屋 100克脑组织约为 $40 \sim 30 \mathrm{~m}!/ \mathrm{min}$ 。但脑各个部位的血流量不尽相同，安静时额部的血流量明显较其余部分脑区多。以每分钟每克脑组织血流量计算，感觉㽝运动け枢大致为 1.38 ml ，尾状核为 1.1 ml ，视觉中枢皮质为 1.25 ml ，盾脑为 1.03 ml ．小脑神经核为 0.87 ml ，脑坐质的均数为 0.8 ml ，间脑的白质为 $0.20 \sim 0.23 \mathrm{ml}$ 。在各种激活试验中。所激活的部位分別有不同的增高或减少表现。

（一）脑动脉系统

脑部的血液供应主要束田颈动脉和椎－－基底动脉系统。角者供应大脑半球朔 $3: 5$ 部分，基龙节和丘脑前米部分：椎一甚怟动脉供应大脑半球居25部分，丘脑店半部分，脑干和小脑。领动脉系统主要喕过预内动脉分为大脑前幼脉和大脑中动脉；椎一基底动脉系统包括两侧椎加脉，基底动脉，小脑」：动脉，小脑下前动脉，下后动脉和大脑后动脉。雨侧大脑前动脉用短的前父通动脉沟通，大脑中动永和大脑经动脉由后交通动脉互相接含，这就在脑底部抢成脑基低动脉不或称 Willis 坏（图8－3）。

图8－3 人脑的动脉血液供出

（二）脑静脉系统

脑部的静脉系统包括静脉和静脉突。由于人脑没有淋以系统，静脉实际成了唯一的血液出口，脑静脉多数不与动脉伴行，组小的脑静脉由脑实质油来店，汇合成较大的静脉，静脉血先注人静脉窦，然后的此把静脉血汇含流人颈队静脉。脑静脉吅分为浅，深两组。两组有，泛的吻合，浅静脉收集皮质及民质「白质的静脉血，深静脉收集大脑深部白质，基底核，问质和脉络丛的血液（图81）。

人的顾内静脉窦主要有上矢状空，下矢状窦，㚗窦，横窦和海绵突。

13

图84 人脑的静脉系统（引自 Bapulsta．A．G．19：6） 1 板䧏静脉 2 上久状穻 3 牫静脉＋Trolard＇，静脉
$\overline{\mathrm{y}}$ 下矢减妾 6 大脑内静永 7 Rosenthal＇s 静脉
 12 眼静脉 13 导静脉 114 穻汇 15 枇㐐 16 棤突

21 基底丛 22 咽丛 23 翼上从 24 面静脉 25．椎内从 26 颈内静脉 27 预外静脉

（三）血•䐱脊液屏障

中枢神经系统存在着三种开障：（1）血液和脑组织之间物质交换的屏障；（2）血液和脑脊液（cere－ brospinal fluid），脑组织和脑脊液之间的咸障； （3）脉络丛血管和软脑膜胶质细胞之间的屏障。其中第一种屏障称之为血－脑脊液洴障（blood braın－bar－ rier， $13 B B$ ）。用电子显微镜观察，脑内大多数毛纽血管表面都被星状胶质细胞伸出的突起（血管周足）所包围，因此推测，毛细血管内的血液和神经元之间的物质交换可能都要以胶质组胞作为中介。因此 －E细血管的内皮，基膜和星状胶质细胞的血管周足等结构可能是血－肺滕液洴障的形态学基础，另外毛细血管壁对各种物质特殊的通透性也和这种屏障的作用有重要关系。血一脑巻液屏䪰的存在，对于保持脑组织周閂稳定的化学环ず

䡆大小，脂溶性，所带电荷及载体系统的完整有关，血－脑脊液开障有选择性通过物质的特性，被通过的物质可归纳为以下二类：（1）载体转运的物质，包括氟萄糖，䌘呤和唀啶䂸，以及无机离子等亲水性较强的物质。载体转运有许多是主动的耗能的转运过㕵，载体本身是一种特殊的蛋向质或酶。具有较强的专一性；（2）较易通过的物质。这类物质通过血－脑巻液屏障的速度由其物理常数如解离度，是否具有脂溶性以及与血浆蝉向结合的程度所决望；（3）不易通过的物质，这一类物质本身带有电荷又无相应的载体，因此不易通过血－脑青液屏障，如神经递质多巴胺， 5 －羟色胺，γ－氨基丁酸，谷氨酸等。由于以上所描述的血－脑青液屏障在通透性方面的限制，使脂溶性放射性示踪剂得到了发展。如
 ECD 以及其他神经递质显像剂 ${ }^{1233}$ I IBZM，${ }^{125}$ I β－CIT等。对血－脑脊液屏障研究了解得越深人，将会使神经系统显像药物的研究得到更好的发展。

三，脑 脊 液

脑空是位于大脑和脑丁内的腔隙，包括侧脑室，第三脑室，第四脑室。各脑室之间通扵一些小孔和狭窄通道役此沟通，构成完整的脑室系统。室内含自的液体即脑脊液，每个脑室都有脉络丛，脑脊液大部分是血浆的一种超滤液，也有脉络丛主动分泌的成分，脑窒管膜也能分泌脑脊液。脑脊液总量达 $130 \sim 150 \mathrm{ml}$ ，充满脑室系统和蛛网膜下腔。对脑和脊髓有保护和缓冲外力，减少震荡的作用，可使漓的重力作用减至 $1 / 6$ ，并起着类似身体其他部位淋巴系统的作用，如清除代谢产物及炎性渗出物等，脑和脊髓的部分营养供给及代谢产物的排放均通过脑脊液循环完成。脑奍液不断出脉络丛产生，沿一定途径循环，又不断重吸收到血液中，保持氻态平衡，这对于维持脑和脊䯣的正常生理功能起若非常重要的作用 其循环途径如下 左 大例

腑胝体池后部，再经大脑半球可池到达矢状窦旁区：侧路是经过两侧外侧慜池和大脑凸面至久状突旁区，经上矢状窦附近的颗粒吸人渗透导硬脑膜的上矢状電内，从而回到血液中（图8－5）。䐱脊液的

更新较快，每天的分泌总量在 500 ml 以上， 24 小时内可以更新数次。脑脊䘸分泌过多或吸收，循环障碍均可引起顽内压力的改变，影响脑循环的正常进行。

图85 脑脊滩循环

四，脑内的神经递质和受体

神经系统通过化学物质作为媒介进行信息传递的过程称为化学传递。化学传递的物质基础是神经
突触前囊袋中，在信息传递过程中由突触前膜释放到突触间隙，作用干下 …冲经无的突触后䠑，从而产生生理效应。突触有特殊的微细结构，一个神经无的轴突末样分成若干小砕，每小枝末梢部分膨大呈球状．称为突触小体，贴附在下一个神经元的胞体或突起表百。在突触后膜存在养能与突触前胑释放的神经递质特异性相结合的蛋的质—受体。受体是能特异和神经递质或配体相结合的大分子蛋白，变体和神经㣢质的统合有很高的栾和力，特毕性和一定的饱和度。不同种类的神经逼质在脑组织巾有不同的受体．某种神经兑质的受体位于脑内的部位

在脑功能和电生理学研究中何其特殊意义。通常确定中枢竌经系统神经递质需要有几条主要的标准： （1）神经无中具有合成神经递质的前体和梅系统，其神经递质存在于该神经元轴突木端的一定部位：忥当神经元发生兴奋》进行信息传递时，神经递质便从神经元轴突末端的囊泡内释放出米，逃人间隙：（3）神经递质作用丁突触辰膜的特殊受体，产生突触店电位而发挥生理作用；（4）存在该递质的火活酶或其他灭活方式，以实现突触传递的灵活性： （開用适当方法使递质作用于突触后膜，能引起与刺激神经相同的效应；（6）有特异的受体激动剂或拮抗剂，能模拟或拮抗其生理效应。由于目前发现的许多活性物质在外周神经中被证明是递质，但上述六个条件在中枢神经系统中是很难满足的，所以只能称为假定的递质。在脑内，了解较多的神经递质如下：
（一）胆碱类
乙酰胆碱是一种重要的周围神经递质。在中枢内，脊髓前角运动神经元轴突侧支末梢与闰绍细胞的突触联系是通过乙酰胆碱的。脑干网状结构上行激动系统的某些环节的递质也可能是乙酰胆碱。乙酰胆碱是兴奋性神经递质，中枢神经系统内广泛分布着它的受体（acetylcholine receptor），在与乙酰胆碱结合后对运动，感觉，觉酕，意识，学习，记忆，心血管活动，摄食，体温调节等起着重要作用。其受体类型有 $M_{1}, ~ M_{i}, ~ M_{3}, ~ M_{4}, ~ M_{5}$ 和 N几种，表 8－1 可见其有关的受体显像剂。

衰8－1 乙醕胆碱受体显像剂

314	\％：${ }^{\text {a }}$	P\％
M	QQQve	＂CMQNB
M	a，maxmade	：C TR榢
	Wremar	
M		
8	1－mastine	＂crember

（二）单胺类

包括多巴胺（dopamine，DA），多巴胺转运蛋白 （dopamine transporters，DAT），去甲肾上腺素 （noradrenalin，NE），肾上腺素（epinephrine，E ）和 5－羟色胺（ $5-\mathrm{HT}$ ）等。

1．DA 黑质，中脑脚核头背侧和下丘畆失状核等处都存在 DA 能神经元，它发出的轴突分別向纹状体，边缘前脑和正中隆起等中枢部位投射。在纹状体内，DA 起抑制效应。DA 受体（dopamine receptor）又根据生化和药理标准分为 $\mathrm{D}_{1}, ~ \mathrm{D}_{2}, ~ \mathrm{D}_{3}$ ， $\mathrm{D}_{4}, ~ \mathrm{D}_{5}$ 几种类型。表8－2 可见常用的多巴胺受体显像剂。

衰 8－2 务巴胺难体显像剂

8xixy		iVR Y!
\square		\because ¢ 5CH 23300
	\％1．7ers	
		＂\｛．Su\％8ems
μ	101933／	
	4． 3 183	

续表		
Whrvex	4TLET	pry
$\mathrm{Cl} \mathrm{l}^{\prime}$		\because ¢ ¢ \％
		\because ぐせ！
		\therefore－＜－mymbe
	＂Ste TRUMAI	

2．NE 大多数是交感神经节后纤维末梢释放的递质。绝大多数的 NE 能神经元位于低位脑于．最主要的在脑桥蓝斑核和网状结构内，NE 主要起兴奋性作用。发源于蓝斑核投射到人脑皮质的肾上腺素能神经纤维与维持觉醒有关；发源于延髓网状结构投射到下丘脑和边缘前脑的肾上腺素能神经纤维，到达脊髓前角和侧角，与躯体运动和内脏活动的调节有关，在脑内作用于 α 和 β 受体。表 8－3 可见 α 和 β 受体的显像剂。

表8－3 $\alpha, ~ \beta$ 受体罡像剂

緥	YWW\％	Wer
\％		
\％HEAT		
3：		
\％	－1－jarmatemal	
β		
		－© Comaxamet

3．5－HT 其神经元主要位于脑干中线处，纤维向上投射到纹状体，丘脑，下丘脑，边缘前脑和大脑皮层，与睡眠，情绪反应和下丘脑的内分泌调节有关；下行纤维到达脊髓，与躯体运动和内脏活动有关。 $5-\mathrm{HT}$ 主要起兴奋作用，其受体可分为 $5-$ $\mathrm{HT}_{1}, ~ 5-\mathrm{HT}_{2}$ 及 $5-\mathrm{HT}_{3}$ 等多种亚型，表 8－4 可见多种 5－HT 受体的显像剂。

表8－4 5－羟色胺受体显像剖

Kivivy	Mis sith	社社
5－\％！	\％rgMrucy	
8．H3．		＂Ferogerome

[^1]
（三）氯基酸类

包括 γ－氨基 」酸（GABA），\｜氨酸，谷虽酸，门冬氨酸等。其中较为常用的（iABA 是中枢神经系统的抑刺吽递质。乍脑组织的分布很广泛，以黑质内神经它含量最高，苍向球次之。而下斥脑，纹状体和人脑皮质含量较低。其受体亚門有 GABAA和（GABAB 两种。其常用的受体显像剂有 SPECT 的 ${ }^{1 \%}$ I－iomazenil，PET 的 ${ }^{11} \mathrm{C}$ flumazenil，${ }^{11} \mathrm{C}$ ，VMD Z 等，

（四）多肽类

包括了多种与核素神经受体显像有）天的神经肽类，如内源性阿片样肽等。自1973年在脑内发现阿片受体以来，已经发现了十儿种内源性阿片样肽。内阿片肽在脑内分布不均诗，其作平较为厂＂泛，以对痛的调节尤为突出，其他则包括精神活动，呼吸，心血管，摄食饮水等调节作再。一般核素受体显像主要亚用于 PET，其䒜像剂有＂C－carfentanil， ＂C－naltrindole，＂（－diprenorphine 等多种。

（五）其他神经递质

尚有前列腺素，组胺等。

五，大脑皮质功能区

大脑皮质的表面积纳 $4000 \mathrm{~cm}^{2}$ ，皮质神经水数在 500 亿以上，皮斦主要与人的行为和认知功能有关。人类大脑结构和认知功能的，个主要特征为两侧半球的功能不对称性，可称为斗球优势，在产生行为，高级心理活动或认知功能的神经过程巾，左，右半球分別起着不同的作用。一般而高．语高功能，运用技项主要决定于左侧个球，空间功能则主要依赖在半球，人类双手的运用也存在不对称性，表现为右利手或左利手，以在利下届多，占 90% 左右。大脑皮质被分为 $10 \sim 200$ 个细胞结构区．临床上多采用 Brodmann 的数宁标氾分区法进行粗略分析（图8－6（a）（b）切面），以下为已知的主要脑功能区：

（一）皮质运动区

主要位于中央前回，即 4 区，管拽对侧半身的随意运动，但也存可侧性管理部分。由于上，下肢在运动区的分布较广泛，扬限性皮质损書可致肢体尤ノ或瘫疾。

（二）运动前区

位于中从前回，相当于 $6 区$ 。运动前区的病变生对侧上肢的运动障碍，痉孪性肌张力增高，运

图8－6 人脑皮质功能分区：Brodmann 分义法） （A）大畆半球凶测面的占贵构樃分区图（Brodmann） （b）大脑半球外側面的皮质构筑分区综

动性失用。

（三）额眼运动区

额中田后部，即8区，受损时可产生眼球向病灶侧或问病灶对侧凝视。

（四）额叶联合区

即额叶前部的 $9, ~ 10, ~ 11 区$ ，与智力，精神活动密切相关，损書时可发生智力，性格等神经精神方面的损害。

（五）皮质感觉区

即中央后回与顶上小叶，管理对侧的感觉。中央后回（3，1，2 区）为浅懸觉和深感觉的皮质区，顶上小叶（ $5, ~ 7 区$ ）为触摸识別物体感觉的皮质 $1 \times$ 。

（六）视皮质区

枕叶距状裂上，下两原和邻近区域，为 17 区，或称第I视区。枕叶的病变可产生视觉障碍。

（七）听觉皮质区

位于外侧裂的影横回山部，即 41 区．第 I 听觉区。

（八）嗅觉皮质区

主要位于内嗅区。系钧回和海马回的前部，又总称梨状皮质。

（九）内脏皮质区

主要位于边缘系统及其局围邻近区，包活扣带回前部，颠叶前部，眶回后部，岛叶，钩回和海的回等。

（＋）语言区

传统认为，左侧大脑是人的语言半球。左半球内存在 3 个与语言功能相关的重要区：前语言皮质 （broca），位于额下回后部的 $44, ~ 45 \times$ ，与语言表达有关，受损时出现运动性失语；后语言皮质 （wernicke），位于颡上回的 42 区，与语言的感觉，理解有关，受损时产生感觉性失语；上语言皮质，位于运动辅区，额叶内侧而 6 风，与语言的表达启动有关。

第2节 脑介人试验

一，正常人脑激活试验

找出局部脑功能活动与认知之间的关系是神经心理学家一直在寻找的目标，而对人类来说，要达到这个目标是很困难的。早期的研究是依据神经功能受损的病人，找出临床症状与认知功能的联系，而要想彻底了解人的认知功能，还需要研究正常人的脑生理功能。以往人们应用电刺激的方法，通䇃脑电图－－脑电地形图来间接反映脑生理代谢情况，但仍感缺乏精确的珑据，而无创性的核医学技术为探讨生理和病理状态下的人这认知功能开辟了新的途径。在这些研究过程中，激活（activation）试验为研究做出了贡献．这种激活试验包括了特定的精神和生理活呩，如视，听，阅读等以及机械，约物刺激以达到某种精神状态等方式，借助激活试验，可以使核医学的技术 PET，SPECT 能够更好地研究脑的功能，探测被激活的神经细胞活性和与之平

行的局部脑血流（regional cerebral blood flow． $\mathrm{rCBF})$ 和代谢的关系。大考数激活试验在概念上是简单的，但要求严密地注意实验的细节和统计学分析，对实验的目的和设计须详加注意。
（一）氙 $\left.{ }^{133} \mathrm{Xe}\right]$ 和 PET 的研究
现在研究认知功能激活的工作大部分郤是建立在 ${ }^{133} \mathrm{Xe}$ SPECT 和 PET 的工作基础 I ：的。大多数激活试验是要求受试者阅读，听觉刺激，说话或完成其他认知任务，从而应用 ${ }^{132} \mathrm{Xe}$ 多探头计数或环形 SPECT 来观察脑部的 JCBF，或用 PFT 来观察脑局部葡蕉糖代谢率（local ccrebral metabolic rates for glucose，I．CMRglu），进而了解人脑的认知功能。从分辨率和测定法定量化来说，相对于其他脑功能显像技术，PET 可以说是黄金标准，Hol－ comb 等通过测定活体脑内代谢与神经化学的联系．建立了脑的代谢活动图形，图形可以说明脑对外界的激活如记忆，认知等的反应，目前，越来越多的文献证实了 Holcomb 的论点。

（二）SPECT 的研究

由于 PET仪器昂贵，需配备加速器．使它的应用受到了限制，考年来已有应用 SPECT 进行认知功能方面的研究，多数学者应用 ${ }^{123} \mathrm{I}-\mathrm{IMP}$ 进行研究，现也有用 ${ }^{99 m} \mathrm{Tc}-\mathrm{HMPAO}, ~{ }^{99 \mathrm{~m}} \mathrm{Tc}$－ ECD 进行T．作的。较早的工作有：Dal Biano 等应用 ${ }^{125}$ I－IMP 发现。让受试者听 300 个无意义音节刺激可使左基底节前部 rCBF 增高，另一组受试者听 300 个有意义名词则引起双侧䄼叶 rCBF 增高，并旦右侧较左侧高得多。Lang 等报道在两侧大腋半梂中仔在着差异，安静状态无想象任务时，左半球的 rCBF 有了明显增高。所有的文献报道表明，相对定量的 SPECT／IMP 可以用来评价脑对激活试验的反应。国内潘中允等应用 SPECT／HMPAO研究运动，视觉，听觉等生理负荷试验时脑 rCBF 的变化．发现与安静状态相比，右上肢，右下肢负重随意运动时，可见相当于中央前回和中央后回的运动感觉支配中枢放射性浓集，视觉刺激使双侧距状裂视觉中枢的 rCBF 增高 $8.0 \% \sim 10.8 \%$ ，听觉剌激使右侧影上回rCBF 增高 11.4% ，左侧影上可 rCBF 增高 10.5% 。以上这些结果与 PET 结果相比十分近似．说明用 SPECT 的方法研究神经心理活动也是可行的，虽然 SPECT 仍受到定量困难，分辨率低的限制，侣随着仪器性能的进一步提高，可望解决一部

分问题。

二，病人的介入试验

测定静息吋的 rCDB 能提供脑血管疾病等的诊断治为依据，但静息状态的rCBF 有一定的局限性，如脑储备血流下降时，静息r（CBF 可正常，而ij血供未妥损的神经失联络或选拃性神经无损作时，其 rCBF 可下降，通过介人或激活试验使血管扩张后得到的 rCBF 可以区别这两种情况。类似的介入试验在临床和研究巾已得到厂泛应用，其中以乙酰唑胺试验， CO_{2} 吸人试验等较为常用。临沭所应用的介人试验或方法包括药物，机械，运动及精神量表等很多，本章节选择核医学常用的介人试验加以介绍。

（一）乙酰唑胺试验

乙酰唑胺，商品名 Diamox，是一种强效和可逆性碳酸酐酶抑制剂，它对脑血流作用的确切机制尚不清楚，可能是增加脑细胞外液 H^{-}和 CO_{2} 浓度，使血流增加。但病变血管不扩张，血流不能增加。测试的方法为静脉注射 Diamox $0.5 \sim 1 \mathrm{~g}$ 后 20分钟再注射脑显像剂。然后进行显像，在此之前，以相同条件完成静息状念脑显像，在正常成入巾，脑血流增加可以超过 10% ，即使是正常老年人，也可增加达 33% 以上，乙酰唑胺使昡血流增加 20分钟左右达峰值，至少持续 1 小时， $2 \sim 3$ 小时再回复至正常。乙酰唑胺试验可以用来评价短暂性脑缺血发作（transient ischemic attack，TIA），巾风，动静脉琦形，㿗痫和瘀呆等。由于乙酰唑胺等可以使正常的脑血管扩张，而病变血管扩张不够或不扩张，使其支配的区域呈相对低灌注状态，从而提高了 SPFCT 脑显像的灵敏度。周前等报道乙酰唑胺负荷试验使 TIA 的阳性率由静态的 59.4% 提高到 87.15% ，而小模死灶则由 73% 升至 90% c 系列研究表朋，乙酰唑胺负荷试验可提高探查脑灌注受损的灵敏度，同时对中风的复发有早期顶测价值。

（二） CO_{2} 吸入试验

CO_{2} 是有效的脑血管打张剂，局部脑血流对 CO_{2} 的反应性是估价脑灌注储备有代表性的参数之一。呚人 CO_{2} 气体致高碳酸血症而产生的脑血流变化类似 Diamox 试验，可以用来了解脑灌注储备。其方法是受试者通过面罩持续吸入 $5 \% \mathrm{CO}_{2}$ ，并检测鼻腔内 CO．的张力，同时监测血龙，心率

等，当 CO_{2} 张力达到稳定后注射脑显像剂，完成显像。以后再进行静息脑显像，两次显像进行对比，可得出脑血管对 CO_{2} 水平变化的反应性。

（三）过度换气试验

换气过度也可用于佔价䐱血流储备，因为换气过度后动脉内 CO_{2} 分压减低。引起脑动脉收缩，导致局部脑血流减少，尤其是有病变的脑血管支配区域的血流灌注减少更为明显。其测定方法是化脑电图监测ド过度换气 5 分钟，在脑电图出现异常或有白觉症状时注射脑显像剂，进行显像。之后进行静息状态脑显像，两次对比，确定过度换气时与静息相比的局部脑血流的变化。从过度换气试验中获得的最重要的信息是关于毛细血管水平的血流改变。
（四）仰卧一直立（体位）负荷试验
体位性低血达常同时伴有体位性脑低灌注，探查到体位改变瞬间的脑血流的异常变化，可以为临床诊断治疗提供有用的信息。受试者取仰卧位，腿抬高，休息 $15 \sim 30$ 分钟，测血压，然后指导和必要时帮助受试者在大约 3 分钟内由仰卧转为直立，即刻注射脑显像剂，继续站立 2 分钟后测量血压，寺进行脑显像，与静息状态显像相比，可以探查到休位性酗低灌注放射性示踪剂减少的区域。
（五）大脑半球不对称试验
巴比妥类药物可对中枢神经系统产生抑制作用，将适当剂量的异戊巴比妥钠直接注人颈内动脉，可以导致单侧半球感觉丧失，引起暂时的偏瘫或失陸，这就是可以用于估价未受影响侧的语言和记忆功能的大脑半球不对称试验（Wada 试验），在某些神经外科是作为癫痫术前的一项检查项目。试验前先完成静息脑显像，选定一侧半球，通过该侧颈內动脉注射异戊巴比妥钠 $3 \mathrm{mg} / \mathrm{kg}$ 体重，注射前要求病人举起手臂，以对侧手臂证实感觉缺失开始，在注射 5 分钟内进行讲吂和记忆试验。注射异戊巴比妥钠后 20 秒，也有报道同时注射脑显像剂，然后进行脑显像，两天后重复另一半球 Wada 试验和 SPECT 脑显像。Wada 试验 SPECT 脑显像对术前手术方式的选择和手术疗效的预测有帮助。但本试验要在有经验的专科医师指导下进行，并进行严密的监护。

（六）颈动脉阻塞试验

颈内动脉的阻塞或结扎是某些颅内动脉瘤和累及顾底肿瘤的一种治疗方法，其前提是必须要有足

够的侧支循环存在。目前常用动脉造影时气簑扩张阻断动脉血流的方法进行检测。出就是颈动脉阻塞试验（Watas 试验）。自腹股沟动脉插筫，递过一个
于中颈内动脉水平。仕 DSA 的规测下，气襄被扩张而阻塞颈内动脉房，静脉注射脑显像剂．维持 $10 \sim 15$ 分钟，问时观察要者反应．再气囊放气与进行脑显像。得到的图像为颈以动脉阻塞后脑内血流灌注是点有足够侧支循环的证据，为手术的选择提供重要信总。

（七）威斯康星卡片分类试验

作为精神疾患测定的精神量表利试验。在核医学！宠像中常用的激活试验多是威斯康星卡片分类试验（Wisconsin card sort test，WCST）。WCSI 是－．．种经典的判断被测者抽象概括能力的心埋测验。它可激活额叶皮质，对前额叶皮质的激活作用十分鼠著，研究表明，通过神经激活试恰，脑血流雚注显像可提高对抑郁症的诊断信度。首先制作威斯捸珰卡片，站受试者自行进行分类，对受试者讲清楚指导语，但不得给受试者任何有天分类原则的提心。在测试开始约 5 分钟后开始注射显像剂。测试何间断，直至 WCST 测试完毕后再进行脑显像，与静息状态脑昼像一起进行分析，可得到认知激活时额叶功能的反应。该试验对判断患者的疗效，预后和鉴别诊断均有意义。目前威斯捸星卡片方类试验也有了电脑中文版制作，㒬晋华等曾有报道。有利于 WCST 在国内的使用。

（八）针刺对局部脑血流的影响

经络学说是中国传统医学的重要理论之一，通过针刺刺人体表的穴位，作用于经络和脏腑，減卢营了気气血，达到扶正去邪，治疗疾病的作用。在用针刺穴位时，观察人脑情部脑血流，莆萄糖代谢，氧消耗等，证明针刺效应和中枢神经系统的调节在关。贾少微等选择待定的分位，在同一体位下连续接受针剌前，留针剌激和电钊刺三二次脑 SPECT 桠像，这些试验有助于研空和理解传统矤学的理论，

第3节 脑血流灌注齿像

一，显 像 原 理

应用小分子，不带电荷的脂溶吽放射性示踪
等白由进入血－脑脊液摒辟后，通过不同的机制可在脑内随血流灌注固定分布，•般说来。这类小踪剂在脑组织内的聚集量和血流量成正比，应用 SPECT 进行采集和图像处理。可获得二维各个断层的居部脑血流（cercbral blood flow）灌注图像。吅以进行相对的定量分析，由于血流灌注与脑功能密切相 人，脑 SPECT 血流灌注显像义可称之为功能性脑显像。当脑内发生病变时，病灶局部脑组织的血流灌注减少或增学，在断层图」：可见放射性减少或增高区，通过图像分析，为中枢神绢系统矤病的診断和治疗提供何价值的壳息。

二，显 像 剂

 hexamethylpropylenc amine oxime．＂＇u＂Tr－HMI＇
（））
的 PnAO这种电㠴性，脂溶性的放射性小踪剂。然问在动物实验中发现该药在脑内清除太快，代适合临休要求，在此基础上，进行与PnAO类似药物的大童簡远，发现 HMPAO 最遈命作脑业潒剂。＂${ }^{\prime \prime \prime}$ Tc HMPAO 有两种非对映异构体，即外消旋（d．l）HMPA（）和内消旋（meso）HMPAO．两者有着不同的生物学行为，动物实验证明＂${ }^{\prime \prime m} \mathrm{Tc}-\mathrm{d} .1-$ HMPAO 被脑摄取最岁，在脑内停留时问较长，的 ${ }^{5 \times n}$ Tc meso－HMPAO 很快从脑中洗脱，所以
化的脑显像剂（商品名（cretec）。研究衣明．${ }^{-11}$ Tc HMPAO 静脉洋射后 $30 \sim 10$ 秒人脑摄取达高峰。其在脑内的分布与脑血流成止比。一旦进人脑组织后郎在脑组织内固定分和，注射后 1 小时内脑组织中的放射性变化不大，直㕕 1.5 小时后才稍有下降，脑内潴留量占全身的 $3.5 \% \sim 7.00^{\circ} \%$ ：它在脑内长时间停留的忺制尚不完全明了，一般认为脂溶性 ${ }^{04 \mathrm{~mm}} \mathrm{Tc}$－HMPAO 最初被动运输穿过 BBB，进入眍细胞实质。迅速转化变成水溶吽化合物后不能再反
 HMPAO 在所有组织包持血液中可转化为水溶吽
很安全的，除肠道和膀胱外，其他器皃的照射剂呈都很低。
（arc－HMPAO的缺点主要是体外稳定性差。

配制片要求尽快注射。不能超过半小吋，配制代当或放置时间过长均会导致游离 ${ }^{9 \times \mathrm{mm}} \mathrm{TcO}$ 。过多，影响业像。近期有学者把 HMPAO的结构改动，变成 CBPAO，使其体外急定性提高，任山于脑掇取低 ナ HMPAO．木能推 ${ }^{-1}$ 使用。
（二）锝 $\mathrm{L}^{{ }^{x} \mathrm{~m}} \mathrm{Tr} \mathrm{J}$－双半胱乙酯（＂n Tcecthylcys－ teinate dimer，${ }^{995 \mathrm{~cm}} \mathrm{~T}_{\mathrm{c}}$－ ECD ）

继 HMPAO 后，美性 DuPont 公的又推出种新的脑显像剂，${ }^{3} \mathrm{Tc}$－ECD．商品多 Neurolite，
 E（D）．但仅 ${ }^{13 \mathrm{~m}} \mathrm{Tc}-1$ ， $\mathrm{l}-\mathrm{ECD}$ 能够体：脱脂酶类的作用下水解成羧酸类代谢物而滞留隹脑内。相对十 HMPAO．ECD 地是一种非常理想的脑鼠像剂，
为 $6.5 \% \pm 1.9 \%$ ， 1 小时掫取率为 5.2% ，其标记配制方便，放化纯度高，体外稳定性较好，标记后叮放置 6 小时，脑与头面部软组织的放射性：本底低，更㞣易得到清晰的图像。但必须往意的是 ＂이（c－ECD）的体内稳定性相对较差，到注射 4 小时

 ECD 在脑内的分布不尽相同，在基底节，店脑等处均有美异，值得止一步研究。
（三）碘 ${ }^{-i t i}$ ！安菲他命 ${ }^{\left({ }^{12 . i} \text {－iodoamphetamine．}\right.}$ \therefore（ I －IMP）
${ }^{13}$ I－IMP 是最早用于临沬SPECT 的脑血流灌汗显像剂。早在1975年就有学者使用 ${ }^{123}$ I－安替比林作为脑员像剂。以房 ${ }^{2,4} l$ 标记的胺类脑显像剂系列相继被挑选，其中以 ${ }^{125}$ I－IMP 聂为埋想，在甩荷，脂溶性和分一千量方面均符合脑血流显像剂的要求，且体外稳是性也很好，脑摄取率为 6.0% 曾士 1% 。使用也较为安全仃靠，${ }^{123}$ I IMP 首次通过时儿乎被肺完全摄取。在脑队的分存随的流而定，进人脑后结合于非特筀的部位，䚲城疏脂性化合物而不：脑内稳定停留． $20 \sim 60$ 分钟内是稳定的．在此期问进行脑 SPECJ 鼠像可得到即刻脑血流篧注图像。值得注意的是 ${ }^{12}$ I－IMP 有再分布的现象，可发生在活射底 $3 \sim 5$ 小时的延迟相，在 24 小时届时出现明昆的两分布，再分布可能受不同肉索的影响，如肺的蓄积，心输湖和脑血流的绝刏值等，个体闲素也可影响到再多布。肉此1小时和 21 小时延迟显像的结果与即刻显像可能是不同的。通过延达业

像可以提供局部缺血脑组织是否存活的眮息。而且和病人的临庆症状变化及预后评估密切相X，有助于鉴別缺l血和梗㱛。 ${ }^{12 *}$ I IMP 最早地用于脑血流灌注断茂显像进行局部这血流测定，由于 ${ }^{1 \times 8} \mathrm{I}$ 的价格较品赞，注射用量受到階制。使其图像质量比不上 ${ }^{6, \ldots \pi}$ 厂标记的示踪剂。
（四）${ }^{133} \mathrm{Xe}$
${ }^{135} \mathrm{Xe}$ 是以往底用最厂＂泛的定量测走局部脑血流的示踪剂，它是扩散性示踪剂，进人脑循不后能自由通过正常的血－脑券液屏障，迅速被脑组织摄取．然元从脑组织中洗脱。 ${ }^{135}$ Xe 在脑组织中敢取和洗出的量与脑血流成正比关系，测定脑组织中 ${ }^{1 \cdot 3}$ Xe 的累积量，通过公式计算就可以得到脑血流量 ${ }^{1+3} \mathrm{Xc}$ 脑血流测定有两种方法。即面罩吸入和颔动脉注射法。测量仪器有多探头测量总晆和可快速族转或环形的高灵敏度的 SPECT，其疋量测定局部脑血流主要有分便，代需动脉采血，重复性好，可短期内重复检查，便于行脑功能测定，镉射剂量低，价格不崖等优点，侣由于其空问分辩率美，难以探测顾底病变，且需要另外配䈯专门的探测系统等兟息，使其发展受到限制。

（五）其他脑显像剂

除了以上提及的几科脑血流灌注显像剂外。向有部分显像剂由于种种原因末能在临末上广泛应用．如 ${ }^{3 \cdot 11}$ Tl DIDC，${ }^{\text {rom }}$ Tc－MRP20，，wn：Tc－DMG－IMP， ${ }^{49}$＂Tc－T691 等。

三，显 像 方 法

（一）病人准备

注射显像剂前半小时口服过氯酸钾 400 mg 。以封闭脉络丛。处安静状态中，必要时戴眼罩和」塞，注射完毕后保持 5 分钟以上。显像时房内的光线调暗，保持空队安静。

（二）显像剂

静脉注入 $740 \sim 1110 \mathrm{MBg}(20 \sim 30 \mathrm{mCV})^{9: \mathrm{r}} \mathrm{Tc}$ 标记显像剂，一般 $10 \sim 15$ 分钟后即可显像。

（三）采集条件

采集前仪器须进行常规的质控，保证旋转中心漂移乍允许范围内，采用低能高分辨的准直器，知阵尽点采用 128×128 ，探头旋转 360° ，根据探头不兏采用相应的 Zoom ，根据脑计数率不同给予相它的采集时间，接每帧计数 100 K 以上为原则。采

集时尽量使探头贴近受试者脑部，嘱受试者在束集过程中：头不要移动，必要时可给予镇静剂（如精神分裂柾患者。但要注意在注射层采集前给－f）。

（四）图像处理

先进行潢断面重建，部分仪器须先进行规一化处理．在滤波选择方而可以选择最佳滤波，多数学者赞成 Butterworth 滤波。然后进行冠状，失状和平行于（）M 线斜断面，在这之前须完成衰减校 F^{2} 。衰琙校正的系数可以用模型如 Hoffman 3D 肠模型帮助确定。得到的冠状，大状及（9M断云•雨行排列。

（五）三维立体显示

断层图像实际仍是二维平的图像。利用横断或其他断层㘮面可舌建 维江体卢出。二维立体显小有歨面透视及容量透视两种。这需要代同特定的软件来进行，表面透视只能看到脑表面的情况。其应用有限：蓉量透视使脑内各部分放射性分布垫－维立体显小，可以品示内部结构的方位和深度，通过电影鼠小使脑灌泣立体透视图以不问的速度和方问旋转，从不同的勇度进行观察分析。

（六）半定量分析

脑血流灌注断层的半定量分杯是指用脑烏部区域感兴趣风某 特定区域感兴趣区作放射计数比值，用半定量分析可以帮助发现视觉难以确定的异常区域，以了解异常的程度，提高诊断的马敏度。为临凩的诊断，治疗和疗效观察提供有用的信息。而且可以为不闰病人及不同实愉室提供帄比的依据。半定量分析可用的方式方法多种多样，这主要根据病种的仆同，研究方式的不同等进行选择，常采用的有两侧比值，与小脑相比，与全脑相比等方式，无论应用哪种比较方式，均需要注意感兴趣区技术，所选的断层断面是念－致以及如何考虑技术的影响等，尽量使得到的结果具有可比性和重复性。

四，正常脑显像表现

脑血流灌注断层显像区㕱的是脑内的血流分布，吅上脑 SPECT 木身的分辨率较低，故在：解剖结构方面远弌如 CI，MR 清晰。所以在确定脑某一解剖部位的血流变化或显像图的异常放射性分布所反映的解剖部位时，应熟悉脑的向部解剖情况。找到相应的解剖标志如外侧裂，顶枕裂，额，上沟，

额下沟，距状裂等。相对于断层解剖标本或 C厂， MR 等解剖结构较为清䁀的影像，能帮助我们识别更多的结构（图8－7）。应该注意的是，下常人的两侧脑结构及放射性分布的高低应是基本对称的，而灰质似放射性分布明显高于म质和脑室区。

五，异常显像表现

（一）脑血管疾病

脑血管疾病是由各种血管源性病闪引起的脑部疾病的总称，其范闱包括厂脑动脉硬化，T1A直至完全性的中风。脑血管疾病的临床处理包括早期诊断，鉴別诊断，疗效观察，存活组织估测及预向评估等多方面，脑 SPECT 血流灌注显像在这些方面有重要的作用。

1．脑梗死 是指凧部脑组织包括神经细胞，胶质细胞和血管由于血液供给缺乏而发生的坏死。亦称缺血性卒中（stroke）或中风。其临床辅助诊断以CT，MR等形态学检査为主，由于大多数患者在 2.4 小时内 CT 上含不业密度变化。而临床上患者在脑动脉红检形成或栓塞事件发生后。在累及的动脉分布区立即发生脑的低灌注。此时由于形态学的异常收变如密度政变等尚未形成，敌（T 可无异掌发现。䎟SPECT此时在受累动脉分有区发现放射性分布减少（图8－8）。且憩示范闱大于 CT 或 MR 所见。从早期沴断的价值上看．SPECT 灌注显像优于其他非侵入吽形态学检查。除此以外，脑灌注显像在疗效观察和预后评估店和有很好的临床

价俏，如脑度中患者在忩诊应画溶检治疗的疗效观察等。在脑梗死的患者中可以见到许多CT，MR无法看到的征象。如过度灌注（luxury perfusion），在发病数日后。在梗死区周闱出现放射悭增高区。叮能是山于证常脑血管自主调＂功能堿喡，—モ红血管增生，酸中毒使神经细胞内皮细胞膜渗透性发生：变化致局部脑 IIIL流增多所致。交叉性大联㖓现象足指在病变区对侧小脑，「：脑，大脑等区域也会发现脑血流灌汗减低的现象，这种㺂低并非系小动脉闭塞缺血所致，而是和神经纤维联系中断有火，H前失联络现象的临床意义尚不清楚。需要指训的是，由于 SPECT 本身的空间分辨率不高及业像剂本身的限制，在对小的梗死灶和白质区的梗死灶方用其诊断正确率明显不如CT利MR。

图88 左修大脑中动誐埂寒图
井的现对側小脑失联终表现

2．脑出血 脑实质肉的出血称为脑出血。 $30 \% \sim 90 \%$ 的脑斗而发生在大脑半球，以大脑基底节，内囊为最常见部位。CI和MR能早期显小脑内出血的部位，范閂，数量，鉴别水肿，梗死，「解血肿溃破的定向。作为功能性㤢，依 SPECI在这方面的诊断价值不如CT或MR，但对脑出血带来削一些场能阵改变如失语等，有着 CI 和 MR不可沶代的临床价值。如左基底节风性血引起的失浯，在 Wernicke【利Broca 区可观察到与临床表现相符的低灌注表现。

3．短暂性脑缺血发作 短暂性脑缺血发作 （transient ischemic attack，TIA）是指局部脑功能知暂良失的发作，为颈幼脉或椎一基厎动脉系统血液暂时供应不足所引起，症状一般在 24 小时内缓解，可再次或反复发作，症状持续超过 24 小时而经定时间可消退考称叮逆性缺血性脑惟。由于TIA

患者在症状发作后知期内有 $10 \% / 5 \sim 35 \%$ 会发牛䐱梗死，因此，及早诊断和止确治疗足防止脑血管总外的重要措施。而在临床上多数忠者仍是靠病史进行诊断。由下 TIA多是因动脉一过性㭘塞和。或脑血管痉孪引起的神经损害，在脑组织炶构！：多无昔常改变，所以CT利MR均可能无先常出现。向 SIPCCT 脑灌注显像对于TIA的阳性凉大多在50？以上，山部位与症状发作大多相符。但 SIPECT检查需在症状发作后念快完成。在发作超过 3 个月的患者巾阳性率仅为 25% 。

4．动静脉畸形 是先不性局部脑怆管变异。在病变部位的脑动脉和静脉之间缺之毛细血管，致使动静脉直接相连，形戍短路。在脑血流灌迹亚像 1．表现为病叶问古明䖺放射性㺂低，其至缺损（图 8－9）。同时还可以显示与动静脉畸形病灶部位无关的＂彻取＂现象，用＂彻取＂现象存助于预测患者出血的可能性。

图 89 右顶听脑动静脉畸形图脑 SPF（）T 听质估顶叶低淮让衣现

5．烟雾病 又称 Moyamoya 病，是大脑两侧颈内动脉虾吸部及大脑前，中动脉进行性狭窄或闭寒，使脑实质和脑膜形成 ${ }^{\prime}$ 泛侧文循环。脑 SPECT 叶究主要用于观察受累区域的血流灌注受损情况，通常 SPECT 出示的病灶较（＂T 观察到的低密度损伤氾围大，数量多。乙酰坐胺试验可以用来了解忠者的脑血流储备，手术效果预测，预有估价等。

6．狼疮脑病 系统性红斑狼抢（systemic lu－ pus erythematosus．SLE）可以侵犯到中枢神经系统，其病理改变主要是脑部小动脉，毛细血管和小静脉的弥漫性炎性病变。可以造成小梗死或继发性：引血。H种人 75% 的 SLE 患者可有神经系统损害

回

制常有低灌注的表现，这是发作不期为始的干：要特
意的是注射时问。如发作偪超过与分钟才汗射显像剂，诊断的足䯘度会有所下降。发作斯 SPECT 的诊断正确率在 80% 以 $1:$ ，但肘十发作期较难掱挺。
懒㾋进行发作期 SPECT 矿究．俏得进－…步探讨，

（三）痴呆

行性智能堿退。㿍暞的症状以记忆障但，思维和判断力障碍，性格收变和情感障碍为常见，常见的路且 般分为三组。即单独以痴朵作为突打症状的疾
象的全身疾病。其巾常见的疾病包括 Alzhemer
个方面，首光是痴朵诊断的确立。具次是灲断﨏尔

 （3）神经心理测捡。熟悉和掌握焦表的应用有叻丁对㾿杂的矿究。病果有脑实质损憲和脑血流改变，局
型䓡果，其 r C L PF 的业像有其们同的夺点

1．Alchemer 病（ AD ）AD）量痴朵最常 见的类型。运外交献报道吅发生在 10% 以上的㐘年人。
神经纤维缠结，老年㿥及脂褐质积聚等，具惟床诊断标准有儿种。包括美国 DSM－III－R（1987）， DSM－N（1994），WHO 的 $1(10-1961992)$ 及美国
 （1989）金。自 26 拟纪 80 守代起。同外应川
断有很好的价作。大多数文献报道莫诊断的尺敏度约为 90% ，特吕吽为 $70 \%, S 1$ PCT 图像的典型表
 （图8－11）。部分患者叮呙不对妳减低，随着州程的进展累及部位相应增多。另外，根据AD 化脑䔳泣：寝像图像上的典型化规，有助丁鉴別診断 AD）＇j
尔），结合（「丁，精神定表的汗定可以使诊断的准觕性进一步提閊。

東。
脑機死和 AD 的疾采。死论在临床区或仅从明 SPECT显像I，均焳以区分打柬。很往而要詰合监床，（TI或MR 及 SPECT 的资料进行沴断
圲为脑空由质周周的额叶，Fi：脑和基底出的灌注娍低等。

（四）颅脑损伤

顺脑损伤是常见的外伤。占尒身各部位损体的

助检值的首选方法。它川以直接讯速的准确地㫫小
也们其必限吽，它对旦期和轻微的脑外伤护脑功能
出脑 SIJECT 来沙补。

1，怘吽和亚恚性脑外伤 功能性肪业像如脑

示的椙关病灶她大丁C1所示，这在病理资料得以让实，有学者收集脑外伤标木，肉服观察损伤部位以外尤并常• 仕在显微镜ド可见损伤泙住局部和远处的脑组织批存相同稆度的神经细胞损素利质烟性
\qquad
\qquad
\qquad

的缺血改变，而 SPECT 灌汸：显度多处病灶低休。反映 ك大脑皮层蒜漫吽受损的病理其㖄。基于这些原灭．脑 SPECT 可以早期叟小急性和亚急吽：脑外伤患者脑实质受损情况。同的对轻微脑外伤患者如脑震荡䇡可显小其脑实质所受损仯。脑 SPECT 的临床价值还在丁对脑外伤患考的疗效观察和预官评估。在颖脑损伤应面 SPECT 的成限性在于所显小的病灶为非特异性，不能风别是何种原因导致的吕流灌注煘低。

2．脑外仿叚综合征 脑外伤患者急性期过尾。部分患者仍会遗留各种功能性症状。如头語，头显，失眠，记忆力差等，这些统称为脑外伤に综合征，也有人称之为慢悭脑外伤，脑外伤后遗发等，大多数此类患者的 CT，MR，EFG难以发现异常病尀，而脑 SIPECT 灌注显像常可发现品个琙考个灌注异常分布区，且和原外伤受损部位大系不大。这些提小，在脑外伤后综合征的患者打仍存在滕漫性：受损的病理基破，应用脑 SPECT有助于诊断和絵別共他原因引起的头痛，如外伤愈合搬痕组织的牟脑，颅䫆骬折愈合不体等国素．同时叮以升来观察疗效。

（五）精神疾病

精神疾病是一大类精神活动异常的疾病．包括

或 MR 对大多数非嵛质性（例如脑㨨）精神疾患无特殊的价值。PET 利 SPECT 所业示的功能性改变为精神疾病患者提供厂更好的客观诊断标准。功能性脑显像技术分为两种，一种是显小胎部脑血流，代谢的脑功能影像。 另一类是利用脑对小踪剂的特殊摄取和结合米反映脑功能，如受体显像等。本节主要介绍前一种。

1．精柛分裂症 PET 和 SPECT 对精神分裂有的研究最主要的帮助就是精神活动的脑功能区解剖定位。早期研究提示额吅的局部脑血流减少。 IPET租SPECT的研究发现在精神分裂症患者的额叶的确仔在低代谢和低灌注表现，提小额叶皮层功能的减退。其他部位的异常灌注也相继被认识．如影叶，基底节等。在影叶的表现有高灌注．也有低灌注的发现。研究者近希望把临床表现和 PFT， SPEC＂「的表现联系起来。Warkentin 等曾报道一组病例．这些病例在精神状态业化时，额叶血流正常；而精神状态恢复，额叶则呈低灌注状态．提示额呋䟡精神分裂状态有关。一些激活试验，如威斯康星卡非分类试验（WCST）被用来分析比较精神分裂症：出者的反碰性，大多数试验证明，精神分裂症患者的疾病累及区（如额叶）不能被激活。

2．抑郁㘹 是情感毫碍中常见的 一种精神疾病，葆林经积极的诊治，发展严重的患者会有自杀

倾向。大多数患者的CT 和 MR 没有阳性结构改变，PET 和 SPECT 对抑郁正的研究取得了一定进展，这些研究结果发现抑郁拝患者存在着不同程度的脑血流灌注减低区。各家报道的涉及池围不念相同，大致有以下两种类型：一种是以额叶，湿呩为主的血流灌注琙低，这是最常肎的抑郁症患者的脑灌注表现；另一种是前额叶和边缘系统的血流濩注减低。脑 SPECT 和PET 泉像对于抑都症除了诊断作用以外，尚可用于与慢性疲劳综合征，艾㬎病 （acquired immunodeficiency syndromes，AIDS），痴呆，强迫症等的鉴別诊断，在疗效观察方面白前尚不能肯定。神经激活试验同样断适用于抑郁症，包括认知激活和药物介入，认知激活常用的也是 WCST，认知激活得出的结论显ぶ，抑郁症患者在 WCST 激活后显像时大脑皮层左额叶和左揭叶的低灌洋与静息时相比更为明显，面且对侧额叶也会出现低灌注表现。药物介入则用普鲁卡同等药物进行，结果提示抑郁症患者可能存在辿缘系统的功能失调。激活试验的应用提高了功能性最像对抑郁症的诊断灵敏度。

3．其他精神疾恵 如焦虑症，人们把妄想强迫症（obsessive－compulsive disorder．OCD），普通型焦虑（generalized anxiety disorder，GAI），恐慌症（panic disorder），恐㤢症（phobias）和外伤后紧张综合征（post－traumatic stress disorder，PTSD）顺类为焦虑症，PET 和 SPECT 在这一类疾病中已作了初步的研究。研究结果发现在这类患者中也存在：包括额叶，基底节，扣带回，海马等处的低灌注表现，㡺示功能性脑量像可以对精神心理活动状态的异常程度作出判断。

（六）其他

除了以上提到的脑血管疾病，瘼杂，攧病，颅脑损伤，精神疾患以外，脑血流灌注显像的应用和研究范制还十分厂泛，包括药物依赖，酒精成臆， AIDS 脑病变，脑死亡，帕金森病，Huntington病，儿童行为异常，进行性核上性瘫凂，CO 中毒后改变等，以下仅作简略介绍。

1．药物依赖和酒精成瘾 药物依赖是指对镇静剂，可卡区等精神和躯体依赖。药物依赖患者的脑灌注显像常可见灌洋缺损，多为广泛分布的小的局灶性改变。酒精成癁患者也可见脑代谢和灌洔改变，实验研究发现，酒精成瘾患者全脑葡芶糖代谢

均减少，以烽叶和顶叶较为常见。
2．AIDS 腋部病变 $30 \% \sim 40 \%$ 的 AIDS 患者有神经系统损害或合并症。 尸解发现 80 号以上的患者有神经系统病变。早期的患者多累及度层下结构，以后发展至皮层功能缺损，脑血流灌注也发现 AIDS 患者的灌注异常長从皮层卜结构向皮云发展的

3．脑死亡 对于脑死亡患者．需要淓意的是必须进行放射吽核素脑血管显影，观察领内䢵脉有否放射性亚影，然后内观察静态或断云脑血流灌注，如脑组织不显影则进一步证明脑死亡，

4．帕金森病和 Huntington 病（HD）均为锥体外系统疾病。对帕金森病米说，相对于核素血流涘注显像受体显像显得更具临床沴断和疗效评估价值，脑灌注显像的表现并不是很特异，大多数患考有皮质多种形态的灌泫减低，可伴有或不伴有基底卢灌注异常。而 Huntington 病的脑灌泽显像则在疾病早期的㫐状核部即可见有低灌注的表现，以后随抆情发展可波及至壳核。其全脑的灌汗一般不减低。

第4节 脑肿痖证像

脑肿瘤（brain tumour）自起源于顾内各组织的原发性肝瘤和由身体其他处转移至脑队的转移性肿瘤两大类，其发病率据我国流行病学楜查大约为 $3.8 \sim 9:(10$ 万•年），居全身恶性肿瘤的第 11 位。但在儿童组是仅次于由血病的第一种严重疾病，在死亡率方面， 12 岁以下儿童脑肿瘤占全身肿瘤的 12% ，居第 1 位，在成人则居第 10 位，山心脑肿瘤刏入类健康的危害。脑肿瘤的病因可能和遗传，㣌脑损伤，放射性照射，化学因素及病毒等有关。常见的脑肿瘤有胶质瘤（ 40% ），脑膜熘，垂体瘤及听神经瘤（占 40% ）和其他肿瘤（ 20% ）。脑瘤在脑内的发病部仿以大脑半球最多，其次为蝶鞍区，再下自依次为小脑，桥小脑角，脑空和脑于。脑肿痹的具体表现形式取决于肿瘤的性质，大小，生长速度和部位。早期诊断，良恶性判定，预测对治疗的反应，预后评估是治疗脑瘤的关键因系。核医学显像汥术在这方面有着很重要的作用。在20世纪 八年代中期 CT 木面世以前。 ${ }^{\text {品 }} \mathrm{ICO}$ 脑扫描曾是脑肿瘤的主要显像手段，核系灌注相，早期相利延迟

相对脑肿瘤的探查做肵了一定的贡献。在（＂I和 MR 应用于临师原，H前已很少采用。冬午以米。
定脑肿瘤中血流政变。近年束 SPECT及 PET 的

等。使人类对脑肿瘤的了解有广新的认识。以ト以务类不同脑纯像剂介绍眩肿㿇核索泉像）广茫（PF．T品像见第 6 节）。

一，普通脑显像

使脑的通透性增强，且脑肿瘤的血管床较为斗富，使水溶吽的放射性示踪剂能够进人病变部位。从而强得病变部位号放射性增问的影像。通过对灌注相，早期相利延迟相的观察。可以得到各类脑肿瘤显像的不同特点。普通脑步像对脑肿搌的探合正敏度主要和肿瘤的血供多少，肺瘤的大小及所在部位相关，且与脑肿瘤的种类和惢性积度直接相关。其品像的缺点还是非特异性，仅从图像上分析尤法 ${ }^{5}$ j其他神经系统疗病区别，不能对肿瘤的吽，质和类些作出判断。尽管 20 世纪 70 卉代中期以前，作为哖 ——种无创性的脑显像方法，曽对脑肿㑭的探查有过很大的贡献，但随着 CT 及 MR 的立出，日前已很少使用。

二，脑血流灌注显像

肿瘤的血管手亯，生に快，其壁溥而渗透性增强，白部可发生缺氧和坏死。是否可以肉为这些特点而把脑血流灌注显像剂作为研究脑肿瘤的显像剤㰷？让我们分列就常用的脑显像剂 ${ }^{\left[U_{\mathrm{m}}\right.} \mathrm{Tc}_{\mathrm{c}}-\mathrm{HM}-$

$(-)^{123}$ I－IMP

LaFrance 等报道 ${ }^{124}$ I－IMP 在脑肿瘤组织的低摄取现象：Ell 等则描述丁在県些病例中脑肿瘤组织对 ${ }^{12}$ I－IMP 的必摄取现象，但这和脑肿瘤的恶性程度并不相关：Schober 等则报道用 ${ }^{1 \text { ² I I－IMP }}$ 与 PEI ${ }^{4}$ C－L methionine 显像相比较，所有的恶性肿瘤都不摄取 ${ }^{12 s}$ l－IMP 而摄取 ${ }^{\prime}$ C l－methionine，据此推测恶吽肿瘤不摄取 ${ }^{123} \mathrm{I}-\mathrm{l} \mathrm{MP}$ 可能与脑肿瘤缺を相州的受体或代谢途径及与低灌注自关。同粎的报道见于 Hoshi 等，他们发现脑膜瘤的患者对 ${ }^{123} \mathrm{I}$

IMP 的低摄取可能和肿瘤摄取行为缺さ IMP 的结合部位有关。Moretti 等曾用星形胶质细胞培养的方法．发现正常星形细胞有完整的摄取 IMP 的能力，而脑肿癙细胞的不摄取可能与丧头 $5 G A B A$通送有关。这些结果衣明 IMP 在探测脑肿瘤う面的价值们限。

（二）$)^{9 y_{m}} \mathrm{Tc}$－IIMPAO 和 ${ }^{99^{m} \mathrm{Tc}} \mathrm{Tc}$ ECD

白＂＂Tc－HMPAO进人欧洲市场以来．Linde－ gaord 首先报道了 ${ }^{4} \mathrm{an}$ T－HMPAO 压于脑肿瘤的研究． 12 例胶质瘤的患花均经手术或沱检耻实，准备行化疗。 10 例肿瘤区正踪剂的摄取明显低于对侧，尽管其け两例胶质母细胞瘤血管造影有明昆的 lifi管增多， 1 例肿㓓太小，未见异常。另－例见肿瘤区的放射性增岁，被认为系由丁对侧有早期脑快死所致。脑摄取低下的原因河能和脑肿瘤组织周围包含了坏死，水肿的组织或肺瘤病变血管动静永短路等致示踪剂摄取减少有关。更多的文献报道了＂，Tc－HMPAO 在进行放为前后的随汸结果，表明 ${ }^{\circ} \mathrm{m} \mathrm{Tc}$－HMPAO脑显像可间接反映脑肿瘤对治疗的反应，尤其在脑转移瘤叔更为朋昆。 ${ }^{9: r} \mathrm{Tc}$－ECD用一个瞝㾑显像也大多表现为小踪剂摄收明显减少。
 D） 7 PA 种 ${ }^{\text {49：＂}} \mathrm{Tc}$ MIBI 的联合显像，发现大多数病例号放射性缺损，其缺损分别与＂•m Tc－ITPA， ${ }^{\sim 2}$ Tc MIBI 的放射性浓聚区相吻合。提が＂r．Tc ECD 能够显示脑膜瘤的形态特征和对周闱组织血流灌注的影响，结合＂MTCDTPA，，＂m Tc－MIBI显像有助于对肿瘤良恶性的判别。

三，${ }^{123}$ I－AMT 显像

梱对工其他正常脑组织，多数脑肿瘤的䖯向合成速度明显增高，因而使用 ${ }^{123} 1$ 标记的氨基酸类似物代谢显像有助于鉴别肿熘的良步性，碘 ${ }^{[123} I_{-}^{1}-\alpha-$用基哑氨酸（ ${ }^{123} \mathrm{I}-\alpha$－methyltyrosine，${ }^{125} \mathrm{I}$ AMT）作为胰腺癌，黑色素瘤的显像剂，在脑肿瘤的探查中地可起到相应的作用。在1989年，Biersack 等就报道厂 10 例脑肺瘤患者底用 ${ }^{123} \mathrm{I}-\mathrm{AMT}$ 显像的结果。其中 5 例胶质瘤和 3 例脑转移瘤均表现厂高摄取。其瘤／正常组织摄取比值为 $1.4 \sim 2.6$ 。夕一例假阴性患者为较小淋巴瘤，这种显像方法与脑 PET ＂＇C－Methionine 相比开不逊色。Guth Tougelides等用 ${ }^{123} \mathrm{I}-\mathrm{AMT}$ 代测脑肿瘤的复发， 13 例恶性脑肿
经手术证实为复发㛺不能手术间时授要波为战化
部放射性摤取增高风。而边证据业小为肺瘤复发的其他 1 例患者均九＂${ }^{\text {t }} 1$ AMT 的特殊㧐取，从这些
发应面是相当叮贵的。采能奴分症痕组织还足肿洴复发，这些临本显像资料衣明，AMT对脑肿排的治疗詶伦有其特硃的价俏。在以分胘肿
会有商㓝前楽。

四，${ }^{201} \mathrm{Tl}$ 和 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－MIBI

 bi．＂＇r＂Tc．M1BI）均是H前临沐应具较为 ${ }^{\prime}$＂泛的心肌灌注显像剂，但在多年以前。 ${ }^{\circ} \mathrm{TI}$ 就被发观足乐肿
原发性利转栘的脑脱班 1988 代，IJassan 等肖光
外已有多篇文献报道＂＂Mc．M1BI 对脑咇品的评价。＂ Tl 在肿瘤中被㧐収和滞留的机制尚必洁楚。
障的最初变化，匀部血流和转运膜的输送能为在

明，在代谢动力䒯中，代谢边程中对胰岛系的佼赖

缶棹都很相似，IHisadal 认为肿瘤摄収’＇Il表现为组枹密度和细胞存活 ノ的结合状况，甿胞密度与胶
㨨的増殖能力，凶此 ${ }^{-1} \mathrm{TI}$ 作胶质榴中的掫収程洪代仅反映肿痛的组织学等级。也反设其增殖活性。
分沙楚。但有资料衣明，MII3］在体内的分何不仅与县流有关，也和细胞的代谢理能有关。一般议
在的路嗼他位差。恶性肿癝细胞代谢旪，盛．线税休膜和细胞脱的心倍等较高，使 M1BI 容易进

的叮能旧素。
$\therefore 1 \mathrm{Tl}$ 脑屾瘤显像油口的头要表现在謪肝瘤的足位，良恶性判別，䍐吽程度的预测，确定残们或复发肿鿾的范制及预测对治打的反高等方面（洛 ： 13），Kaplan 在 1987 年比较了 9 例 B ， 1 级胶质㨸患苗的＂II 显像 ${ }^{1} \mathrm{j}$ 病理资料。发现＇II 腷显像
好。Kim管代后来作了更为深人的斫究。发现级

等过作 今类似的研究。应用37例玲组织学训：实的

\qquad ＿．
脑脊液循环课度较成人快，故影像吋柑以有所提前。

 ，＂To I）T「や，

三，临床应用

（一）交通性脑积水

交通性：脑积水一般指脑窒与永网膜卜嵱之间无
网膜下腔或脑蛛网膜颗粒，具常规的原们存－类：第一类是脑脊液收收非能障础，蚞网膜卜解计牦，
第一，类贞脑池发育下良和静脉闭寨：第 类为脑脊液分泌过多。临床1，交通性脑积水可们轮度病定，步态不稳和泉失禁一「联冰状，交进性脑积水的典
留时问达 24 小肘以 $1: ~$ ：疑状等 2 $1 \cdots 18$ 小

除缓慢。

（二）脑脊液漏

常木我愈而施行手术。修补漏口。故术前定位极为重要：脑洫液鼻漏患兴在汗射前须在双侧鼻孔」に，中下，下畀送放篮棉拭。由丁筛窦前组和额突开いお：
衣观对漏道的定位有帮助（图 816 ），濖常在影像上盾到浌道或至泣射后 3 小屿即可取出婂拭，H月井型 γ 计数器进行测重。帛漏患存测试时一般叮在： $1 \sim 2$ 小时后开始，尽号沷患者保持脑本液漏的体住，采集取侧位，开始采集甶石到溥道为山：脑冷液忛游以前位和后位显示即明。

（三）脑脊液分流术的估计及随访

行脑室一脑池分流术随访时，将放射性药物注：
延随池少像：行脑室一心脏（或腹腙）分流术。可见
\qquad
\qquad

放射性小踪剂沿导管径路到达心前「（战腹揢），宏肾或膀胱风显影歨提小教管进肠的佐证。

（四）其他

相通•洁除缓慢：

第6节 PET 脑显像

术，咠古的设想就是井于神㧒系统肿瘁间探测，经

研究力鯂的作用，为神经精神科学的发恨做扣 「在

性，受体的密度㕲分布以及神经精神药物药理作朋过程等，通过 PET可以炠繁到脑组织的步能状念

的行为和感觉变化。 PET在神经料神系统中的定朋越来越显小其在脑功能矿究巾的り ${ }^{\circ}$ 大型ノ：

一，显像原理

（ $, ~ \mathrm{~N}, ~ \mathrm{H}, ~()$ 等均是人体牛命的基本元素。 H它们所制备的放射性：核索及其标记化命物的代谢过程区映了人体牛理牛：化攻能的变化。这些放射性核素及1＂F均是短米衰期核素，适合快速动态的研宅。它们均产生浲没辐射。开发射相功成 180° 的两个 $\overline{0} 11 \mathrm{keV}$ 的光了，为PET探头所记录，确定具位置，经计算机处理可得到这些小踪剂在脑内的分伺，从而了解局部葡荷精代谢，昰代谢和脑血流筞定湎的功能状态妥化。

二，显 像 剂

适川丁 1PET脑显像的放射性核素较多。以
云去相比，化学怍质尤政变。可参与机体特定的化兴㳡程，代谢过程和信息传運过程。＂F化务种吽能 1 ：与办一个安命基体元素 11 的性：质相近。基本上可以作为椝代 H 的示踪剂。这几种放射性核素上明察用小型回旋肌速器生原。它们的半衣期朝很知，均释放正屯子。㧅外尚有部分核素川肺发生器

除了＂四旋加速器外。PFT业像的期物需要在设备完全的放化头验室也称＂热＂察（hot cull）中逃行爱杂的合成，标记及放化测定等 7作，最丘经过鉴定的小踪剂小能州于临床PETJ㖪像 神经系统的劢能 1分复杂，目 J 鼣像的放射性示踪剂也就
成，受体机神经递质，氧消耗等，常等的 I＇ET 脑监像剂如表8－亏。

表 8－5 嗄床常用的 PET 脑显像剂

功用	示踪剂
的缺㨁测定＂	（＇）
	（ ${ }^{1} 0$
	＊（ia EJ）${ }^{\text {a }}$ ，
	Kb，
的流灌沛	H（）
	－（）．
	VII

续衣

上述的常用 PET 显像剂为研究正常或病理情况下脑组织的葡萄糖代谢，氧代谢，蛋白质合成等提供了必需的先决条件。

（一）脑葡萄糖代谢

葡萄糖代谢是人脑最主要的能量来源，正常情况下人脑每分钟消耗 76 mg 葡䒨糖，为肝脏排出蒪萄糖的 70% ，脑内的葡萄糖代谢（cerebral glucose metabolism）情况可以反映脑功能的变化。葡萄糖在脑内经磷酸化变成6－磷酸葡萄糖，经酵解通路最后生成水和一，氧化碳，${ }^{18}$ F－FDG 可以通过的－脑彗液屏障进人脑内，被脑的己糖磷酸激酶磷酸化，形成 FDG－6－磷酸盐，后者不再进一步代谢，不能再通过血－脑脊液屏障，而在脑内滞留。所以住用 ${ }^{18}$ F－ FDG 进行脑显像，所得到的图像员然不是真正反映天然莆萄糖在脑代谢的全过程，但通过 FD〕G－6－磷酸盐在脑内的分布状况和含量，可以了解脑局部葡萄糖代谢状念。通过企量或半定量的方法可计算出全脑或局部的葡匋糖代谢率：

（二）氧代谢

正常人䐱每分钟消耗 40 ml 氧，约为机体从局围大气中摄入总氧量的 20% ，畗组织靠血循环供氧以维持生存，观察氧代谢的状态同样可以反映脑的能量代谢及功能。常用的氧代谢放射性药物为 ${ }^{15} \mathrm{O}_{2}$ ，应用 ${ }^{15} \mathrm{O}_{2}$ 吸人法测定脑局部氧代谢率，其方法一般有两种，一种为持续吸人 ${ }^{15} \mathrm{O}_{2}$ ，一种为短暂地吸人 ${ }^{15} \mathrm{O}_{2}$ ，并进行 PET 显像，通过定量测量可得到脑局部氧代谢率。

（三）蛋白质代谢

脑肿瘤在脑内的代谢过程除了葡萄糖利用增多外，其肿瘤细胞增殖的基础是氨基酸代谢增强，在

某些低级别的胶质瘤中，肿瘤细胞摄敢葡萄糖的能力并不强，甚至低于正常脑组织。应用 ${ }^{18}$ F－FDG PET 显像不能对其组织学行为进行解释，而氨基酸代谢的小踪剂如 ${ }^{11} \mathrm{C}$－methionine（ ${ }^{11} \mathrm{C}$－蛋氨酸）， ${ }^{11} \mathrm{C}$－tyrosine $\left({ }^{11} \mathrm{C}\right.$－酪氨酸）可以用来反映肿瘤细胞的蛋白质合成情况，显小肿瘤细胞的增殖能力。 ${ }^{11} \mathrm{C}$－methionine在胶质瘤诊断方面的应用多有报道 ${ }^{18}$ F－FDG 和 ${ }^{11}$ C－methionine 联合泉像可以更好地反映肿瘤细胞代谢与其组织学分级的关系，在治疗方案的选择，预后评价等方面有着很好的应用价值。近文献报道有 ${ }^{18}$ F－FET 者。

三，显 像 方 法

（一）患者准备

PET 显像前患者无需进行太多准备，但根据显像目的和方法的不同面需要有一定的检查程序。以 ${ }^{18}$ F－FDG 肿瘤显像为例，由于血糖的水平与畆肿瘤摄取 ${ }^{18}$ F－FDG 的量直接相关，大多数实验要求受试者禁食 $4 \sim 6$ 小时以上，检查注射前所要求的环境较脑 SPECT 显像严格，必须避光和安静，根据不同的激活试验要求进行 PET 显像时，须注意受试条件的标准化，避免干扰因素。部分定量分析的方法需要连续动脉采血及特殊设备。

（ニ）采集和处理

进行 PET 脑显像时一般要做透射扫描（trans－ mission scan），主要用于组织的衰减校正．以后再行发射扫描。弹丸注射 ${ }^{18}$ F－FDG 后，进行连续的动脉或静脉采血，用于葡萄糖代谢率的计算。PET的计算机硬件和软件与 SPECT 并无本质区别。但要求内存容量大，运算速度快，其断层影像也采用滤波反投影法，图像的重建也需要衰减校止。衰减校正十分重要，与 PET的定量测量直接相关。

（三）资料分析

PET 图像的定量分析包括了 rCBF，LCMR－ glu，局部氧代谢率，神经递质（如 ${ }^{18}$ F－L－dopa）和受体的然度测定等。每种测定的方法复杂多样化，部分尚需要连续的动脉采血，需要受试者的密切合作。以 LCMRglu 测定为例，目前其定量测定的方法有两种，一种是传统的借助于药代动力学模型的线性归一化处理，另一种是 ${ }^{18}$ F－FDG 两次注
\qquad

射法，均可计算出各部的 LCMRglu。在閣像分析中．更为常用的是半定量分析法：标化摄取比值（standardized uptake valuc，SUV）＝衰减校证后的平均感兴趣区的放射性；每克体重的放射性示踪剂的注人剂量。对于脑肿瘤常用的半定量指标有肿瘤／白质（T／WM），肿瘤／皮质（T／ （C）等多种方法，根据研究的不同日的或方法酮定。

（四）正常显像表现及生理刺激试验

1．PET 正常脑断层影像 需在安静，无其他干扰（如光，声音刺激等）的情况下完成。其图像基本与 SPECT 血流灌注图像相似，但由于PET本身的分辨率高，信号／噪声比值高，故图像的清晰度，对比度超过 SPECT 灌注影像。可以观察到更为细致的解剖结构，便于更准确地定位和临床分析．如终 8－17。

2．尘理刺激试验 正常入在静息状念下，其脑两侧的代谢活动是对称的，而在生理刺激时。相应特定的㕲关脑区的代谢会山坝变化，LCM－ Rglu 出现变化，图像上表现为局部示踪剂的摄取增高。对比生理刺激前后的脑PET显像，通过观察地 生理刺激有关的神经元细胞所在皮层内葡禁糖代谢的动态改变。而进行脑功能定位，这些生理刺激包括感觉（光，走音），运动（单侧肢体运动），精神心理（记忆，思考，分析）等。 古在1975年，Phelps 等就用：F F－FI）G 探测大脑皮层的视觉区．他们发现和闭眼相比，诤腿看简单的图像会徽活内侧枕叶（纹状皮云）。使其代谢增加；看复杂的图像，不但进一•步使以侧枕叶的代谢增加，还会使其他忧叶皮层的代谢增加。其他学者也发现单侧手运动时，对侧巾央前回及辅助运动皮质区的 ICMRglu 增加，单龶听有兴趣的敌事时对侧影时上部的代谢率增加；单纯语言刺激使左侧聟叶的葡芴糖摄取塯㐫；单纯音乐旋律刺激时，主要队隹侧颙叫的代谢率增加：洪言和乐曲闰时刺激时。则两侧频叶

和额叶的代谢率同时增高。生理刺激试验的研究表明，人类的神经心理活动在中枢有着特定的脑功能定位，完成一次正常生理活动。生往是多个功能区的协同作用，这些研究结果与经典解剖学功能区的定位基本一致。而有些则是新发现的知识。

（五）异常显像表现

1．脑血管疾病 脑缺血和妾尕的病理基础主要是影响到 rCBF ，局部氧代谢率，局部血容量和局部氧摄取分数，这些都可以通过PET的 ${ }^{17}$ O，＂F等标记的示踪剂来进行显像分析。从而对脑血管疾病进行临床评估。
（1）TIA：TIA 患者出现脑灌注压下降时，先是机体代偿性血管扩张以维持局部脑血流平衡•随着病程的进展，这种自我调节机制失调时。则逐渐增加局部氧摄取分数以维持局部舍代谢率，一旦局部镜掫取分数增加到使 rCBF 进一步下降时，则导致功能和代谢的异常。这种机制通过 PET 可以观测到，从而使 TIA 能够早期诊断，有助于及时制定有效的治疗方案。
\qquad
（2）脑梗死：与 SPECT一样．PENT能够古期准确测定脑局部血流量的变化．对判断脑缺血区的组织存活与告，病程分期，疗效评价及预后评估均有着良好的价值。 PET显像业示了卒け的病理生理演变过程，在 PET 显像中．同时也叮以观察到过度灌注，小脑失联络征等征象（图8－18）。亚用 PET 可以对卒中的机制进行探讨，当缺血时，缺

血的神经元受刺激栍放人量的谷氨酸。这种 ＂行氨酸风暴＂（glutaminergic storm）通过激活谷氨酸受休，特别是 NMDA（N－methyl－I）aspar－ tale）受体。损伤缺血的细胞和周围组织细胞。 NMDA 受体可以被许多持抗剂阴断，可以必用 PET 显示受损伤组织和进行药物阻断效应的研究。

图8－18 脑梗死患者 ${ }^{1 \times}$ F－FDG PE＇厂显像

2．脑肿瘤 ${ }^{1 ヶ} \mathrm{~F}$－FDG PET 显像在脑肿㿇的诊断和临床处理等方面有着独特价值，尤其是在肿瘤的良覀性判别，术前病理分级，病程分期，鉴别肿瘤复发或坏死，探测残留肿瘤等方囬提供有价值的信息。
（1）肿瘤的良恶性鉴别和术前病理分级：恶性肿瘤的基矿在丁其增殖较快，蛋向合成和匍萄糖的利用率明显高于其他正常组织细胞，少注昰性程度高的肿瘤细胞在这方面的行为比生长较慢的恶性程度低的肿瘤明显得多。由此可以知道，通过探查肿瘤组织的葡萄糖代谢情况和蛋白合成率可以了解肿瘤的生物学行为，为病理分级和病程分期提供帮助。按病理分级，脑胶质瘤 ${ }^{1 \times}$ F－FIJG 的擬取： $\mathrm{T} \sim$ II 级平均 FDG 的代谢率为（ 3.8 ± 1.6 ） $\mathrm{mg} / 100 \mathrm{~g}$ ； min ，而 II \simeq Ill级为 $(6.6+3.3) \mathrm{mg} / 100 \mathrm{~g} / \mathrm{min}$ 。其中III级胶质瘤的代谢率为（5．7 ± 2.7 ） $\mathrm{mg}{ }^{\prime} 100 \mathrm{~g}$ ； min ．IV 期胶质瘤则为 $(7.3 \pm 3.6) \mathrm{mg} / 100 \mathrm{~g} / \mathrm{min}$ ，可见随着正性程度的增加，肿瘤组织的葡葡糖代谢

率也任增加（图8－19）。值得注意的是，在低级別的胶质瘤中，其葡萄糖代谢率若低于正常灰质以域 （图8－20），用＂C－methionine 进行显像．有助于区分肿媹组织与灰质。＂C－methionine 与－＂AFFDG 联合显像在肿瘤分级或良恶性判别 1 ：具有良好的宐补价值。
（2）预后判断：一般说米．肿瘤摄取 ${ }^{18}$ F－FDG多，恶性程度高，预后就差，反之忠者的预厅就好。Di Chiro 等发现，肿瘤局部 ${ }^{18}$ F FDG的摄取大于周韧正常组织的 1.4 倍，患者的平均生仍期为 3 个月，而低于 1.4 倍者的半均生存时间大丁 19 个月。另有报道，将病理分级较高的患者分为两组，高代谢组的 1 代存活率为 29% ，而低代谢或正常代谢组的 1 午存活率达 78% 。由此时见，PET显像对顾后的评估很有价值。
（3）肿瘤复发与放疗，化疗后坏死的鉴别及残留肺瘤的病灶定位：临临上肿瘤复发和放疗，化疗
\qquad

叮贮在侧赖川－病朴处代谢领低

后坏死的鉴別是很重要的．PET 亚像肿瘤复发表现为 ${ }^{18}$ F－FI）G 高代谢（图8－21），阿放疗，化誩后坏死的脑组织则情小低代谢或无代谢状念。一些高度恶性的脑肿瘤 E 浸润性生长．下术往往不能岸全消除。应用PET开以发现术后残余肿痛组织表现为

引起弁常高代谢，从而为脑肿瘤术后复发提供了证据。

3．癫痫 PET少像不仅能发现患者的病灶。为需手术治疗的费者提供术前定位，而了亦的㐬用
 FIX；显像时最常见的表现是：作发作间期咸部皮

顾 FI）（摄取减少，呈低代谢状态（图822）。发作期号 ${ }^{1 k}$ F－FI）（摄取异常增高，逝常发作间期哥像的定位方敏度为 $70 \% \sim 80 \%$ ，发作期的定位灵敏度以达 901 似以心：在：某些神经外科中心，噸㾋患者代前已采用PET进行定位，用以代杵皮层脑我图。随着计算机技术的发展．PET＇j MR，（「T 的图像融合进一步进入杪沐使用，听以为更精桷地定位㢝

病病灶提供帮助。PE゙I嘭痢受体研空主雬以阿片受体机 γ－氨基 「酸受体两类较为多㺫。有作者业用 ${ }^{11}$ C carfentanil 和 ${ }^{1 \times}$ F－FI）G进行研究。结果证实结合在发作病灶同侧的颞叶新皮层的阿片受体明鼠
的神经递质 γ 氨基丁酸（ $\mathrm{G} N \mathrm{~B} 3 \mathrm{~A}$ ）的研究表明．发作㖞付，G ABA 的密度选僱性碱低。这与人们认为

GABA；苯一氮啰复合物与颣病发作相关的认识梱符合。

4．痴朵 对丁瘀梏桼说．PET脑显像的上要功用仕于絵別诊断和早期诊断。PET 星像还可以用来解释手症状相火的脑内功能区的代谢变化，病程分期和预后评伊等。引起㻢杂的最常见的疾病是 AD 和多发性脑梗死性痴某。AD 的 ${ }^{14}$ F－FDG，${ }^{10} 0$ ）图像茗表现为顶，影叶的俞敬糖撮取减少（图8 23），脑血流，脑気利扴治减低。一侧或双侧影顶叶的代谢异常，多发性脑梗死性瘚呆的葡嘲䊅代

谢，脑血流量，氧代谢减低区多呈不规则性和局灶性。从 PET图像上看两利痴朵较容易区分开来：从长期随访的结果看， $1 \sim 2$ 午的 AD 患者的典刑表现为顶题部减低，人多是双侧对称性减低。随着疾病的进展。累及的面积逐步扩大，最后额叶皮质也可以山现低代谢的表现。这些研究提示PET 可以进行早期诊断和病程分期。 AD 患者临床病：状的严重程度与葡萄糖代谢减低的程度直接相关，低代谢区域与临床表现相一致，右顶叶低代谢伴视图空间舁常。左顶影区低代谢伴语言困难等。

图 8－23 中期 AD PFFF 品像图

5．帕金森病（Parkinson＇s disease，PD）PI）是
一种发生在中老年人的中枢神经系统变性疾病，主要病变在黑质和基底节。主要的 PET 咭像剂包括多巴类昆像剂 ${ }^{18}$ F－I．－dopa，${ }^{11}$（＇dopamine 等多巴胺转运蛋白显像剂 ${ }^{1}$ C－CIT 及多巴胺能突触后－多巴胺受体路像剂＂C－NMSP 等。在早期单侧的 IPI）病人中．其生状核 ${ }^{18} \mathrm{~F}$ ．dopa 的摄取正常．但患肢对侧的壳核对 ${ }^{18}$ F－dopa 的掫取比比常人降低 35% ，而 H

及运动障碍相关。多巴胺转运蛋白（dopamine transporter，DAT）显像发现 PD 患者纹状体的摄取明显减低，较之于多巴胺受体血像，能更直接，灵敏地反映突触前多巴胺能神经元的变化信息•能更早期，及时地反映多巴胺能系统的功能变化，并有望用于 PD 胚胎脑移植治疗的监测。突触后受体亚像，对于验证临床对PD 及其他锥体外系疾病等的鉴剧诊断，治疗力案的选择，预后估计也有价值。突触前，后联合显像可以全面反映多区胺能近路的

功能。
6．其他
（1）精神分裂症：在 PET 的血流或代谢显像中．可以观察到额叶的 ${ }^{18}$ F－FDG 摄取减低，部分患者可规基底节的代谢增多，但多方报道不完全一致．取决于检查的方法，受试者的心理状态等因素。PET对精神分裂症的研究主要在于病因探讨，疗效斘价和临床药理学研究，指导用药等方面，如在分子水平上观察治疗精神分裂症的神经精神约物 （如氟哌啶醇等）的药理机制和量效关系，用以筛选药物，指导临床用约和调整药物剂量等。
（2）抑郁症：双向躁狂抑郁症的抑郁期，其案上结构的葡萄糖利用率比正常对照组降低 25% ；

轻躁狂期的䓒萄糖代谢率与正常对照组相近。抑郁症患者的脑葡萄糖降低呈弥漫性，以额叶和扣带回降低为主。单相抑郁症病人。未经约物治疗。其企脑代谢率在正常范围内，而当病情好转，情䜗恢复正常时，基底节的葡萄糖利用率反而朋显珹低。
（3）Huntington氏病（HD）：又称慢性进行性舞踩病，是基底节和大脑皮质变性的一种显性遗传疾病。 ${ }^{18}$ F－FDG PET脑显像在早期的 HI）患者中叮发现尼状核头部有明恶的低代谢表现（图8－21）。与 AD ）相比，其全脑代谢率并不减少；研究发现。尾状核葡萄糖代谢减低的程度和运动吽攧痫的程度正相关。

泈 8－24 HI PEET品像图
听界两侧基底声代谢异常低下，底脑品不
（4）AIDS 患者脑部病变：AIDS 可累及神经系统，${ }^{18}$ F－FDG PE＇T 显像早期发现 AIISS 患者的脑部代谢和灌注异常，而且在 MR 阴性，患者尚无症状时即可观察到。由于 AIDS 患者脑淋巴瘤的发病率朋盟增加。 ${ }^{14}$ F．FDG除了检查患者的脑部代谢异常外，尚可早期定位诊断脑淋巴瘤，评价具放射治疗或其他治疗的疗效。
（5）渐进性核卜性麻痹（PSP）：PSP 患者的脑显像大多表现为额叶和纹状体部的代谢明显减低。减低的程度与 PSP 患者的痴梁程度衣现相一致。与 AD 不同的是，PSA 患者的损伤主要在忠质下

以，且这种瘀呆被认为是皮质下结构到皮质的神经传导减少的缘故。

第7节 比较影像学

自1895年伦琴发现 X 线以来，X 线就「泛应用于医学影像诊断，1969年 Hounsfield 设计的 CT使医学影像诊断发生重大突破，MR的应用使神经科学的诊断达到了崭新的高度。而包括 SPECT， PET 在内的其他诊断手段，如数宁减影血管造影 （digital subtraction angiography．DSA），经顾多普

勒血流流速检测（transcranial doppler，TCD）等的发展完善了整个神经科学的影像科学。就在这些成像技术在临床上越来越厂泛应用时，各种影像技术的优缺点就显现出来了，虽然新的技术工艺的发展正在白身完善，然而仍有必要比较这些技术，作好效益分析，使临床处理病人得以充分体现循证医学 （evidence－based medicine，EBM）优化选择的价值，这方面有许多工作值得大家去做。更为重要的是，如何集中各种显像技术的优点，使之能发挥办同增效（synergistic）的效果，这也是比较影像学的内容之一。本节仅就 CT，MR 与功能性核素脑显像进行简略比较。

一，CT 的基本原理和优缺点

CT 是一种与传统 X 线检査原理不同的 X 线成像技术，它是将高度准直的 X 线束围绕靶器官作断层扫描，记录下大量信息经电子计算机处理，计算出靶器官内不同部位和深度各个点的 X 线吸收数值，用不同的灰阶表示，形成靶器官的横断层解剖结构图像。在正常组织与病变组织的 X 线吸收差别不明显时，尚可采用造影剂增强的方法，使病变部位显示清晰。CT 的优越性主要在于分辨率较好，检查速度快，对易躁动和不合作的病人较佳，可短期内重复检查，检査费用相对低廉。由于 CT的成像直接与组织的密度有关，从传统意义上说它只能探査解剖结构的改变而不能反映组织器官内功能性变化的信息。尽管目前有螺旋 CT，超快速 CT 或称电子束 CT，多排 CT 等更新换代产品的发展，使其成像速度大大加快，分辨率提高，可以对某些脏器（如心肌）反映其血流灌注的状态，但在功能研究方面，它仍然受到限制。CT 的受限在于对某些尚未出现密度改变而有功能性变化的疾病，如脑梗死早期，原发性癫痫，脑外伤后综合征等，CT 往往是阴性的。

二，MR 的基本原理和优缺点

MR 是利用人体内原子核固有的白旋转性，在外界射频场的作用下产生磁共振，在激发射频脉冲停止后，原子核逐渐恢复到原来的位置，并发射出相同频率的射频信号，引起测定线圈内的电信号发生相应变化，送至成像装置后成像。一一般来说，磁共振成像（magnetic resonance imaging）主要依赖 4

个因素：即质子密度，$T_{1}, ~ T_{2}$ ，流空效应。MR主要有以下优点：有较高的对比度和灵敏性：可多方向断层成像；无骨性伪影，可显示血管结构等。新的磁共振技术，如磁共振波谱技术（magnetic resonance spectroscopy，MRS），功能性磁共振 （functional magnetic resonance，fMR）则可更多地反映功能性改变，在此基础上，通过造影剂的创新及高磁场 MR 的开发，有望生化成像 fMRI 。广义功能性磁共振包括灌注成像，弥散成像，血氧水平依赖性成像，动脉血质子标记技术等。然而MR的缺点同样存在：高磁场会使体内带有心脏起搏器，顺磁性金属止血夹或其他置人物（假牙，金属固定板等）发生移位，造成危险，部分患者如有幽闭恐怖症则给检查带来困难，但近来随着开放支架 MR 上述缺点可望有所克服。

三，功能性脑显像的优缺点

功能性脑显像是将放射性示踪剂通过不同途径进人体内，参与体内的功能活动，用探头在体外探测示踪剂在靶器官内的分布情况，反映体内生理生化方面的变化。功能性脑显像包括 PET 及 SPECT，它们共有的缺点是光子量低，造成分辨率受限制。从表8－6 中可看出PET 与 CT，MR 相比的结果：

表 8－6 PET 与CT，MR 的特点比较

	yve	1，	紋
	！	＋	3
	〔摬》。	3	4
	！	1	\because
家變	＋	1	\because

＊取决丁疾病过程中所采用的不同药物而定

从表中可看出，功能性脑显像 PET 的局限性主要还是空间分辨率较低和费用高昂等。面功能性脑显像的一些长处如下：

（一）定量作为反映生化反应的显像

功能性脑显像和 MRS 均能够直接反映体内的生化改变过程，用这两种显像方法可以避免测量体内代谢物及药物浓度的局限性。PET 采用的放射性药物绝大多数是类似身体内源性代谢物的化合物，脑显像可以在靶器官测量病变组织的示踪剂浓

度．如可以定量地在体内不同时相自接测㱏 ${ }^{10} \mathrm{~F}$ FDG 的浓度，MRS 也能够反映条利代谢活动，从某种意义上说，MRS最适合于评价在：脑内发生的牛化反应，但 MRS的低灵敏废限制了这种发展。因此．由前米说，评价脑内的牛化反㗐，办能性脑业像是较为合适的。

（二）反映药理过程和药效学评价

在评价神经药理方面，功能吽脑显像可以从两广面来进行，一方面是在服约辰观察脑的血流或代谢改变来评价药物带来的功能性变化，另一方湎则是在神经药物上标记放射性示踪剂，观察其体内的药代动力学，应用这一类方法可以看到体内靶器宫的局部受体密度，柛经递质在受体的结合情况，受体的亲和度等。在这方面的优势是其他显像技术所无法取代的。在神经，精神药物开发庆面，小动物 MICRO PET 的动向及应用前景值得汗意。

（三）反映生理过程

人类大脑功能区的定位最早是在体外观察神经病理变化及推测劳损伤性䄪电极刺激I向进行定位的。而圲今观察局部的脑血流或代谢变化与神经元活动的炎系成为脑功能研究的重要 F段。PET 及 SPECT 充分棹示厂自身功能性脑显像的优势。然而并不仅仅是 PET 和SPECT 可反映神经元的活动，随着 MR 的发展，MR 也能观察人体的牛。理过程，如灌注及分子活动性（分子扩散）等。应用 Gd－DTPA 等 MR 造影剂，问样可以观察到视觉刺激所引起的脑血流改变，但要作为功能性品像来过行研究，很早以来，PET却是比较公认的一种力法。
（四）在神经系统疾病中与其他显像技术的比较

神经系统的疾患冬而复杂，从口前的辅助诊断技术来看，以 MR，CT 为击要手段，但 PET 及 SPECT 在某些疾病方面有着不可替代的优势。如脑血管疾病，脑肿溜复发或放射性坏死的鉴别诊断，测定脑肿㿇氧，葡蒭糖，蛋向质合成， pHI 值和受休密度是 PE＝的独有技术，而其他如 SPECT的免疻显像技术，加上预定位技术等也使脑肿瘤在。体内的生化过程得以允分反映。SPECT 利 PET 在癫病间歇期的低灌泙或低代谢的表现，发作期的高代谢和高擎注图像可以很好地显示㾸病的病灶所交：这些待往在形态学上是正常的，昍限于分辨

率，精确的定位还是要依㰆图像融合技术。癫痳间歇期与发作期显像评价局部脑血流或脑代谢已被某些矦院作为癫病术前定位的方法。但这种方法术能广泛接受的原因在于，有相当考的病例在没有深部皮考脑曰图的证实下仍不能完全提供手术所需的信息。㾰呆的诊断主要是谷床详价，需要神经病理来证实其正确性。在许多患者中，早期诊断仍然是个问题，肉此常常要借助于其他神经显像技术。（T和 MR 主要用来确定脑萎缩的存在及萎缩程度。然而这种形态学的故变往行没有多大幇助而受到限制，因为脑萎缩大多是非特异的。MR 尚可观察到某此深部门质，海马同的颞叶区鼻回，腑胝体等的变化，然而对于患者认知现能的解释，MR 则舄得有些难度，对早期的 AD 患者所来说．SPFCT 和 PET 就显得很有意义，两杉检查均显示了两侧对称或不对称的颗顶叶低灌注或低代谢的表现，尽管近期的报道说明这种改变并非 AD 患者所特有，但通过 PET 或 SPECT 把早期 AD 患者从其他正常老年人中区別开来仍是很有诊断价值的．其正确率在． 86 \％以上，而月这种低灌注或低代谢的表现有很好的预后评估价值。如联合 CI 或 MR 则渗断的正确率会更高。杂交型 CT，PET 及 MR＇PET 的出现，大概就是源于此思路。神经分子影像学的发展，也需要各科的共同协作。
(耛祥通 管一晖)

参 考 文 献

1．钱佩徍，人件解剖学，上海：：海第一医学院出版神。 1984．217～301

2．徐峰，人体断层解剖学图谱．－七京：人民只坐出版社． 1989.3

3．史上家，实用神经病学．第2版．卜痗： 1 海科学技术出版社，1994．607～627

4．马寄晓，刘秀态，实用临床核医学。北京：原子能出版社，1960．101～128
5．渭中允．临床核医学。北京：原子能出版社， 1994. 121～172

6．中华人民共和国卫生部医政可．核医学诊断与治疗规范．北京：科学出版社．1997．95～110
 1994．1～9

8．球达．放射性核素脑亚像．枕州：杭州大学出版社． 1797．5～7．120～132

9．爻观成．脑老化与老年斿呆，与海：十海科学技术又献出版社，1994．218－～255
（1．王断真，周前．核医学正：边生PET时代。周外医学放射核医学分册，1997，21（5 6）：224
11．陈盛祖．医学高能 jt 电子成像．国外医学放射核医学分册，1998．22（3）： 97
学分盘，1996；20（4）： 159
注断层显像的对比分析，中华核医学杂志，1943， 13 （2）： 75
14．未栒．关于脑受体品像剂研究中的若十问题，中华核医学杂志．1997，17（1）：8
10．管一晖．等，缺血性璃血管病脑血流 勺脑均能变化观察。中华核渎学杂志，1994．14（1）： 1
1今．管一晖，等．脑外伤分综命征的 SiPECT 亚像初步观察．中华核医学杂志．1994，14（2）：67
17．石怡珍，等．局部脑皿流断层昆像在急性脑外你忖的应用研究．中华核医学杂志．1996．16（4）：225
18．林岩松，等．中枢神经系统多也缕 D，受体显像剂 IBZM 的碘标记及结合特州分析。中华核医学杂志。 1996，16（4）： 240
14．胡半，等．精神分教痛患考休息与激活状态局部脑血流变化研究。中作核尖学杂志．1935，16《2）：1（19
2c．吴志兴，等．SPECT 脑血流灌注休总在精神分裂症思者中的应书，中华核医学杂志，1996．16．（2）： 106
21．祁吉，等．精神系统影像诊断学新进展．万进国外区药技术与设备，1998．1（3）： 37
22．赵晋华，等 jF 常人\％TM ECD 脑血流灌注体总与 Wisconsin 卡片分光试验的关系。中华核医学杂志。 1998．18（3）： 149
23．赵军，等．泣电－•发射计算机断层亚像衣脑转移拉診断中的应用．中华核医学杂志．1997，17（6）： 161
24．赵椠，等．肺胶质瘵的＇F．FDG，中国认算机成像杂志， 1997．3（1）： 52
25．贾少微，等．儿童良吽部分性癞瘚 SPEC［ 亚像特点中华核医学杂志．1998．18（3）：146
沚．中华核医学杂志．1998，18（3）： 139
27．谢瑞满，等．脑梗寨后脑功能激活的 SPECY 脑埏流泉像研究．中华核医学杂志．1998，18（1）： 45
28．赵晋华，等，抑郁症的基础与认知激活脑 SPECT 显像．中华核医学杂志，1998．18（2）：79
29．林样通，等，正电子发射计算机断㫕显像（PFI）在中枢神经系统中的应用。引进国外医药技术约设备。 1998．4（3）：18

30．周前，等，乙酰唑胺负荷试验脑 SPECI 丠像在缺血性脑的筫疾病的临床应四。中华核矤学尔靑， 1908 ，18 （1）： 7
31．陈绍完，等．C酰唑肗腹血流负何式验在缺血性脑血管疾病中的应用．尔华核医学杂志，1！98．18（1）：？ 8
用．中华核医学杂志，1998．： $8(7):$ ？ 9
33．Murray IPC．Ell PJ．Nuclear medacine in clinical dag－ nosis and Ireatment．Sceond Edition．Lendon．TK： Chure＇ill livingstone，1998． 521 56：
31．Costa IC．ot al．Now trends m muclear ncurologs and psychistry．London．UK：John Lilbes company L．td．． 1903． 113150
35．Habner KF，it al．Climical prositron emsesson tomo－ graphy．St．Lome，USA：Morby，199\％．15－2－
36．Bierwack HJ，et al．Single photorn emsenon computert tomography of brain tumior．Semin Nuck Med．！as？． －f（1）： 2
37．Tikofsky RS，et al．Brann single photon computed ：（nno－ graphy：newer activation and intervesston sudies．Semun Niucl Med，1991，1J（1）： 40
38．Alaw A．Hirschl L．Studies of central nerweus－g．tem disorders with single photun compulese somusgraphy and positron emussion photogrephy：evolution over the past－ decades Seman Vucl Med．1991．11（1）：is
39．Ceorge MS，et al．Flevated frontal cerebral blood fluw in Gilles de la tourette syndrone：a ${ }^{\cdots}$ Te HMP．VO SPECCT study．Psychatry research．1992． $1 \overline{\mathrm{~L}}(3)$ ： $1 \div 3$
46．Launce J ，et al．Nu．Tc－HMPAOSPEC＇T in sumpersel de－ menula．Nuel Med Commur，1991．12（1）： $2 \overline{2} 7$
41．Mars M．et al．Regional cerebral blood flow it unpopuiar depression measured with＂${ }^{\text {m }}$ Tc－HMPAO single photun computed tomography；negative findings．Peychatry Research，1993．50（2）： 77
42．Colamassi P ，et al．Brain single photon computed tomio graphy with ${ }^{* m}$ Tc－HMPAO in ne．uropsychatric systemic lupus cryihematosus：relations with EEC and MRI find－ ings and elinical manifestatons．Fur J Nuet Mecl． 1995. 22（1）： 17
13．Zilko UA．et al．Brain mapping of medien nerve somato－ sensory evoked potentials with combined $\geqslant \mathrm{Tc}-\mathrm{ECD}$ SPECT and MRI．Eur J Nucl Med，1996．23：Ј）： $5 . \mathrm{S}_{4}$
4．Claus JJ，et al．Ascessment of cerebral perfuxion with single photon computed tomography in normal subject： and in patents with Alzheimer＇s disease：effects of re－ gional of interest selection．Eur \int Nucl Med．1994．2i
（10）：1044
4․ Brouch K，ei al．Evidence of＂regional hyperemia＂ir pa tients with closed head irjury using SPEC‥ I Nucl Med．1991；32：1022
46．Seitz JI）et al．SPECT brain firdings in patients with chrome vesicular dysfunction．J Nuel Mod 1gibl，32； 10.5

17．Robert W，Burt．et al．Carotid artery discase：evalua tion with aretazolamide enhaticed＂．．Tc－HMPAO SPECT：Radiology，1992，182： 161

48．James M，Mountz，et al．Prognostication of recovery following stroke using the comparison of $\mathrm{C} \mathrm{Cl}^{\circ}$ and 1 echne tum－99m HMPAO SPECT，J Nucl Med．1990，31： 61

49．Holman BJ．et al．The scontigraphe appearance of Alzheimer＇s disease：a prospective study using＊－T_{e} HMPAO SPECT．J Nucl Med，1992．32： 181
50．Clause JJ，et all．The diagnostic value of SPECT with دe Te HMPAO in Alzheimer＇s cisease：a population based study．Veurology，199．4，14（3）： 454

第9章 消 化 系 统

消化系统的放射性核素检查是将放射性核素标记在某种药物或化合物上，经山服或静脉注射的；$;$式到达所需观察的消化器官，来显示该脏器利形态及功能。

第1节 食管，胃肠道业像

一，解剖及生理基础

食管从第 6 颈椎水平的环状软骨和㖞部开始。向下经过后纵隔到达食管－胃连接处，全长 25 cm 。分为颈，胸，腹三段。从功能上食管分为三个部分，即上食管括约肌，食管体部及下食管括约肌。静态时，食管主要起拚障和保护作用：吞咽时，上食管括约肌松驰，食团从还湍向远端依靠重力或蝡动作用，使食团顺利通过。

胃位于上腹郭横膈下，呈＂J＂形。它有两个口，上接食管的为贲门，下接十一批肠梂鄗的称幽门。贵门固定于横膈，无括约肌结构，纤门有很发达的环肌䚲成的括约肌。胃大体分为胃底，胃体及胃窦＂部分，它的功能是储存食物及砢磨。混合形成食糜，并将食糜推述至卜二指肠。文配亩体的迷走神经主要刺激岸酸分泌，而支配胃卖的迷走神经主要刺激胃运动。

肠分小肠，大肠。小肠从哅门到画㝙瓣，平均长 600 cm ，包括十二指肠，空肠，回肠。近 2.5 的小肠为空肠．远 $3 ; 5$ 的小肠为回肠。小肠分组的体表定位是按 X 线解剖学 Cole 氏法将小肠分为 6 组，十二指肠为第了组：左上腹部小肠（近段空肠）为第 2 组；左下腹部小肠（远段空肠）为第 3 组：中㖟部小肠（近段回肠）为第 4 组：布下腹部小肠（山段回肠）为第 5 组：盆腔部小肠（远段回肠）为第 6 组。小肠的主要功能是吸收告养物质，近段吸收脂肪酸，只油一酯，部分单糖，维生素，中段吸收大部分氨基酸，远段吸收胆酸和 VitB_{12} ，大部分营养物质乍小肠的上 1.3 至 $2: 3$ 即吸收灾毕。大肠包括目脉，什结肠，横结旸，降结肠，乙状结肠和南肠，

全长约 150 cm 。育肠位与盆詝内，自育肠至肝曲为升纱肠，长约 $15 \sim 20 \mathrm{~cm}$ 。升结肠在肝右叶下向志向下弯时成肝曲。横结肠从肝曲横讨腹腔至左侧脾下枚处弯璉成脾曲，横结肠全长约 15 cm 。其背侧右厷肾，十二指肠的第＿設和胰头。降结肠起日脾
其背侧为左监，C状结肠的长度变异很大，般平均长约 40 cm 。直肠长约 $43 \sim 50 \mathrm{~cm}$ 。ト踹与目问了相接。结肠的亡要功能是宇成对水分的吸收和推移粪便的排出。大肠的血供来白肠系膜动脉。

二，食管，胃，肠道运动功能显像

胃肠运动功能垶碍性疾病在临成上十分常见。而常规的内窥镜利 X 线影像诊断无法定量测定其运动功能。核絭显像方法利用放射性核素（radio－ nuclide）的示踪特点米动态观察其形态及定量测定其功能。

（一）原理

将放射性核䒺标记的药物混匀在普通的食物内，经口服到达食管，胃，肠道，由十放射性核素在食管，崫，肠道内的运动过程与食物的运动过程完尒一致。在体外用 γ 照相机作连续动态照相，可获得该脏器的动态功能图像，并经计算机处理获得食管，胃，肠道运动功能的定量指标。

（二）显像剂

凡用一个测定胃肠道通过时间的放射性：药物（ra－ diopharmaceutical），必须具备以下条件：工容易制备：（2）化学性能稳定。在整个检查过程中保持原有状态不变：（3）不被食管，胃肠道粘膜吸收，常用

 （＂Thetrichelene tetraminc polysiyrene resin．

 pentetate，${ }^{111} \mathrm{In}$－ITPA），
（三）显像方法
1．食管通过时间 用放射吽核素的 广法，测

定食物从食管上段到下段的通过所需时间及测㱏不同时问内食物在食筫内的雨过日分溸，为食管通过时间（esophageal transit time，E＇TT）。
（1）万法：被检者需空腹 4 小时以 L．显像时取立位，面们 γ 照相机，视野上界为口咽部，下界为胃底部。检查时倔被检者将 35 ml 含 11.1 MBq （30C $\mu \mathrm{Ci})^{\text {s4n }} \mathrm{T} c-\mathrm{SC}$ 的水用吸管吸入口中，并作 $-\cdots$ 次快速吞网，吞网河时启动湖计算机控制的 γ 照相机进行连续照相。照相完毕，经计算机用感只趣区 （region of interest．ROI）的方法，勾再出食智轮廟，获得每一帧食管感兴趣区的放射性计数。从时间－放射性曲线巾分別获取下列 3 项指标：（1）食管

进过总时间：（2）食管分段通过时问：（3）分钟食管通边百分率。
（2）影像分析：
1）区常显像：清淅显示口，咽和整个食管图像，食管通过的 3 项指标的正常参考值（北京协和医院， 38 例）分别为：（1）食管通过总时间（TETT）： （6．48：1．31）秒，反映食物从食管」端到达下端所需的时间：（2）食管分段通过时间（RTT）：将食管分为 1 ，中，下二段，分别计算出各段通过时间•上段（ 3.37 ± 0.62 ）秒，中段（ 4.16 ± 0.34 ）秒，下段 （5． 44 ± 0.54 ）秒；（3）了分钟食管通过百分率： 97.65 分二 0.11% ，反映食管清除功能（终9－1）。

图 9－1 食管通过正常显像图
a．食管相：b．食管通过总沘间：c．5斿钟通过白分索

2）异常显像：食物在食管内的通过时问朋显延长，可见放射性滞留在扩张的食管部位，食管通过互分率明显减低，如真门失弛缓症者，可见放射

性滞留六：食管中，下段，通过时间＞53秒，通过

百分率く50\％（图9－2）。
2．莦一食管返流的则定 口服含放射性核素的饮料，利用其在胃内存留期问腹部给不同压力。前用 γ 照相机在体外作连续照相，观察食管 下゙段有无

图92 令管通过异常显像图

放射性出现．并定量计算其返流值，为胃一食管返流（gastroesophageal reflux，（GER）。
（1）方法：被检者空腹 12 小时，检查时先将 300 ml 酸性饮料（ ${ }^{[8 \mathrm{~mm}} \mathrm{Tc}$－SC 11.1 MBq 泿匀于 150 ml 0． 1 N HCl 中，并与 150 ml 橘子汁混匀）在 5 分钟内饮完， 15 分钟后照相，先取立位，观察食管下段有无放射性出现，然后令被检者仰卧于 γ 照相机探头下，视野上界为食管上端，下界为胃底部，在上腹部胃的部位缚以带压力装置的腹带，并给不同压力 $(0, ~ 20, ~ 40, ~ 60, ~ 80, ~ 100, ~ 0 \mathrm{mmHg})$ ，每改变一次压力照 1 帧，共 7 帧，以观察胃一食管连接处有无放射性出现，同时用计算机按感兴趣区方法将胃及食管轮廊勾画出来，按下列公式计算其返流指数 （GER index）。

$$
\text { GER index }=\frac{E_{1}-E_{B}}{G_{0}}
$$

式中：$G_{0} 0$ 压力时，全胃内放射性计数；

E_{1} 不同压力时，食管内放射性计数： E_{B} 食管周围的本底数。
（2）影像分析：
1）正常显像：腹部给不同压力时，图像上均清晰显示胃的形状，放射性食物全部存留在胃内。而食管部位无放射性出现，GER index $<4 \%$（图9－ 3a）。

2）异常显像：当腹部不给压力时，在食管下段即出现放射性，并随压力增加而增多，（图9－ $3 \mathrm{~b})$ GER index $11.7 \% \pm 1.8 \%$ 。按返流性质可分为白发返流及诱发返流二种，（1）自发返流：腹部压力为 0 时，食管下段即出现放射性，或病人从立位到卧位时，食管下段即出现放射性为自发返流；诱发返流：腹部圧力为 0 时，食管下段无放射性出现，当压力增加时，食管下段的放射性随压力增加而增多。

图 9－3 胃，食管返流显像图 a．正常显像，b．异常显像

3．胃排空时间（gastic emptying time，GET）的测定 胃粘膜柱状上皮细胞有摄取高铸酸盐 ${ }^{(989}$ $\mathrm{TcO}_{4}{ }^{-}$）的能力，从理论上说胃粘膜的病变可以从放射性稀疏或缺损米判定，但胃粘膜上皮细胞又有分泌 ${ }^{99 \mathrm{~mm}} \mathrm{TcO}_{4}{ }^{-}$的功能，因此胃内放射性的分布受到很大干扰，无法准确判断。常用的核素方法是测定固体或液体食物在胃内的排空时间米反映其运动功能。

放射性核索方法能够定量测定胃排空是基于计数率与容量一致的原理。由于将放射性核素标记的药物与标准食物均匀混合后食人，它在胃内的运动过程与普通食物的运动过程完全一致，因此从体外用 γ 照相机所测得的放射性计数率的变化，可以用来准确反映胃内食物容量的变化，能真实反映胃的正常或异常运动功能，已被国际公认为测定胃运动

功能的金标准。
固体食物与液体食物在胃内的排空机制不同。固体食物排空与胃突部研磨，收缩排出有关，而液体食物排空与胃近端及十二指肠部的压力梯度有关。故检查方法可分为固体，液体，双核素固体，液体食物排空时间的测定。
（1）固体食物胃排空时间的测定：
1）试餐：常用的有两种，一种为鸡蛋，面包，三明治，将 $11 . \mathrm{IMBq}(300 \mu \mathrm{Ci})$ 的 ${ }^{99 \mathrm{~m}} \mathrm{Te}-\mathrm{SC}$ 注人鸡蛋黄中，待 2 分钟后打碎搅匀，并煎成鸡蛋阱，通过与鸡蛋的混合加热，使 ${ }^{99 m} \mathrm{Tc}-\mathrm{SC}$ 牢固地固定在食物上，夹人两片主食面包中；另一种为将 11.1 MBq （ $300 \mu \mathrm{Ci})^{99 \mathrm{~mm}} \mathrm{Tc}$－TETA 树脂混匀子 300 克的麦片粥内。要求试餐食物的总热卡在 500 千卡左左。

2）方法：检查当日要求被检者空腹 12 小时．

检查时将准备好的试餐在 5 分饤内全部吃完，从进食开始计时，第 1 小时每隔 15 分钟照 1 帧，此后每 30 分钟 1 帧，共采集 $2 \sim 2.5$ 小时。照相时病人仰卧于 γ 照相机探头下，视野包括全胃。如采用双探头照相机，可前，后位同时采集，计算时取几何均值。单探头照相机则采用左前斜位，若采用听纯前位，当食物由靠后的胃低往靠前的胃窦推移时。前位采集的计数会出现一个增加的猳象。照相完

毕，经计算机处理获得胃区的时间一放射性曲线。计算出食物在胃内排出 50% 所需的时问，即胃半排空时间（gastric emptying time，（GET $1 / 2$ ），延迟相时间及 2 小时胃内存留率等定量指标。

3）正常显像：当固体食物进人胃后，首先分布于近端胃， $15 \sim 45$ 分钟后 A^{-}完全填充胃窦，显示完整的肖轮廓，食物自 $30 \sim 45$ 分钟以后以较稳定的速度排岀， 2 小时胃内食物应大部分排摍（图 9－4a）。

a．正常刮体食物胃排空图：b．止常固体岸排空曲线各劝能相的划分

正常胃排空曲线呈乙状（图9－4b），包括一个起始的延迟相（或称不稳定排空相），主要反映远端胃将食物颗粒研磨以通过幽门所需的时问，正常值范围为（57．3土8．7）分钟。稳定排空速率是指岗内研磨好的食物以稳定速率向十二指肠传送的时间，正常值范围为（ $0.859 \% \pm 0.108 \%$ ）分钟。 2 小时胃

内存留率为 $30.8 \% \pm 7.3 \%$ 。圈半排空时间为 （ 60.4 ± 16.2 ）分钟。

胃排空值与食物成分，热卡有关，凷此试餐的配制一定要按标准㩏卡及戊分配制，并建认白已的证常值。由于它可受许多生理因素的影响，如年龄，性別，月经周期等，敌分析时要作考虑。

1）异常显像：糖氺病胃轻痽患者可表现为屿半排空异常相及 2 小时岌内存留率的朋显增加，稳定排空速率减低。功能性消化不良及食筞癌手术前后的各项指标均有异常改变。甲状腺功能亢进和十一指肠溃疡的患者，可见胃排空加快。
（2）液体食物胃排空时间的测定：用于进固体食物有困难的恵者，或临床需要了解液体胃排空力能者。

1）试饏：将 ${ }^{\mu_{m}} \mathrm{~T} \cdot \mathrm{c}$ DTPA 或 ${ }^{11} \ln \cdot$ DTPA 11.1 $\mathrm{MBq}(300 \mu \mathrm{Ci})$ 加人 150 ml 普通饮水中并搅领，

2）房法：检査当日要求空腹 + 小时以上，检雲时将液体试警于 2 分钟内饮完，䒬立即仰卧于 γ照相机探头下，视野包括全胃，照相庍法及排空率的计算同固体食物。

3）正常值：国内尚无正常值，国外让常参考值为（ 12 士． 3 ）分钟。
（3）双核素固体，液体食物排空时间的测定：将两种不同能量的放射性核素标记药物分别加人居体及液体食物中，口服后按㤥素的不同能里在体外用 γ 照相机连续照相，在胃区分別获得固，液体食物的排空相。这样可以同时了解胃对固体，液体食物的排空功能

1）试餐：「问固，液体试餐的食物成分及标记方法。

2）方法：检査当以空腹 12 小时，让病人将 \％ Tc － SC 标记的固体食物吃完后立即照 1 顿液固体食物像，随即将 ${ }^{11]}$ In－DTPA 标记的液体食物饮下，立即按 ${ }^{111} \mathrm{In}$ 条件照液体食物象，然后刋隔 15 分钟各照 1 帧固体食物及液体食物像，连续 2 小时。照相完毕，由计算机按 ROI 方法分别获得固，液体食物㟔排空显像图及排空曲线。

3）正常值：目前尚无国内正常值，因 ${ }^{111} \mathrm{In}$ 系加速器生产，价格昂贵，不易普及，今怎可改用 ${ }^{113 \mathrm{~m}} \mathrm{In}$ 。国外正常参考值：液体胃半排空时间（有：固体食物仔在条件卜）为 $30 \sim 45$ 分钟，固体胃半排空时间（在液体食物存在条件下）为 $60 \sim 110$ 分钟。

4．小肠通过吋间 用放射性核素法测定食物从十一指肠到育肠出通过时问，来了解小肠的运动功能。

食物在小肠内的运动方式并非＂弹丸＂式推进，而是洂散，陆续通过，囚此给计算小肠通过时问带来一定的困难，它不能像食管，胃一样能直接

测毒，而是喿用放射怆：核素标记的食物离开胃到结肠填允的时间来间接计算。
（1）原理：利用放射性核素在胃肠道内的运动过程与食物运动过程一致的特点，在体外用 γ 照相机作连续照相，观察食物到达胃，各组小肠和结肠的情况。并用 ROI 应法计算出小肠道过时间 （small bowel transit time，SBTT）。
（2）放射性约物：常用的有 ${ }^{* m}$ Tc－DTPA和 ＂：m $\mathrm{Tc}-\mathrm{SC}$ 。
（3）试食食物：出于食物进人小肠后，在肠的运动作用下将食物泥合成均一的食糜，时此小肠通过吋间不需区分固体或液体食物。目前考数学者采
 $\mathrm{Mbq}(500 \mu \mathrm{Ci})$ 直按注 人偶蛋黄中，2分钟后打的。用少量食油煎成鸡疍饼，或将＂mm $\mathrm{Tc} \mathrm{SC}^{4}$ 直接混诗于七豆泥中，与香肠，面包等一•起摄入，食物总热卡要求在 $300 \sim 500$ 千卡。食物配制要求㛶水化合物 50% ，蛋H质 30% ，脂牥 20% 左有。
（4）最像方法：检查者需空腹：2 小时，次川晨8时将准备好的试餐在5分钟内吃完，进食完毕后立即行 γ 照相，视野包括全腹部，探头尽量贴近身体表面。从进食开始计时作连续照相，第1 分时每 15 分钟 1 帧，第 $2 \sim 4$ 小时每 30 分钟 1 帧．第 4小时后每小时 1 帧，直至 80% 的食物进人络肠。照相间隔期间病人可自由活动， 4 小时后可进普通饮食，每次照相时病人与探头的距离保持一致。采集完毕将全部资料存人计算机内。

小肠通过时间的计算可采用下列二种方法：
1）反卷积分析法：将存人计算机内的全部图像调出后，用 ROI 方法在岸及结肠部位各国一个 ROI，企小肠区出西一个 ROI 作参考，然后按计算机程序分别画出胃排空及结肠填充的时间－放射性曲线，将胃排空及结肠填充曲线经多项式回归为小肠输人及结肠输入曲线，曲线平滑庐得到小肠通过时问＂潧＂（图9－5），并按如下反卷积公式计算出小肠通过时间：

$$
h(t)=r(t) \cdot c(t)
$$

式中：$r(t)$ 为结肠填充时间：
$h(t)$ 为小杨通过时间；
$e(t)$ 为岸排空时问；
－代表反卷积（半切尔雪夫变换进行运算）。北京协和医院的正常参考值为（4．1＝0．7）小时。

2）平均小肠通过时间测定法：小肠通过时间依赖于胃排空及结肠填充，而且 $50 \% / \%$ 的结肠填充与小肠通过时间密切相 $\mathrm{K}(\mathrm{r}=0.87)$ ，因此采用 50% 结肠填充时间 50% 胃排空时间为平均小肠通过时间。将存入计算机内的全部图像调怀后，用

图 9－5 小肠通过时间谱
（5）正常显像：进试餐食物铭显示岗的形态。 15 分钟后第 $1 \sim 2$ 组小肠开始显影：60～90分钟时食物到达第 $2 \sim 3$ 组小肠； 2 小时到达第 $4 \sim 5$ 组小肠；在第 6 组小肠渟留的时间不等，为 $180 \sim 300$分钟；进人问盲部的时间约在第 $320 \sim 400$ 分钟：待 80% 的食物到达结肠需 8 小时左右。
（6）异常沗像：现于各种疾病引起的小肠运功功能异常，如运动加快见于肠易激综合征的腹泻型。小肠假性梗阻时可见扩张的肠晢，通过时间明显延长。一例胰源性腹治患者，每日水样便 $6 \sim 7$

ROI 方法在胃及结肠部位各画－－个 ROl ，按计算机程序计算出不同时间内胃排空的百分率与结肠填允时间的百分率，然后按 50% 结肠填充时间减 50% 崮排空时间得到平均小肠通过时间（图 9－6）。北京协和医院的正常参考值为（4．2土0．5）小时。

图 9－6 平均小肠通过时间图
次，核素的小肠通过时间明显加快，进食 30 分钟后部分食物已达升，横，降结肠及直肠，病人立即排便，随着食物在胃内的排空．又迅速通过小肠，结肠，出现排便次数增多（图9－7）。一例小肠假性梗阻患者，因腹胀，呕吐 1.5 年诊断为小肠假性梗阻，核素的小肠通过时间明显延长，亣见多处肠段护张（图9－8）。一例直肠癌术后患者，近半年来不能向主排便，各项检查未发现肿瘤复发征象，核素显像小胃排空，小肠通过时间正常，白 3.5 小时起食物停留在横结肠中段，持续至 10.5 小时未见通

终 97 废湶性腹洔者小肠通过异常显像图 a．进食 n 分种食物在胃及各纸小肳；b． 30 分钟部分食物已达升，横，降炶肠及直肠，病人 v 即排便一次； c． 120 分㪿食物仪在岌，结物改自肠

过，经进食及活动后至 22.5 小时，食物顺利通过
横，降结肠，表明症状系由结肠疼爭而非机械性梗

阻引起（图9－9）。

图9－8 小肠假性梗阻异常品像图
a．迭食后胃至即显影，并㓠扩张之十二指肠：1．2．5小时食物在？，3，4组小肠，并见扩张之肠管：
c． 11 小时结肠填允仅 27 「行

图 9－9 直肠癘术丘胃肠通过品像图
 d．22． 3 小狺，食物通过横结肠，卡见物等狭管及扩张

5．结肠通过时间 测定结肠通过时间。日前尚末找到理想的方法，国外有人报道用不透 X 线标志物到达结肠不同节段的时间来测定其通过时间，由于标志物为非生理物质，［向且通过时间与标志物的大小有关，故被认为不够理想。1986年 Kevsky 等人应用放射性核素方法测定结肠运动功能，被认为是合乎生理并且可以定者测定其通过值的方法。
（1）原理：利用特制的放射性核素标记物 （ ${ }^{111} \mathrm{In}$－树脂小丸）山服后，到达回育部时才释放怀放射性核素，在体外用 γ 照相机作连续照相，观察放射性核素在结肠内的通过情况，并企量测定结肠通过时间（colon transit time，CTT）。
（2）方法：放射性药物为 ${ }^{1.1} \mathrm{In}$ 树脂一甲基丙烯酸小胶丸．将 $1.85 \mathrm{MBq}(50 \mu \mathrm{Ci})$ 的 ${ }^{[11} \mathrm{In}$ 标记在树

脂小丸上，装入 2 cm 长的医用胶囊．外裹两云甲基丙烯酸。
（3）显像方法：受检者需空腹 12 小时，次晨可时口服制备好的 ${ }^{111} \mathrm{In}$－树脂－甲基丙烯酸胶丸。8时 30 分开始行 γ 照相，视野包括全腹部。从结肠开始显影时计时（ 0 时）评连续照相，于 3 分钟， 1 ， 3，6，9，19，24小时各照 1 帧。由于川基丙烯酸的 pH 为 $7.2 \sim 7.4$ ，相当于回肓部的 pH 值．此吋 ${ }^{1: 1} \operatorname{In}$ 从胶囊中释放出来。即可观察放射性通这结肠各段的时间。
（4）通过吋间的分析方法：包括下列三种； （1）直接观察：按解剖定位将结肠汃为 6 区（图9－ 10），直接观察放射性到达结肠各节段的通过相及时间；（3）按结肠 6 个ROI 讣算出各段的时间－放射性曲线，算出通过时间。正常人 48 小时约
70.7% 工 9.1% 从结扬清除：（3）儿何中心法（geo－ metric center，GC）计算其通过值：若 48 小时 GC值く4．1，说明结肠通过时问已明出延长，勿需㒳照相： $4.1<\mathrm{GC}<6.4$ ，则需在 72 小时冉照相。以除外功能性排出道阻塞，正常情况下． 72 小时 GC值＞6．4。

图9．10 结肠解剖定位分区终
 5．䏲结肠；6．乙状结肠，1才肠

（四）比较影像学

核素显像与其他影像诊断方法比较县有安全，无创，合平生理功能的特点。由于放射性核素礿记物混匀于普通食物内，口服后放射性核素在胃肠道内的运动过程与食物的运动过程是同步的，可利用放射性小踪特点，在体外用 γ 照相机作连续照相。可获得该脏器内放射性计数的变化，定量测定其运动功能，如食筜通过吋间，胃一食管返流，胃渄空

及小肠，结肠通过时间，较 X 线钡剂造影合乎生理，因行餐为非生理物质，它在胃肠道内的通过时间较正常生理运动为快，但它观察胃肠道的形态较核素法清晰。有人报道，用不透光 X 线钡条作肠道通过时间测定，一方面由于钦条为非生理物质。它在胃内的排出速度与食物不同步，而目与铞条大小有关，难以准确判断其运动功能。因此．核系法已被公认为测定胃肠运动功能的理想方法。

三，胃粘朠异位显像

梅克尔憩室（Meckel＇s diverticulum）是小儿胃肠道出近最常见的原因之一，病因是胃粘膜在小肠的异位，多发于回肠。 3,4 的病人伴随其他症状，如炎症，梗阻，肠套叠或肠穿孔等。发牛出血的原因是由于慗室内有岸壁细胞分泌酸性液造成肠道消化性溃疡所致，但其临床症状往往为非特异性。因此选择一种能定性，定位的诊断办法十分重要，核素业像可协助诊断。

（一）原理

胃粘膜细胞具有摄取和排泌 ${ }^{n a_{m}} \mathrm{TcO} \mathrm{O}_{1}$ 的功能。而正常的肠粘膜细胞不摄取 ${ }^{4 \varphi_{\mathrm{m}}} \mathrm{TCO}_{+}{ }^{-}$，当胃粘膜细胞异位十小肠，在静脉注射 ${ }^{3=\mathrm{m}} \mathrm{TcO}$ ，后，该部位即出现放射性浓聚区，以达到定位，定性诊断作用。

（二）放射性药物

 $300 \mu(\mathrm{i}) / \mathrm{kg}$ 体重。

图9－11 梅克本总室阳性显像图
 b． 2 小幅，放射吽浓聚风位崖不変，手术示 Meckel＇s 魏室

（三）显像方法

病人仰卧于 γ 照相机探头下，视野包括全腹部，上界为剑突，下界为耻骨联合，当静脉注射放射性药物店立即照相，每 10 分钟 1 帧，直至 2 小时。

（四）正常显像

仅显示胃区放射性增加，从十二指肠到结肠区均接㳋本底，膀胱内有放射性浓集。

（五）异常显像

除胃区有放射性外，全腹部减低区内可见一个固定位置的放射性增高区（图9．11）。假阳性可见于肠套叠或泌尿道梗阻时出现的放射性增高区。因此，近年来有人建议病人有活动性出血时，先用放射性核素法探测出血部位，待出血阴性时再查找异位胃粘膜，以进一步明确诊断。

四，骨肠道出血部位显像

急性胃肠道出係的准确定位目前喬无理想方法，而胃肠出血的成功处理在于出血位置的准确定位。病史和临床表现往往引起对出血位置的错误判断。内窥镜和选择性动脉造影对大多数消化道出血病人可提供准确的诊断。但在小肠，结肠和占肠部位出血时就有困难，尤其是下消化道出血常呈间歇性，静脉出血不易检出。胃肠道出血显像（gastro intestinal tract bleeding imaging）利用放射性核素标记在红细胞上，经静脉注射后随血循环到达出血部位，使该处呈现放射性浓集而得以诊断。

（一）原理

静脉注入锠［ $\left.{ }^{94 m} \mathrm{Tc}\right]$ 红细胞（ ${ }^{94 m} \mathrm{Tc}$－RBC）后。随血循环到达出血部位并逸出血管外。随出血速率在出血部位形成一个放射性浓集区。一般在静脉注射
渐稀释，放射性逐渐下降，而出血部位的放射性逐渐增高，形成一个明显的对比，从而达到定位诊断的目的。

（二）显像剂

${ }^{3} \mathrm{Pm} \mathrm{Ic}-\mathrm{RBC}$ 的标记方法有体外标记法和体内标记法两种。体内标记法虽简单．但标证率低，影响络果判断；体外标记法的标记率可高达 98.8° ；二 1.2% ，体内稳定性好，利于连续观察。

（三）显像方法

受检者无需特殊准备，应停用止血药。检查时仰卧于 γ 照相机探头下，视野包括全腹部．静脉注入 ${ }^{4 \pi m} T \mathrm{c}-\mathrm{RBC} 555 \mathrm{MBq}(15 \mathrm{mCi})$ 庙立即行连续动态显像，每 5 分钟 1 帧至 20 分钟。20分钟后每 10分钟1帧至 60 分钟。 1 小时辰末观察到出血部位。则每隔 $1 \sim 2$ 小时 1 帧至 8 小时，并增加各体位。观察有无出血灶，如仍未观察到，则 24 小时再照 1 帧．以明确胃肠道内有无出血。

（四）正常显像

静脉注人 ${ }^{99 m} \mathrm{Ic}-\mathrm{RBC}$ 后连续照相。全腹部未见异常放射性浓集区，放射性只分布在大血管，脾脏等含血丰富的器宫。
（五）异常显像

图912 急性消化道出血显像图

急性胃肠道出血时，静脉注人＂${ }^{\prime \prime n}$ Tc RBC 后，在出血部位立即有放射性纪现。并随时昌增加们增商，出血等大时随肠䗡动而下移，可见肠型（图 9 － 12），在慢性问歇性出血时，需采用连续多次照相法发现川血部位。但作中血量低或悛性渗血时，可造成定位不准。原因是少量间歇性出血时，荧光展十不易看H：待出血积累到一定放射性强度时已随肠内容物向远端赫动，此外还要与肠系膜静脉曲张，动静脉瘘区别。

第2节 肝 亚 像

核素肝显像（liver imaging）是按照肝脏的生理特点用不同的放射性药物进行肝功能显像，如朋胶体显像（肝单核－㤁䇾细胞昆像），肝向流血池显像，肝癌阳性显像，肝放射免疫显像。按显像方式又可分为肝平面显像和肝断㱑业像。

一，解剖与生理基础

肝是人体最大的器宫，重约 $1200 \sim 1500$ 克，呈㯢型，分为前，茼，左，有及上，下六个洦。其脏面有两个纵沟和一个横沟，呈 H 型，左纵沟前部为肝图韧带，否部为静脉韧带，右纵沟前部为胆㐮窝，后部为腔静脉窝，横沟位于左，不纵沟己问，有肝管，门静永和肝动脉的分支，称肝门。肝分半部膈肌上面有有肋隔隐窝和在肺底，下河与右肾上腺，不肾， \mathfrak{f} —指肠上部及结肠肝曲相邻。左半部膈肌上向有心脏•后缘近左纵沟处与食道相毗邻，下゙面绅胃小弯相邻。肝的上界在分锁省中线第 5～6肋间，下界与右肋弓 •致，但在剑突的下方可打及 $2 \sim 3 \mathrm{~cm}$ 的肝脏边缘。

肝脏是人体的主要代谢け心，包抨糖代谢，脂类社脂蛋白代谢，氨基酸代谢，胆纤素和肺酸代谢，维生素代谢及激素的代谢等。可以比作机体队的综合㤝生物化学工厂，在机体整个生命过程中起着重要作用。

二，肝胶体显像

（一）原理

静脉注射放射性标记的胶体颗粒，一次流经肝
定，其余则被脾，淋巴腺，骨髓等网状内坡细胞否

噬。由于肝脏的单核－吞噬细胞系统与肝实质细胞是平行的，因此该系统的显像可以代表肝实质显像。光肝拄发生弥漫性或局灶性病变时，肝胧单核 －吞噬细胞的吞噬功能㖪低或丧失，㤏像上在肝胧病变义性一个放射性减低或缺损区。

（二）显像剂

常用的有两种：${ }^{\text {Y }}{ }^{5 \mathrm{~m}} \mathrm{Tc}-\mathrm{SC}$ 是一种细小的放射性胶体颗粒（ $10 \sim 500 \mathrm{~nm}$ ），静注后 90% 被肝的库普弗细胞䂞噬， $2 \% \sim 3 \%$ 进脾， 8% 进骨髓。淂 $\left[{ }^{-94 n} T c\right]$ 植酸钠（ ${ }^{[5 m m} T c$－phytate）本身不是胶体颗頪。当它自静脉注入体内后，与血中钙离不鳌合形成不溶性 ${ }^{[4 \mathrm{~mm}} \mathrm{Tc}$ 植酸钙胶体（ 300 nm ），被肝脏库普弗细胞吞筑而显像。

（三）显像方法

 $\mathrm{MBy}_{4}(2 \sim 3 \mathrm{mCi})$ ， 15 分钟后行肝显像（liver ima－ ging），病人仰卧于 γ 热相机探头下，视野包括刵，脾。常规取前，右前斜，右侧，左前斜，店位等五个体位，必要时增加其他体位，以清晰显示病灶的位置，大小及部位。

（四）正常显像

汿脏内放射性分布均匀，右叶较願，放射性较派；左叶较溥，放射性较淡。前位时叮见右叶故射性高，山心较周边高，脾脏在后位叮显影。肝显像图上可见一条上下端宽，中间窄的带减放射性减低区，为左，右旪间沟，加上肝静脉挤压。朋门区被肝动，静脉㕲怔管占据了一定优置。胆襄窝处呈…个放射性减低区，后位时仝叶被脊杫挡住夫部。有叶内下缘为肾压迹。
（五）异常显像
包括肝的位置，形态及放射性分布异常。
1．位䈌异常 由于膈肌抬高，使肝下缘明显高于肪弓或结肠高位所致肝右叶下部放射性减低区，需与右叶下部占位病变鉴别。低焦肝常见于肺气肿或右侧胸腔积液，使肝位置下移，肝穹隆消失，需与肝右叶外上方占位病变鉴別。

2．形态异常 包括先天发育异常，邻近组织器官外压变形。先天发育异常包括二叶肝（图9－ 13 a ），左叶异常对的鸭嘴肝，象鼻肝及右叶发育差时的水平带状朋。邻近组织器官外压变形。叮见于胆囊位峉异常致肝门扩大，呈明显放射性减低区，或腹膜后肿物，肾上腺肿物，卵巢肿瘤挤压，推移

使肝脏移位（图 $913 \mathrm{~b}-\mathrm{c}$ ），或男泡长期膨胀使肝左叶在左侧位时突然消失。

3．放射性分布异常 少于肝内占位病变或病理性增生和萎缩，如肝的良恶性肿瘤，肝囊肿，肝

脓肿，肝血管瘤，肝癌，肝转移瘤，均表现为肝内单发或多发放射性减低区或缺损区（图9．13d－e）＝肝驶变时，由于肝组织萎缩和增生，呈右叶缩小，左．叶代偿性增大及脾大的典型形态（图9－135）＝

斉9－13 肝异常亚像图
缺损区（前位）；d．A丁细胞非膈；e．肝转袳㽷；！．朋硬化

三，盰血流血池显像

肝血流血池显像（liver blood flow blood pool imaging）是一项动态的肝功能显像方法，当肝胶体显像显示汗内占位病变时，可用肝血流血池显像法来了解占位病变区的血供及血容量，鉴别其为血供丰富的实性病变，还是血供差或无血供的病变或血容量高的病变。

（一）原理

肝脏血供为双重血供。 75% 吕来白门静脉， 25%来自肝动脉，因此当静脉注入 ${ }^{44_{\mathrm{m}}} \mathrm{T}_{\mathrm{c}}$－RBC 后，肝脏在动脉期不显影，到静脉期才显影。肝肿瘤不论良，恶性，由于肿瘤生长迅速，血供丰富，常古接由动脉供血，因此在血流相的动脉期，病灶区内立

即可见放射性填充。平衡后血池期，主要根据病空区血容量的高低表现为高于，等于或低于周围正常的肝组织，用以鉴别诊断肝内占位病变的性质。

（二）显像剂

＊）Tc－RBC 采用体内或体外标记法。栃者标记率高，体内稳定性好，适用于血池显像。

（三）显像方法

采用以肝平面显像所示病灶最清晰的体位，行
 $\mathrm{RBC} 555 \mathrm{MBq}(15 \mathrm{mCi}) /<1 \mathrm{ml}$ ，同时启动由计算机控制的 γ 照相机进行肝脏连续照相，每 2 秒 1 帧。连续 16 帧，为血流相（包括动脉及静脉期）： 1 分钟店每 5 分钟1帧至20分钟，20分钟后每10分钟 1 帧至 60 分钟，为血池相。
（四）影像分析
1．正常显像 当＂弹丸＂式注人＂＂n Tc－RBC后。在右心及肺显㛫后约 $2 \sim 4$ 秒腹主动脉开咍显影， 6 秒后双肾及脾显影，而肝以无放射性出现，至 12 秒静脉期肝显影。15 分钟后为平衡后血池期，图像中主要显示心脏，脾，大血管影，肝内放射性分布均匀，其强度较心及脾低。

2．异常业像
（1）肝囊肿：多数为单个病灶，化多㐮肝及肝棘球蚴病时可为多发。在肝胶体亚像时，常显示为边缘较整齐的占位病变，由于是囊肿，病灶区无血供，故血流血池期均显示为无血供的低于周周正常肝组织的放射性缺损区。
（2）肝血管瘤：占肧肿瘤的 $0.4 \% \sim 7 \%$ ，是肝脏最常见的良性肿瘤，一般不需手术治疗，也禁忌病理穿刺。肝血管瘤（liver haemangioma）是由血窦构成，内令大量血液，当静脉注射 99 mTc －RBC后，动脉期病灶区无放射性填充。但有 30% 的血管瘤动脉期呵放射性填充（良性肿瘤也可见到动脉供血）。由于號Tc－RBC需一定时间才能与血管瘤原有的未标记红细胞混匀，小的血管瘤往往在 5～10分钟即达平衡，之后放射性不再增加；而大的血管瘤则由周边向中心缓慢填充，血管瘤越大，所需时间越长，体积大的血管瘤有的需 $1 \sim 2$ 小时才使病灶完全填充。其放射性强度明显高于周围肝组织，接近心血池强度（图9－14）。

恩914 肝比管瘤亚像图
a．盿体相不布叶从侧约 fem的放射性缺损区；b．血流期病灶区，见见放射性填充： c．血泄期病灶区放射吽遂渐浓聚，至 20 分钟忖．强度与心脏相等

图 9－15 肝癌吡像图

c．血池相•病灶区放射性低了周胁肝组织
（3）肝癌：肝癌（hepatoma）的血供可直接来自肝动泳，由于血供丰富，因此在肝血流血池显像时，动脉期病变区内立即有放射性填充，平衡后血池期，病灶区的放射性强度一般与周沣朋组织相近，延迟相时也无增强现象。如肿瘤生长迅速，出现中心液化坏死时，则动脉期的允盈限于肿瘤的边缘部分，血池期也可見肿瘤中心呈放射性减低区，此时与囊肿的鉴別主要是动脉期有无放射性允盈 （图9－15）。

图9－16 肝路合并血管瘤亚像图
a．胶体相示左，右叶内各见一个放射性缺揾区：b。血流期，们叶病灶区内：5 秒即有放射性填充，在叶沿病灶周边也有放射性

四，肝癌阳性显像

肿瘤的早期诊断和治疗是目前急待解决的问题，据文献报道，能获手术切除的小肿瘤，其 5 年生存率可达 60.5 多以上，因此寻找一种简便，无创，特异的早期诊断方法显得十分重要。阴性显像又较阻性显像灵敏度高，近年来国内外学者一直在努力寻找一种特异性强的放射性药物，即对肝癌细胞有特殊的亲和力，以达到肝癌阳性亚像（hepato－ cellular carcinoma positive imaging）的目的。

（一）肝胆显像剂肝癌阳性显像

1984 年日本学者报道了用锠 ${ }^{-5 \mathrm{smm}} \mathrm{Tc}$ ］标记肝胆显像剂诊断肝细胞性肝癌及转移灶获得成功，尤其对临床诊断较困难，占肝癌总数 30% 左们的 AFP阴性肝癌的定位，定性诊断更有价值。

1．原理 肝胆显像剂的化学结构与胆红素很相似，当静脉注射后，被正常肝实质细胞摄取的同时也被分化较好的肝癌细胞及肝腺瘤细胞所摄取，

因为它还保留了部分肝细胞生戊脂汒的功能。但由于瘤体内缺乏有功能的胆管系统供胆汁排出，使亚像剂滞留在瘤体内，在延迟相时，形成肿痛部位的放射性明显高于周闱正常肝组织的＂热区＂。即肝癌阳性显像。

2．放射性药物 详见第三节肝胆显像。
3．显像方法 病人无需特殊准备，检查时病人仰卧于 γ 照相机探头下，铱肝胶体显像所示病变最清晰的体位，静脉注射显像剂后行连续照相，于 5，15，30，40，60分钟时各照1颃，于2～5小时再照延迟相，观察肝影消退后病灶区的放射性强度，判断其为阳性或阴性（图9－17）。

国内陈绍亮等报道 77 例消化道文，恶性病疾出
 pyridoxyl－5－methyltriptophan，${ }^{99 \mathrm{~mm}} \mathrm{~T}_{\mathrm{c}}$－PMT）显像的结果，发现继发性肝癌，胆管细胞癌，血管瘤，肝错构瘤，肝囊肿等勾为吻性。 37 例肝细胞癌中有 21 例阳性，故用 ${ }^{94 \mathrm{~m}_{\mathrm{m}}} \mathrm{Tc}-\mathrm{PMT}$ 显像诊断肝细胞癌的

图 9－17 肝痛阳性显像图
病灶区放射性较低：C． 2 小时！苛围肝组织内放射性 ${ }^{\circ}$ 消退。面病灶区异常放射性浓聚

特异性为 97.5% ，灵敏度为 56.8% 。

（二）肝癌放射免疫显像

用放射免疫显像技术研究肿瘤的诊断及治疗已有 30 多年， 1978 年 Goldenberg 首次报道将其用于 CEA 分泌性肿瘤，AFP 分泌性肿瘤及 HCG 分泌性肿瘤，尤其是在单克隆抗体片設 $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ 的应用，使放射免疫显像逐渐成熟，并为诊断恶性肿瘤开辟了新途径。

1．原理 以抗原－抗体的特异结合为基础，将肝癌细胞或与肝癌细胞相关的抗原制备出的特异抗体用放射性核素标记后，经静脉注人病人体疗。这种标记抗体随血流到达肿瘤部位，与肿瘤细胞表面相应的抗原特异结合，使肿瘤局部的放射性明显高于周围肝组织，达到阳性显像的目的，称放射免疫显像（radioimmunoimaging，RII）。

2．放射性药物 碘 ${ }^{131}$ I－标记的抗 AFP 单克隆抗体（ ${ }^{131} \mathrm{I}-\mathrm{AFP} \mathrm{McAb}$ ）。

3．显像方法 受检者于检査前一周开始口服复方碩溶液，以封闭甲状腺。在注人标记抗体前，即刻静脉注射地塞米松 $2 \sim 5 \mathrm{mg}$ ，然后自静脉缓慢推注 ${ }^{131} \mathrm{I}$－AFP McAb， $44.4 \sim 92.5 \mathrm{MBq}_{\mathrm{A}}$（1．2～ $2.5 \mathrm{mCi}) / 0.4 \sim 1 \mathrm{mg}$ 蛋白，注意有无不良反应。一般在注射后 $48 \sim 72$ 小时行肝脏部位照相，常规取前位及后位。为了减少血及肝脏部位的本底，提高靶器官和非靶器官（T／NT）的比值，可采用双核素减影法，即在注人 ${ }^{131}$ I－AFP McAb 48 或 72 小时

${ }^{99{ }^{9 \mathrm{ru}}} \mathrm{Tc}$－dextran $) 18.5 \sim 37 \mathrm{MBq}(0.5 \sim 1 \mathrm{mCi}), 5$ 分钟后分别采集 ${ }^{131} \mathrm{l}$ 与 ${ }^{99 n} \mathrm{Tc}$ 的影像，并从 ${ }^{131} 1$ 显像图上减去 ${ }^{4 \gamma m} \mathrm{Te}$ 的计数，使正常肝组织的计数接近本底。用计算机于肿物及对照组织设置 ROI，计算 T／NT值。

4．结果判断

— 病灶区未见放射性浓聚；
十 病灶区有放射性浓聚，强度略高于或等于周用月二组织，界限不十分清楚；
++ 病灶：区有明显的放射性浓聚，强度高于周闱正常组织，界限清楚；
+++ 病灶区放射性明显浓聚，强度接近心脏。

五，肝断层显像

放射性核素断层显像不同于 X 线 CT，是将放射性标记药物经静脉注射后到达旰的部位，由肝脏部位发射出 γ 射线，用单光子发射计算机断层仪 （single photon emission computed tomography， SPECT）围绕人体肝脏部位旋转 360° ．采集各角度的肝内放射性计数，经计算机重建图像后得到核素在肝脏务断面（横断，矢状，冠状而的 3 个相互垂直方位的多层面断层像）的分布图。它排除了邻近脏器或经织中核素的干扰，故分辨率高，定位准确，可计算出病灶大小，提高了肝内占位病变的检出率。目前应用于汗断层的方法有肝胶体断层，肝血池断忶。
（一）肝胶体断层显像
在肝胶体平面显像中，由于病灯小或部位深。不能清晰显示占位病变时，应首先行肝断层显像 （liver tomographir imaging），以明确占位病变的部位，大小及位置。

1．放射性药物 ${ }^{9 \mathrm{Em}} \mathrm{Tc}$－植酸钠，${ }^{4 S_{m} \mathrm{~m}} \mathrm{Tc}-\mathrm{SC}$ 。
2．显像方法 静脉注射肞胶体品像剂 15 分钟后或在肝胶体可面显像后，受检者仰卧于䉼层床上，SPECT 仪的探头对准肋耻部位，并以病人身体的㝁度定旋转中心，以探头能围绕断寻床旋转的最小距离为半径旋转 360° ，每 $3 \sim 5^{\circ}$ 渠集 1 帧。其 72～120帧。采集完毕由计算机重建得到肝的横断，过状，矢状：一方位的断层图像，按肝脏的大小，一般断层数为 $16 \sim 32$ 层。

3．正常显像
（1）横断面：自下而上依次将肝朋横断 32 㫳。每层约 0.4 cm ，多数于第 $10 \sim 16$ 层间可见一个内凹性放射性稀疏或缺损区，即胆䪄窝，肾窝及肝广风。
（2）矢状面：白在向庄依次将肝脏矢状断12～ 16层，多数于第5～8层可见疗旪背局的肾窝和贵前的胆囊窝，在胆囊窝的后上方可见肝门区造成的放射性楴流区延伸至肝实质。
（3）冠状面：白后向前依次将肝脏符状断12～ 16耘，肖先十右叶后万可见将窝，肾窝之前是肝门迩成的不均包放射性缺损或桸疏区。右叶前下方甚胆囊窝引起的放射性缺损或稀疏仪，肝脏的放射性分布均匀，轮郛清晰。

4．异常显像 病灶区在胶体断层显像囯上表现为放射性减低或缺损区。要确定肝内占优病变，至少要在两个不同方位㕲邻的两个断层而上显示缺损区方可诊断。

由于正常肝脏的形态有很大变吕，不同形态的肝脏的断层图像亦有很大差别。因此在分析肝脏的断考图像时，必须与平面用显像各个位置的图像进行对照。

（二）肝血池断层显像

肝血池断层鼣像是任注射显像剂 ${ }^{n c \mid 115 C-R B C}$ $1 \sim 2$ 小时后开始采集的，故又称为延迈斿而池断考。由于延迟可以使邻近组织中的放射性明昆减低，有利于小血管欄的检出。使大血管㿑达到完全填充。故延迟血池断层是像在所癌和血管瘤的鉴别

1：比平面昆像更具价值。
变的诊断准确性，红细胞的标记方法十分重要。体内标记法所用的国产焦磷酸药盒中的亚锡含荲代能保证红细胞的标记率达到要求（＞95类），体外标记法的标记率＞ 98% 。被标记的红细胞能较长时间地存留于血循不中，可以进行延迟断层显像：

2．显像房法 断层方法同扸胶体断层。
3．图像分析 无常图像时仅量示大血管及脾脏影，肝影很淡。病灶必血管㾈时，由于大量红细胞聚集，叧异常的放射性浓聚区，任放射性浓聚区吽质的确定要结合胶体断层及面面显像中病灶的部位，并应清楚掌握肝内外血管的分布走向．避免将

4．情床评价 Masatonhi 等报道，延迟肝血池断层与平面肝衂池显像相比，对直径小下 3 cm ，尤其真 $2 \sim 4 \mathrm{~cm}$ 的仠血管瘤和肝㿋的签别诊断更有价直，如结合二维咅体显示（3D））显像，对病灶的部位及性质可得到进一步确诊。

（三）肝透视三维显像

计算机断至技术可检测放射怍药物任轭器市或非靶组织庆部深具次的分布，因此它较平面显像检
次的一维投影，不是一个器官及其病变的整体影像；而3D技术，尤其是透视 二维立体显示技术在一定程度上䣋补了断罢图像的不足。

1．原理 透视一维技术是寺找恨小脏器每—个图像巾的＂热点＂象素，依此为参照点。再衰减距体表不同深度的立休象素计数，形成一个不同角度的模拟主体的＂热点＂图像。这样，3I）不仪能品小脏器表酩的放射性分布，还能显示脏器队部的放射性分布，尤其是具有＂热区＂性质的疾变。

3．显像 力法 断层方法同肝血池断耊，然后采用 SPECT 仪中所设惪的＂一：维软件程序＂对獚断酮断层图像进行处理。获得围绕人体旋转的位于不同角度的＂热点＂图像后，运用电影技术，得到具有透视效果的立体图像。

4．图像分析 肝胶体透视三维显像可清晰显示肝的形态及病灶部伦。朋血池透视三维显像可清

晰显示心脏，脾脏及大血管影，血管瘤表现为昇常的放射性＂热区＂。 二维立体显像对病灶的发现及

定位更为准确（图9－18）。

图9．78 朋透视一维㫫像图

5．临床价值 对小于 2 cm 的血管瘤及位于肝左，右叶交界处易受肝门及腹主动脉影下扰的血管瘤，透视三维显像可较血池断层显像更进－步明确病灶的性质及部位。

六，比较影像学

核素汗显像是按照肝脏的不同生理功能，研制不同的放射性药物进行显像来诊断各种肝脏㓍患。如肝胶体显像可了解肝实质细胞的尘能，显示肝耻大小，形态及占位病变的部位。肝血流血池显像可了解肝內占位病变区的血供及血容量，用于鉴別病奻的性质是血供丰富的实性病变，还是无血运的囊性病变或血容量高的血管瘤，由于标记方法特吕 （标记红细胞），使诊断肝血管瘤的特异性达 100% 。肝癌阳性显像，为AFP 阳吽，分化较好的肝癌提供厂一种早期诊断方法。总之，核素肝显像方法是一种无创的反映病边部位功能的显像方法，是其他影像诊断方法所不能达到的。但核素显像还存在不足之处，如对病奻的检出率，尤其是对小于 2 cm 的病灶的检出灵敏度不如 CT。虽然近年来开展了肝断层及透视三维显像，拝高了小病灶的检出率，如肝血池断层提高了小肝癌与小血管瘤的鉴别能力，透视三维显像提供了肝脏的立体图形，使病灶的定位较平面更为清楚。尽管如此，核素显像还存在一些不足之处，因此，在临床应雷时应根据病入的病情选择最佳的影像诊断方法作出诊断。

第3节 胆 系 显 像

一，解剖与生理基础

胆管系统包括胆囊，胆囊管，左，右肝管，肝总管，胆总管，一下指肠开口处一肝胰壸腹及乳头。

胆㐮位于肝右叶前下方的胆㐮窝内．长约 10 cm ，直洤 $3 \sim 4 \mathrm{~cm}$ ，容量 $40 \sim 60 \mathrm{ml}$ 。胆囊的主要功能是浓缩，贮存和释放胆汁。胆囊的舒缩功能受进食的控制及激素的调节，近端小肠分泌的胆囊收缩素（CCK）是调节胆囊收缩的主要激素。

左，右肝管在肝门处会合形成肝总管。不肝管起自肝门的后上方，较粗短，长约 $0.2 \sim 2.5 \mathrm{~cm}$ ．左肝管长约 $0.2 \sim 3.5 \mathrm{~cm}$ ，肝总管长约 $0.8 \sim$ 5.2 cm ，平均为 2.0 cm ，其下端与胆囊管会合成胆总管，管长 $5 \sim 8 \mathrm{~cm}$ 。胆总管分为 4 段——十二指肠上段，十二指肠后段，胰腺段及十二指肠段。

胆道的功能是输送胆汁，经朋细胞分泌的胆计先进入微胆管，然后胆汁依次流经赫林管（canal of Hering），小叶间胆管，左，在肝管，肝总管，胆总管，进入十二指䀛，组成了胆汁的收集及输送系统。

二，胆系显像

自50年代开始已应用碘 $\left.{ }^{[13 i} \mathrm{I}\right]$ 玫瑰红检查肝，

胆功能。由于 ${ }^{131} 1$ 具有 γ 射线，义有 β 射线，因而
醋酸（II）A）类和锝 ${ }^{59_{m} \mathrm{~T}} \mathrm{Tc}$ ］吡哆醛氨基酸（ $\mathrm{P} A$ ）类肝胆业像剂后，使胆系显像（hepatobiliary imaging）有了迅速发展。

（一）原理

利用 ${ }^{3 n_{m}} \mathrm{Tc}$－IDA，${ }^{\nu 94} \mathrm{Ic} \mathrm{Ic}-\mathrm{PA}$ 类药物在静脉汗：射后能被肝脏的歩角细胞摄取，并从血液け迅速清除，体胆计内高度浓聚，经胆道排H到肠挖们不被肠道粘膜所吸收的特点，来动态观察显像剂在肝，胆道，胆囊和肠腔内的放射性摄牧和排出情况，以了解它们的形态及功能。

（二）放射性药物

基乙酰苯胺基亚氨一醋酸（ ${ }^{n 99_{\mathrm{m}}} \mathrm{Tc}$－HIDA），锅
锝 $\left[{ }^{99_{m} \mathrm{~T}} \mathrm{Tc}\right]$ 二甲基三洝 IDA（mebrofemin，TMBIDA）等；PA 类衍生物有 ${ }^{* 9 m} \mathrm{Tc}$ PMT 等。这类药物在体内及体外均稳定，在血中半清除时间短，注人显像剂后 $10 \sim 20$ 分钟肾脏排泄量为原量的 15% ， 30 方钟肾影基本消失，但这类药物受血中胆红素的影响较大，目前以TMBIDA较好。即使胆红素高达 10 mg 以上，肝胆仍可显影。

（三）显像方法

受检者需空腹 12 小时，检査时病人仰卧十 γ照相机的探头下，取前位，自肘静脉注入 ${ }^{\left(w_{n},\right.} \mathrm{T}_{\mathrm{c}} \mathrm{c}^{-}$ IDA 类或 ${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{P} \mathrm{P}$ 类显像剂 $185 \sim 370 \mathrm{MBq}$（ $5 \sim$ 10 mC （i）后行连续照相，于注射后这即， $5, ~ 10$ ， 15，20，30 及 10 分钟各照 1 帧。为了确认胆囊位置，可加右侧位。如胆汁排㴹延缓，为确定有元梅阻及胆囊收缩功能是否正常，可给病人进脂肪餐或用 CCK，以观察胆囊的收缩功能。若肘囊至 60 分钟做末业影，可于2，4小时再作延迟显像。
（四）正常显像
注人显像剂 5 分钟后旰庄开始曷影， $10 \sim 15$分钟肝影清晰，肝内胆管亦清唽显示， 15 分钟胆囊开始显影， $20 \sim 30$ 分钟显影清晰，并可见肠腔内有放射性出现， $40 \sim 60$ 分钟胆囊明感缩小，大量放射性出现在肠腔内。

（五）异常显像

1．急性胆囊浆 静证显像剂左，肝，肝内胆管，胆总管亚影良奴，而胆晎始终不显影，延辿达

60 分钟仍不显影。但肠腔内有放射性出现．结合病史沴断率可达 95% 。

2．肝外梗阻引起的黄椬 橸阻包括完全硬阻和不完全梗阻。完全梗阻是指在静注显像剂后1～ 2 小肘仅见肝内扩张的胆管，胆囊扩大，至24，72小时小肠肠腔内仍不见放射性出现，不完企梗阻时根据梗阻部位的不问所见也不同。如胆总管受阻。㫜囊可虽影；若梗阻部们离，胆裹不显影；肝内胆管有不同埕度扩张时，放射吽进人肠腔的时间可延缓达 24 小时以上。

3．先天性胆管囊肺或先天性胆道闭钻 先天性胆管囊髟表现为扩张的㫜管囊肿内滞留大量的放射性，延迟至 4～6小时仍不见排出。而胆襄及胆道排出腊汁是通畅的。先天性肚道闭锁时，静脉注入显像剂届连续观察 24 个时，仅见肝脏显影，而照系结构始终不显影，肠道内也始终不无放射性出现。

4．婴儿肝炎综合征 由于肝细胞受误，静脉注射吡像剂后药物停留在血循环中，清除缓慢。可见心影持续仔在，男影清晰，而肝，朋系显影极差。

三，比较影像学

核絲胆系显像是一种无创生动念功能显像庁法，对急性胆囊炎，黄疸的鉴别及先天性胉管疾患的诊断具有其优点，但在诊断慢性胆路炎，胆内占位病变如息肉，胆石症的兄敏度上不如 B 超。在对肝内，外黄症的鉴别上。CT 具有较高的准确性。在诊断先天性㫜道闭锁及全岸脇外营养 （TPN）绐疗后胆道功能的监测I：核素显像法被公认是一种有效的检查方法。

第4节 唾液腺显像

一，解剖与生理基础

唾液腺分大小两类，小唾液腺分布一唇，吉，赖，腭等处的粘膜固有层和粘膜下层。大唾液腺包括腮腺，领下腺和舌下腺二刏。腮腺是最大的一一
万的领居窝内，媤腺导管长约 $5 \sim 6 \mathrm{~cm}$ 。开口十上领第一磨牙牙冠相对㧁的颊粘膜。开口处形成腮腺

乳头。领下腺位于领下三角区内，导管开口于击系带两旁的舌下肉皁处，导管全长 5 cm 。舌下腺位于领舌沟内，口底粘脱皱靖下，下领吉骨肌的后方，导管有 8～20 条，多数分布于舌下皱礕处，开口于口嵱．部分开口于颌下腺导管．导管细小，容易形成舌下腺囊肿。

三对腺体都分泌唾液（浆液和粘液），具有湿润口腚粘膜，初步消化食物，杀菌，调和食物，便于漛味等作用。

二，唾液貹显像

（一）原理

利用垂液腺导管上皮细胞具存浓集并排汹 ${ }^{9 \mathrm{~mm}} \mathrm{TcO}_{4}{ }^{-}$的功能．来观察唾液腺的形态和功能．称唾液腺品像（salivary glands imaging）：当静脉注射 ${ }^{99 m} \mathrm{TcO}_{4}$ •后．随血循环到达各组唾液腺，然后随哑液经导管排泌到口腔。在体外用 γ 照相机进行连续照相，并用 ROI 法作时间一放射性曲

线，可观察到唾液腺对 ${ }^{990 \mathrm{D}} \mathrm{Tc}$ 的浓聚，排泌过程和腺体的大小，位置及形态，还可进行功能的定量分析。

（二）放射性药物

${ }^{3} \mathrm{~mm} \mathrm{TcO}_{4}{ }^{-}$。

（三）显像方法

病人无须特殊准备，检查时取坐位，面向 γ 照相机探头．视野包括各组唾液腺及甲状腺，照相时病人取瓦氏位。自时静脉注入 ${ }^{999_{m}} \mathrm{TcO}_{5}^{-} \quad 185 \sim$ $296 \mathrm{MBq}(5 \sim 8 \mathrm{mCi})$ 后作连续照相。

1．动态显像 注人 ${ }^{999^{m}} \mathrm{TcO}_{4}$ 后作连续动态照相，每 1 分钟照 1 帧，连续至 15 分钟，然后用计算机按感兴趣区方法获得双侧腮腺，颌下腺区的时间一放射性曲线，以了解其浓集和排泄功能。

2．静态显像 注入 ${ }^{\mathrm{nmm}} \mathrm{TcO}_{5}^{-}$后5，10，20， 30 分钟时各照 1 桢， 30 分钟后各照 1 桢左，右侧位，以观察各组唾液腺的位置，形态及放射性分布。30 分钟后给口含 VitC，柠檬汁或构栢酸钠盐，

图9－1！化常雨液腺显像图

唾液䀯内放射性明显減少，口腔内朋显增多

促使硾液从各组腺体排 1 ，以了解其排泄是㕣通畅。

（四）正常显像

正常情况下 5 分钟呵唾液腺与中状腺的摄取察相同， 10 分钟时双侧腮腺和领下腺内的放射性已明显浓聚， 20 分钟达高峰，两侧对称，腺体大小和放射性强度相等。10分钟虎口挖内开始以现放射吽，并随时间延长排泌增多， 30 分钟吋口腔内的放射性浓聚度明显高于唾液腺。口含 VitC后，唾液腺内的放射性困速排出至口腔，霉下腺摄取 ${ }^{98 \mathrm{ra}} \mathrm{Tc}$ 很少，显像时仅偶尔见到显示（图9－19）。

（五）异常显像

1．放射性分布异常 腺体内可见放射性減低或缺损廷，边界较整齐，见干腮腺混合瘤，囊肿，脓肿等定性肿瘤。腮腺㿋时多数呈边界不整齐的放射性缺损区。Warthin 瘤和大嗜酸吽粒细胞瘤时，腺体内的放射性明显浓聚。

2．腺体弥漫性肿大 见于慢性腮腺炎，放射性分布不㙁匀，而且明显减少，但口腔内出现放射性的时间与正常者无差别。

3．干燥综合征 唾液腺内的放射性分布较均矢，但明显减少，口腔内出现放射性的时间显著延缓，严重者口腔内见不到放射性氿现。
（徐竞英 张少专 朱朝晖）

参 考 文 献

1．徐竞英，等．放射唑核素食道通过时间测定在食道运动功能障碍性疾病中的应井．中华核医学杂志．1990． 10：33
2．柯美云，等，田肠通过时间测定及其生理和病理意义的探讨．中华内科杂志，1990，29：723
3．李方，周前．放射免疫亚像诊断肿瘤的临床经俭。中华核医学杂志。1990，1（1：5
4．陈雪苟，等．酶射性核素脂系显像鉴别诊断先天吽胉道闭锁和警儿肝炎综合征，中华核医学杂志，1994．14： 131

5．稌竞英．等．${ }^{D ; m} T C$ RBC 显像诊断利定位胃肠道出血的临床经验．中华核医学杂志，1994，14：134
6．Masatoshi K，et al．Distinction between hemangioma of fiver and hepatocellubar carconoma：value of labeled－RBC SPECT scanning．AJR．1989．152：97：
7．Wallis JM，Miller TR．Volume rendering in three dimen sional display of SPECT imaging，J Vucl Med． 1991. $32: .3 .39$
8．Von Denl Ohe MR，Cannilleri M，Measurement of small bowel and colon transit：indications and methods．Nayo Clinic Prececdings，1992，62：1169

9．Maureu AH．Krevsky B．Whole gut traissh semtigraphy in the evaluation of small bowel aid colon transit disor－ ders．Semin Nucl Med．1995． $25: 326$

第 10 章 骨 骼 系 统

第1节 解剖生理基础

骨骼是人体的支架，由㐿身 206 块骨连接构戊。它不仅支撑着全身，保护着内脏器它，还决企着人的体形，起着支拤，保护和运动的作井。

骨是一种器官，主要由肖组织构成。由于其功能，发生和部位不同而有不同的形态：上，下肢的长骨，腕踝部的㫏骨，肋骨，胸肖，所骨 炎的扁骨，形态结构不规则的泰椎骨等。这些骨的外今都很坚硬，里面却很疏松。全身的省骼分火山抽肖 （包括颅骨，脊椎骨，钶骨，肋骨，肯盆）和附肢骨（肩評次，锁骨和四肢骨）。

骨组织的基本成分怘骨细胞，骨胶纤维和骨基质。㨈细胞包括成肙细胞（由问充质汕胞分化而米，形成骨胶纤维的有机基质），骨细胞（生成骨的无机基质）和破骨细胞（对骨的吸收）。骨组织有两种类型：第一种质地致密，䄪压性大，称皮质骨㖪密质骨．典型分有丁长惂的外层，皮质咼由骨的基本单位——骨单位（osteon）组成，当破骨细胞清除死广：的身单位时，骨膜内层和骨内膜产生一代成骨细胞提供新骨，就发生了骨的吸收和重建；第一种是小梁昌，山海腨状网眼组成，也叫网状骨，典型分布于长骨的中心部分，也见于其他如跟骨，几我全部由小梁骨组成。

成人骨质出桜硬的无札盐奛体和增强采软的有机基质组呅。骨的组成约有 30%～ 40% 是有机的基质，骨的存机质中 90% 为骨胶凉，其他为非胶景蛋门。剩下约 $6(1 \%$ 为无机盐，包括磷酸钙，㛶酸钙，磷酸镁和氟化钙等。这些无机成分组成的主要晶体化合物形式是羟基磷灰右 $\mathrm{LCa} \mathrm{a}_{1}\left(\mathrm{I}^{(\mathrm{P}} \mathrm{O}_{4}\right)_{5}$
中！，按长轴板有秩序地排列。不同的尤机物可以相互取代，例如锶或铅可以取代钙，氟可取代羟基的一部分，最适合核医学亚像的是用膦酸盐取代磷酸盐。

第2节 骨 显 像

骨显像（bonc seintigraphy）用于临床し有 30 年的历史。在国内外综合医院巾约占影像核医学丁，作量的二分之一。骨显像以一次成像能出示全身骨骼，探测成骨病变的高灵敏度，尤绝对禁忌证和价格相对低廉等优点什各种检查骨䯘的医学影像中占有优势，其不足之处是低特异性和不精确的解剖定位。近20年米，骨显像的适监证发生厂明显变化， 70 年代木骨亚像是发现骨转移最疋敏的方法。8年代骨亚像在肿瘐学的应用方面获得了成氻， 90年代皆哑像的肿瘤病人下降，良性骨病上升。末来的骨覀像要想保持其诊断骨骼疾病的优势，必须要冬可能提高图像质量，不断改善判断图像的能 s,认真鉴别良性和恶性病变，尽量地满足临床要求。

一，显 像 原 理

骨昆像剂锠 $\left.{ }^{-y \geqslant \mathrm{~mm}} \mathrm{Tc}\right]$ 标记的磷或膦酸盐化合物叮通过化学吸附力式与羟基磷灰石晶体表面结合，通过有机基质结合方式与未成熟的胶原直接结合。使骨聚集放射性显影。当骨内钙含量高，局部血流量增加，成骨细胞活跃和新骨形成时，可较正常骨聚集更多的显像剂，呈异常的放射性浓集或增高区：当骨组织血流量减少或由于某些骨质异常细胞分泌 种肽．作用于破骨细胞产生溶骨．显像剂聚集减少，形成放射性缺埙或减低区。

二，显 像 刘

日前国内外应用最厂泛的骨显像剂是锝 ［ $\left.{ }^{99 m} \mathrm{Tc}\right]$ 亚本基二膦酸盐（ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－medronate，${ }^{49 \mathrm{~m}} \mathrm{~T} \mathrm{C}^{-}$ MDP），静脉注射 ${ }^{94 m} \mathrm{Tc}$－MDP 2 小时后约 5% 浓集在骨组织，其在骨的半衰期约 24 小时，主要内肾脏排出， 3 小时经尿排出 $35 \%, 24$ 小时内排出二 $0 \% \sim 75 \%$ ，基本不经肠道排泟。注射剂量按 11． $1 \mathrm{MBq}(0.3 \mathrm{mCi}) / \mathrm{kg}$ 计算，约需 $555 \sim 1110 \mathrm{MBq}$

rophosphate，${ }^{94 n}$ Tc－PYP），因 PYP 客易弥散进人红细胞，可能结合进血红蛋白，加上PYP是具有 P－（）－P键的化合物，能被骨䯘中的碱性磷酸酶水解．体内稳定性差，所以作骨显像剂不如 ${ }^{\text {g9n }}$ 厂c MDP，已较少采用。

三，显 像 方 法

（一）平面骨显像

1．Э时相法和四时相法 引时相法包括动态血流，血池和骨显像，用于评价创伤，炎疟性疾病

和原发性骨肿瘤，一些软组织新生物如肉瘤也可用已时相法检查。叫时相法是另外再加延迟骨显像，在注射药物后 $18 \sim 24$ 小时完成，常用于下肢和患有外周血管疾病或静脉功能不全时。采集庘案见表 $10-1$.

2．局部骨显像 常和二垨相法同时位用．采集方案见表10－1。

3．全身骨显像 最常用于评价骨转移，其次是代谢性：骨病。血源性播敬的疾病，如儿童骨髓炎需作全身骨显像。采集方案见表 $10-1$ 。

表 10－1 平面骨显像采集方系

- 剂量 555－925MBy（15～25 mCi$)^{\text {7ns }} \mathrm{Tr}-\mathrm{MDP}$
- 血流和血池显像

低能高灵敏或低能通用型准自器
能烊 140 keV ，甾宽 20%
＂弹丸＂注射技术
血流显像：玟阵 128×128 ， 1 秒／帧，连续 60 帧
血池显像：钺阵 256×256 ，注射后 $1 \sim 5$ 分钟采集， 60 秒，帧， $1 \sim 5$ 帧
－局部和全身骨亚像
低能高分㒕准直器。可疑的局部阳性病变屾用饫孔准直器
仰卧位或府卧位，可题的局部阳悩病变可果用不同角度斜位，顾骨顶位和颈䊒，胸椎直立位
能峰 140 keV ，窗宽 20%
注射后 $3 \sim 4$ 小时采集
局部骨显像：矩阵 256×256 ，依不同部位计数 $150 \sim 1000 \mathrm{~K}$
全身骨叟像：知阵 256×1024 或 128×512 ．扫描速度 $12 \mathrm{~cm} \cdot \mathrm{~min}$ ，总计数 $1000 \sim 2060 \mathrm{~K}$

表 10－2 单探头旋转型 $\boldsymbol{\gamma}$ 照相机 SPECY 骨显像采集直建方案

```
剂量
-925~1110MBq(25~30mCi)}
采集 - 暨部和膝部
低能通用型准直器
20秒投影, 64 投影/360*
- 腰椎和颅骨
低能商分辩准直器
25秒'投影. 64 投影/360%
-400mm 圆形探头矩両 64 \661
- 大䂒形探头知阵 128>128
重建 - 均约性校比
- 重建前滤波 Hanning(截止频率0.8~1.2 周/癿米)
- 流波反投影 Ramp
- 无衰减校以
- 横断, 行状㕲矢状图
400mm 相机. - 层 6 mmm
大知形相杖. . .f年 8mm
```


（二）断层骨显像

单光子发射计算机断层（single photon crnis－ sion computed tomography，SPECT）骨显像因改善了图像的对比度和定位更准确，常常提供平面骨显像不能显示的诊断信息．适用于脊柱，骶骼关节，颅骨，面骨，散部利膝部的多种骨病变。根据文献报告㕲一些医院的经验，腰骶部是应用 SPECT 骨显像最多的部位。采集重建方案见表10－2。

（三）病人准备

鼓励病人于注射显像剂后饮水 $500 \sim 1000 \mathrm{ml}$ ，多次排尿；显像前排尿；显像前摘除身上金属物品，假乳房等；显像前 24 小时内不做消化道造影。

（四）影响骨显像质量的因素

1．饮水状态 脱水可导致肾清除率降低，组织本底增高，病变／本底比值降低。

2．血管功能不尒 包括静脉和动脉，特别是静脉功能不全，影响下肢骨显影。

3．肾功能 一定程度的肾功能降低可导致与脱水同样的结果，

4．病人年龄 年龄在 30 岁以上，年龄和骨显像的质量成反比关系。

5．病人体态 腹水和肥胖时腹围增加，靶器官和探头的距离增加，增加康普顿散射和衰减，可降低骨显像的质量。

6．药物治疗 一些药物可以政变骨昆像剂的生物学分布，如化疗制剂，甾体激紊，铁，磷离子

和 VitI），甚至注射骨显像剂后静脉输注葡萄糖都可引起骨藂集放射性减低。

7．代谢状态的改变 高钙血症引起骨聚集放射性域低。

8．放射性治疗 对骨显像的质量有延迟效应。在亚急性期．即放射治疗后 45 天和 3 个月，鎘射引起的骨炎可致辐射野放射性增加；治疗后 6 个月或更长时间，出现放射性骨纥维化，辐射野的放射性弥漫性堿低。

9．肌肉放射吽摄取 这可由肌肉注射杜冷丁和铁制剂引起。

10．肾脏放射性增加 可见于应用一些药物后，如化疗，抗生素，非甾体激素抗炎药物和静脉给予 X 线对比剂等，这些效应一般短暂，可见于在骨显像时上述药物正在使用或已完成治疗后的短期。抗酸剂铝的血液水平低于 $10 \mu \mathrm{~g} / \mathrm{ml}$ 无影响，超过 $20 \mu \mathrm{~g} / \mathrm{ml}$ 可见肾增加放射性，超过 $40 \mu \mathrm{~g} \cdot \mathrm{ml}$出现肝脏沉积一膦酸盐。

（五）病灶的定位

肩胛骨病灶或肋骨病灶的鉴别取普通胸椎后位及双臂抬高胸椎后位；胸廓外侧缘放射性增高区，需用斜位或侧位定位累及肋骨的病灶数目及位置；卧位时肾脏内示踪剂的滞留易误认为后 12 肋的病灶，立位时常证实为肾孟放射性蓄积：膀脱充盈尿液模糊骨病灶时，宜取蹲位（squat，tail－on－the de－ tectror view），可区分膀肬和耻骨（图 10－1）：放射

图 10－1 䠗位骨显像
a．䀞位采集体位；b．䪙位图像

性增高区的穿透问题，如有些病灶在前位和后位同时可见，定位在放射性较高的位置；骨三相检查时，对骨血流显像要加体位标记，不加标记有时在判断血供过多与代谢活跃区是否一致时会遇到困难；下领骨和上领骨有异常摄取常因牙病所致．上述情况如与临床表现有关，应进一步作 X 线检查。

四，正常显像表现

（一）血流相和血池相

静脉注射显像剂后 $8 \sim 12$ 秒叮见局部大血管的走向•随之显示软组织轮遊，放射性呈对称散在较均匀的分布。血池相仍可见大血管影，软组织轮廓更为清晰，放射性分布均匀。

（二）骨显像

如图10－2所示。全身骨骼呈对称性的放射性吸收，伿各部分骨煱由于结构不同，代谢活性程度

图16－2 正常尒身骨品像
A．前位：b．后位

及血运情况不一，放射性分布地不均匀。扁平骨如椎骨，肋骨，髂骨，颅骨板等以及长骨的骨骻端均含有大量代谢活跃，血运丰富的松质骨，能摄取较多的显像剂；洏长骨的骨下含密质骨较多，血运亦不丰富，仅摄取较少的显像剂，敌前者较后者显像清晰。

前位检查时，叮见颅骨板，锁骨，肩峰，胸锁关节，肘关节，腕关节，髂翼，股肙粗隆，潻关节，踝关节等均呈对称显像。胸骨显像清䱑。肳骨条条清晣可辨是显像剂性能良好和显像条件适当的标志。耻骨联合有时受到膀胱放射性的干扰而显小不清。

后位检省时，脊柱从颈椎到腰椎均可显小。但由于正常生理弧度，胸椎段的显示更为清晰。肩胛骨除潒突，肩胛岗，肩胛下角摄取较多的显像剂外，其余部分由于骨质菲薄而显像不清。后肋，骶骨，骶骼关节影像朋显。坐骨结节也较清晰，但臀部肥胖者显像不清。肾脏显像比前位清晰；

由于儿童的骨骼发育特点和生长阶段不同，各年龄段儿童的骨显像表现也不同，与正常呅午人的

图 10－3 8 岁男孩正常骨显像四肢长肾干骻端放射性对称性增高 a．前信；b．后位

骨显像有区别。在正常儿童的四肢长骨发育期，关书软胃下骨板壳形成过程中直至䯝线闭令，骨骺和骨化中心周围的软县钙化带都表现为放射性增高带，为正常骨显像的表现（图 10－3）。

（三）正常变异

颃骨放射性可不均匀，表现为不规则状和斑状。常见有女性的额骨骨肥厚，特征是在前位图上矢状缝两侧的放射性对称性增加。另外很多小的良性病灶原因不明，常伴随骨缝出现。在侧位图上蝶骨翼的影响可致假性病灶。

胸骨影呈多样性，如剑突尖喘有不同表现，胸骨远侧可以定鸭嘴形，中心放射性缺损。右侧肳锁关节可较左侧的放射性增高。

肋软骨钲化和甲状软骨钙化致显像剂摄取。
乳腺聚集放射性与有功能的导管组织有关，易

图 10－4 骨品像正常变异影点肋（后位）

模糊肋骨或似胸壁病变。男性前列腺癌用性甾体激素治疗的病人可以有乳腺对称性摄取放射性。

两侧肱骨三角肌粗隆可以不对称，这与劳动和运动一侧肌肉骨骼的明显发达而显影增浓有关。
＂彩点肋＂（stippling ribs），后位骨显像见单侧或双侧有数根肋骨有凧灶性放射性浓集区，较肋骨本身的放射性增高，但较肩胛骨尖端处的放射性略低（图 10－4），系胸段铬肋肌挿入所致。病人无任何症状，X 线片示肋骨正常。

脊柱融合不良可出现局部放射性缺损区，如腰椎5i骶榫1之间的放射性缺损区是由棘突部分融今所致。
＂热解骨征＂，指无症状的双解骨放射性摄取增加。

（四）伪影

当制备骨显像剂时，如游离锝（ ${ }^{59 \mathrm{~m}} \mathrm{~T}_{\mathrm{CO}}^{4}$ ）过多，可兄口腔，唾液腺，甲状腺和胃显影：注射药物时漏至血管外造成注射部位的放射性浓集，有时名部淋巴结显影；尿液污染；外来物品引起的放射性衰减，如硬币，钥匙，皮带金属扣环，耳环，项链，纪念章和金属移植物（起搏器，导管，关节假肢等），移动放射性缺损伪影和消化道钡造影剂滞留有关：检查时病人移动出现重影，体位不对称，有可能造成两侧放射性分布不对称：γ 照相机探头有轻度偏斜或旋转面未能正对病人，常出现肩关节，腺关节和足的放射性不对称，光电倍增管损害则致放射性缺损风；胸骨，骼骨或腰雄近期作过骨髓騫刺，可出现局灶性放射性增高。

五，异常显像表现

（一）血流相和血池相

大血管位置，形态或充盈时相改变，软组织区和骨区内抽现异常的放射性浓集或增高区（热区）和放射性缺损或减低区（冷区），可提示病变部位血供及血管化的情况。

（二）骨显像

根据放射性聚集的多少分为放射性浓集或增高区和放射性缺损或减低区；根据病灶的形态分为点状，圆形，条形，片状和闭决状等；根据异常表现的数目分为单发和多发。

1．骨异常放射性浓集或增高区 是骨显像中最常见的异常表现。凡是可产生骨质破坏新骨形成

的病变如骨转移瘤，原发性骨肿瘤，骨折，骨髓炎和骨膜撕裂等，以及骨质代谢案乱吽病变如畸形性骨炎（Paget＇s 病），均可产生异常的放射性浓集或增高区。这种异常早在疾病仅有功能代谢改变的阶段即已出现。

2．骨异常放射性缺损或减低区 凡是可产生骨骼组织血液供应减少或产生溶骨的病变。如骨䙵肿，骨梗塞或骨坏死早期，早期股骨头缺血性坏死，多发性骨輴瘤，骨转移瘤，激索治疗后或放射治疗后，均可产生异常的放射性缺损或减低区。

3．骨外异常放射性浓集区 许多骨外病变可摄取骨显像剂．如胸水，心包积液，有不同程度钙化的心瓣膜，心包，梀求蚴病，畸胎瘤，有踟基磷灰石形成的急性心肌梗死，泌尿系统结石，某些软组织恶性肿㿔或炎症等，在判断结果时应予注意。

第3节 骨 转 移 瘤

一，临床概述

体内其他组织或器官的恶性肿瘤通过一定途径侵犯骨组织所致的肿瘤，称继发性骨肿瘤或骨转移瘤（bone metastascrs）。骨是容易发生转移瘤的部位，对于一些肿瘤，骨可以是早期或晚期转移的部位，而另一些肿瘤的骨受累主要在广泛转移的晚期。在临床工作中其原发肿瘤尚未被发现而首先发现骨转移瘤者并不少见。转移途径有直接菖延和血行转移，以后者为主。瘤细胞除可经腔静脉，门静脉，奇静脉，肺静脉到达骨外，还有脊椎静脉系

统，使瘤细胞有许多路径可越过肝，肺及其他内脏直接到达骨，这是临床上常遇到骨转移瘤病人的肺或其他内脏无转移，而转移多发生在躯干各骨的原因。

从病理学变化来看．骨转移能够在骨内产生成骨性（osteoblastic），溶骨性（ostedlytic）或混台性 （mixed）反应。骨转移瘤最多发生在具有红骨髓的部位，呈浸润性生长，并发生溶骨性破坏。成脅性转移则是在骨质破坏后，转移瘤诱导骨组织的间听。细胞分化为成骨细胞，产生大量新骨。常见为溶骨性破坏和成骨性变化同时存在。骨转移主要为成骨性反应的原发肿瘤有前列腺癌，成神经管细胞瘤，甲状腺髓样癌，支气管类癌瘤；主要为浴骨性反焦的有肾癌，用状腺癌，子宮癌，Ewing 氏肉瘤，肾上腺㿋，Wilm 氏瘤，恶性嗜铬细胞瘤，肝癌，皮肤鳞状细胞癌和头颈部稣状细胞癌：主要为混合性反应的有乳腺癌，肺癌，结肠癌，直肠癌，胃癌，成神经细胞瘤，鼻咽癌和胰腺癌。

骨转移瘤在骨肿瘤中的发病率国内备家报道不一，1986年刘子君等关于骨肿瘤及痛样病变的 12401 例病理统计分析是归纳我国南北几个地区最大宗的一组资料，5045例恶性骨肿瘤巾，冒肉瘤占 $3.4 .17 \%$ ，软骨肉瘤占 16.10% 。转移瘤占 15.66% ，居第三位。国人常见急性肿瘤骨显像诊断骨转移的发病率见表10－3。国内备作者的结果有较大差别的原因可能主要与病例来源的地域和疾病分期的不同有关。骨转移瘤病人中男性为女性的 2.6 倍，好发年龄为 $40 \sim 70$ 岁。成神经细胞瘤的骨转移多为儿童。

表10－3 国人常见恶性肿痴骨显像诊逝骨转移的发病率

	Kivisive	UR				等紋嘘
	118\％	48，126 5\％）	39.341128	（0）$\}$（510）	3 B 3 +12	
	198\％		40， $9(2 \% \cdot 63)$	S＊＊ 14%		
	1588	45.564%			3），万6\％ 0 \％	
绞筞交等	1988	31．8（1）323）	81．0！ 17×15	＂\％0（\％）	6．\％\％\％\％	2，\％－8）
	10\％ 6					
	194\％	13，9（39－62）				
	13\％	52．3＜293－5\％3）				
	194：					
	1\％6		27.30468			
	1093					
今			38． 1 （693 37\％		＋\％\％\％	

为了便于分析骨转移瘤的分布特点，将全身骨䯘划分为如下 5 个区域（们括 14 个部位）：（1）胸部 （包括肋骨，锁骨，胸骨，肩盰骨）：（2）脊柱（烦，胸，腰椎）；（3）骨盆（䈷骨，坐骨，耻骨，骶量及骶骼区）； （4）四肢；（5）顼骨。综合国内资料，国人常见恶性肿痛骨显像诊断骨转移的区域分布见表 10－4。

表 10－4 国人常见恶性肿痛骨显像
诊䢤骨转移的区域分布（：\％）

	\％${ }^{\text {\％}}$ 相	W814	K4	Vk	4． 1	
娩經	4！6	78．${ }^{\text {\％}}$	3㐌等	120	3¢． 3	12．3
	20	78	find 6	13．8	\％． Y	10．
	\％	Bxab	的\％，	\％	\％4．6	\％\％
	8.3	\％A．${ }^{\text {\％}}$	43.3	\％\％\％	13．\％	\％．${ }^{\text {a }}$
	14	18， 9	緛，？	12．9	！	7．

临床表现方面骨转移瘤最先出现的症状为疼痛和压痛，约 $1 / 4$ 的病例合并有病理骨折。位于脊椎的转移瘤因肿瘤压迫或合并病理骨折常产生不同程度的脊髓圧迫症状，如截滩，神经根刺激症状等。病人有时合并消瘦，贫血，低热等癌性恶液质的全身变化。

二，显 像 表 现

（一）典型表现

骨转移的大部分病变表现为放射性摄取浓集或增高。最常见的是显示有多发，无规律，大小和形态各异的放射性浓集或增高区（㤏 10－5）。大多数骨转移病灶位于红骨髓丰富的巾轴肖，而较少的病灶位于四肢骨和颅骨。

少见的是由于广泛骨转移引起的高度成骨性反应，易误认为是正常图像，称＂超级影像＂（su－ perscan）（图10－6）。在这种情况下，由于大多数放射性核素蓄积在骨而不是软组织，中轴骨和四肢骨近侧端呈高摄取，几乎没有显像剂白泌氺道排出，肾不显影，这种表现最常见于前列腺癌，昌癌和乳腺嘻，这是因为上述三种癌在其他器官系统被累及之前已有播散到骨的倾向。近年来，由于 γ 照相机图像分辨率的改善，弥漫性骨转移通常不产生典型的＂超级影像＂图形，而是表现为中轴骨有多个小的，不连续的异常，同时常可见紧淡影。

罕见的是由于肿瘤伸至骨膜下和刺激新骨形成的骨转移，X 线广表现为＂日光放射状＂（sun－ burst）反应。由于这种表现在原发性骨肿瘤中可以

图 10－5 典型骨转移 a．前位：b．后位
出现，可能误认为原发性骨肿瘤。最常见的是前列腺癌，其次是支气管癌和成神经细胞瘤。显像表现是强的放射性聚集伸向皮质轮髻之外，伴有骨膜下花斑样强摄取。

（二）非典型表现

当肿瘤沉积不伴有典型的成骨反应时，骨显像可以是完全正常的。这种假阴性结果能够反映病变的性质较不活跃，但是缺乏修复反应也可以提示肿瘤的侵袭性，预后不良。这样的沉积更常表现为放射性缺损区。在明显的溶骨性病变时，缺损区周围被放射性增加所环绕，说明周围有修复反应。这种表现可以出现在很有侵袭性的肿瘤，或相反出现在生长很慢的甲状腺癌。

（三）孤立性病变

肿痛病人的骨显像发现孤立性热区是非特异性

图 10－6 前列腺赫骨转移呈超级影像经 X 线检查证实
a．前位 +b ．后位
的，引起的原因很多，它可以是早期骨转移的指征，亦可由良性病变引起。骨转移呈孤立性病灶者，国外约为 $10 \% \sim 15 \%$ ，国内约为 $4 \% \sim 16 \%$ 。 McNeil 总结了几组孤立性病变的意义， 55% 的孤立性显像异常由肿瘤引起， 25% 为创伤所致。 Tumch 等复习了 2851 例癌症病人，注意到孤立性肋骨病变仅占 1.4% ，其中 90.2% 来自良性因素。北京医院分析 1983～1996年进行过2次或多次骨显像的 909 例病人。其中发现 26 例（ 2.9% ）开始表现为性质难以确定的孤立性病灶，经过骨显像随诊现察，最后发展为多发性骨转移；当表现为孤立性转移灶时，仅 11 例有骨痛，而发展为多发性转移时， 24 例有不同程度的骨痛。从发现孤立性骨转移灶到发展为多发性骨转移，最短者 4 个月，最长者13年，平均 2.2 年，说明骨显像对孤立性病变随诊的必要性。

三，临 床 应 用

（一）在一般肿霓中的应用

1．分期 骨显像能发现肿瘤病人有无局部骨侵犯和多处骨转移，是临宋分期的重要依据，而分期与治疗手段密切相关。在新诊断的肿瘤病人中，骨显像用于最初分期主要是在高危肿瘤病人（淋巴结阳性），特异性肿瘤标志物升高和骨痛的病人。以及无特异性肿痛标志物检测的肿瘤病人。

2．评价骨痛 肿瘤病人主诉骨痛是临床上最困难的问题之一。许多学者发现骨捅和骨转移间有统计学上的显著相关性，特别是没有放射学异常的，是骨显像常见的适应证，这不仅为除外骨转移，同时也可能发现运动损伤，可疑感染等。昌外，骨显像可以为骨活检提供准确的部位。

3．预后 骨转移有限的病人有较好的预后，骨转移的部位也可以提供预后信息。溶骨性肿瘤沉积使骨薄弱，是病理性骨折的潜在部位．特别是当这类病变位于脊柱（颈，胸，腰椎椎体均可发生，甚至引起截瘫或死亡）和负重骨（最常见是股骨）时，如能在骨折前识别，有利于采取适当的外科处理，以防止病理性骨折的发生。最常出现病理性骨折的是乳腺癌，肾癌，肺癌和甲状腺癌。

4．随访 骨显像可用于追踪疾病的进展。对肿瘤病人骨显像没有一套规律的间隔随访常规．而是医生视每个病人的情况而定。当更有侵袭性的组织病理学，局部播散，新的骨痛症状出现或血清标志物升高时，宜多次显像。

5，观察疗效 骨显像可以作为观察治疗反应的手段，但治疗后早期忙现的＂闪耀现象＂能够使疗效判断遇到困难，系列肿瘤标志物的检测和骨显像有助于识别。所谓＂闪耀现象＂是指骨转移癌应用化疗或放疗后的最初几个月内，被治愈的转移癌病灶处最初伴有成骨反应和由于对肿瘤破坏的炎性反应可能增加血流而表现为放射性增高，小的以前末发现的病灶也可显示为新病灶，易误认为疾病的进一步扩散。一般在治疗后 6 个月愈合，病灶对放射性的摄取减低，为此，用来评价疗效的骨显像应该推迟至治疗后 6 个月。＂以耀现象＂存在有时提示治疗成功，缺乏＂闪耀现象＂不意味着治疗失败。治疗原骨显像的病圷数目减少．范围缩小，是延长存活的指征（图 10－7）。

图 10－7 学列腺㿋广泛骨转移治疗前后去势治疗后 4 个月，骨转移病灶数目明显减少，范围缩小 a．治疗前前位：b．治疗前行位；c．治疗后前位；d．治疗后后位

（二）肺㿋

肺癌在骨内能 $\boldsymbol{j}^{\text {和生溶骨性，成骨性或混合性反 }}$应，以混合性为主。在全身骨骼不同区域骨转移的发生率由高到低依次为胸部，脊柱，骨盆，四肢和频骨。四肢转移常见于肺鳞癌，有时甚至有掌骨，跖骨和指骨，跳骨转移。脊杜转移常见于 12 胸满。位于肺尖的潘科斯特肿瘤（Pancoast iumors）能局部侵犯邻近的锁骨和较上的肋骨。腺煰多发生在肺的外周部分，接近胸膜，可直接莫延侵犯胸膜机肋骨，造成胸腔积液。当肺癌病人无症状时，骨显像也常能发现有骨转移，因此肺癌病人应常规作骨显像。

肺曒病人主诉骨痛常见有三种可能，一是骨转

移，二是肥大性肺性骨关节病（hypertrophic pul－ monary osteoarthropathy，HPO），三是骨性关节炎。关于 HPO 的发生率，国外报道为 $4 \% \sim 10 \%$ 。北京医院在 1537 例肺癌骨显像中发现 HPO 51 例，占 3.3% ，其中腺癌最多，其次为鱗癌和小细胞癌。其发病机制主要是骨膜新骨形成，可能与病灶产生毒素和自主神经紊乱引起末梢循环异常有关。 HPO 核素骨显像的表现主要是沿长骨特别是下肢骨的＂双条＂（double－stripe）征或＂双轨＂征，通常对称（图 10－8）；有时伴有四肢骨的不均匀非对称的放射性增加，类似骨转移；常合并关节周围对称的放射性增加，应与多关节荻或全身性疾病鉴别。同时 HPO 的待征表现随病情好转和恶化亦有

相应变化，有的病例经化疗临床有所缓解，＂双条＂征消退。

图 10－8 肺性肥大性骨关节病双侧股骨，俥骨沿骨干皮质对称性放射性浓集，呈＂双条＂征 d．前位；b．后位

肺癌病人在治疗前后的骨显像中常见到胸部软组织浓集骨显像剂，其表现为局灶性团块状浓集及单侧胸部部分或全部呈弥漫性放射性浓集。马寄晓等观察了 127 例经临床，病理确诊为单侧肺癌病人的骨显像，发现除 2 例为肺癌肿块处浓集骨显，像剂外，有 40 例为单侧胸部软组织呈部分或全部弥温性浓集。分析其原因有放射治疗引起的照射侧软组织摄取；胸腔有恶性积液：未经放疗或不存在恶性积液的病人可能是由于局部炎症或手术后造成。

（三）乳腺澏

乳腺癌的转移是成骨性，溶骨性或混合性的，

以混合性为主。不同部位的骨转移发生率由高至低依次为胸部，脊柱，骨盆，四肢和顾骨，背柱转移常见于腰椎 2 椎体。乳腺的骨转移能在最初诊断明确后很多年发现。Coleman 等报告 1075 例乳腺癌临床 I $\sim \mathbb{N}$ 期的骨转移率分别为 $7 \%, ~ 20 \%, ~ 36 \%$和 69% 。北京医院报告 530 例乳腺癌临床 I 一 N期的骨转移率分别为 $7.8 \%, ~ 31.5 \%, ~ 49.0 \%$ 和 90.9% 。由于骨显像发现骨转移，原分期都不得不政为IV期。左书耀等对 51 例乳腺癌术后病人的骨显像进行了分析，在经病理证实为腋淋 C 结转移的 39 例中，术后 $1 \sim 60$ 个月有 32 例（ 82.1% ）诊为骨转移，而 12 例无腋淋世结转移的病人。只有 3 例 （ 25% ）术后发生骨转移，且发生时间均在术后两年半以上，最长 1 例为 14 年，二组差异有显著意义。结果提示有腋淋巴结转移的乳腺癌病人术后容易发生骨转移，需定期采用骨显像随诊。

（四）前列腺癌

骨是前列腺癌转移的第一部位，且发生率很高，主要是成骨反应。骨转移的区域分布顺序为骨盆，脊柱，胸部，四肢和颅骨。北京医院分析 42例前列腺癌骨转移的病人中，有 10 例因骨显像发现骨转移寻找原发肿瘤而确诊为前列腺癌，有 10例呈＂超级影像＂表现。

过去应用血清酸性磷酸酶和碱性磷酸酶协助诊断前列腺癌骨转移，近年来随着更灵敏更特异的血清前列腺特异抗原（prostate specific antigen．PSA）测定的厂＂泛应用，前列腺癌病人骨显像的适应证已有了变化。PSA测定的最佳应用是连续系列地评价病人，而不是单看某次具体值。一般认为，无症状的前列腺癌初诊病人，PSA 值为 $10 \mathrm{ng} \mathrm{ml}^{\text {或以 }}$下时，骨转移的发生率很低，可以不作骨显像：当 $P S A>10 \mathrm{ng} / \mathrm{ml}$ 或 $\mathrm{PSA}<10 \mathrm{ng} / \mathrm{ml}$ 伴有骨痛时，宜用骨显像分期。经过治疗的前列腺癌病人，当用雄激素治疗或前列腺切除根治术后PSA 升高，或其他情况下 PSA $>10 \mathrm{ng} / \mathrm{ml}$ 时立作骨显像，当骨显像结果可疑时，PSA 值升省提示该异常可能为转移，而 PSA 值降低则提示显像发现另外一种原发恶性肿瘤的骨转移或是良性原因。

另外，前列腺癌多发生于老年人，骨关节退行性变和骨质疏松造成的骨折发生率较高，在判断骨亚像时，应注意骨转移与良性疾病的鉴别诊断。

四，诊断与鉴别诊断

虽然骨显像是一种具有高炎敏度低特异性的检查，但在许考情况下。经认真分析识别，并密切结合病史，症状，体征，血化验及X线片等，可以对疾病作出诊断。骨显像诊断骨转移㨨的要点见表 10－5。

衰10－5 骨显像诊断骨转移瘤的要点
新病好：
随时间病灶增大和＂或放射性增高
在一个骨的非对称性损害
散在，无规律分布（如邻近骨异常，考虑为同部侵犯）
伸进骨髓腔（离开关节）
放射性缺损以
靶非损害：边缘放射性增加，中间放射性践少
趋级影像：学不显影或呈淡影
X 线片不能解释的骨显像异常
在判断多发性病帉吋，分布是关煡性的。如儿个肋骨骨折局灶性放射性增高或浓集区以排列成直线型或曲线型（图109）。骨转移和 HPO 放射性异常的分布完全不同，转移膈几乎总是累及中轴骨，不规律，向灶性，当长骨被累及时。非对称，且异常的放射吽：主要聚集在骨髓腔；而 HPO 主要影响四肢骨的皮质，规律，弥漫性．对称，除较重病例外，通常不累及奢柱，骨盆和肋骨。＂超级影像＂亦可见于代谢性骨病，在注射显像剂和显像之问行

透析疗法的肾衰竭病人所显小的骨亚像与＂超级影像＂极为相似。弥漫性累及骨髓的恶性肿瘤，如白 ｜血病的带显像表现更像代谢性骨病。萎陷性椎体的放射性增高亦值得注意，因为这可以来白骨转移的病理性骨折或良性疾病。当一个萎陷的椎体偏离了特征性的线性表现，或邻近的软组织，椎体的放射性增加（由邻近的肿瘤侵犯引起），则提小゙转移。放射性增加限制在近关节的骨表面时罕见代表骨转移，而关节炎的可能性大。

在嵝断孤立性病变时，要注意原发肿瘤的类型和继发肿瘤分布的影响，如乳腺癌病人有孤立的胸骨异常，大部分是恶性的，这是出于乳腺癌原发部位或邻近淋也结有示部肿瘤侵犯所致。病灶的形状对判断苽立性病变的性质是有价值的，如侵犯肋骨的转移病灶可以沿肋骨伸长或累及部分肋骨。而肋骨骨折的病灶更为局限。病灶的部位对判断病变的性质亦很有帮助，如出现在肋骨，特別是肋骨与肋软骨连接处的＂热区＂常出被遗灾的创伤所致。肋骨和胸骨骨昆像良恶性病变的鉴别如图10－10。斜位平面像和 SPECT 有助于对孤立性异常更准确地定位和浢价大小，特别是病变在椎骨时，脊杜的恶性病变累及椎体，可能伸向椎马，罕见仲进栜突，椎问盘能阻止肿瘤沉积。在邻近的终椎板，后神经弓包捛小平面大节，单独横突或梀突，以及扩展至椎体正常边缘以外的放射性增加均提小为良性病变 （图10－11）。

图10－10 肋骨和胸骨肖显像家恶性病变鉴别示意图
肿㾇病人有时合并良性疾病造成骨显像上类似骨转移，如合并有良性：肿瘤（血管瘤），Paget＇s 病或甲状奇腺功能九进有棕色瘤时。正电于发射断号 （positron cmission computed tomography，PET）显

图10－11 目柱骨昆像良业性病变鉴别亦意图
像可以鉴別转移瘤和 Paget’s 病，因以成骨性转移显示对気 $\left[{ }^{18} \mathrm{~F}\right]$ 脱氧甪萄糖（ ${ }^{28} \mathrm{~F}$－deoxyglucose，${ }^{\circ} \mathrm{F}$－ FDG）摄取的增加，而 Paget＇s 病成对 ${ }^{18}$ F－FDG 摄取的增加。骨质㟋松症的多发性骨折也易与旨转移泥渚。近些年来，一些乐肿瘤品像剂已用于鉴別骨的良恶性病变。但尚需更多的临床实践才能评价。

五，比较影像学

放射性核素骨显像比普通 X 线片检测骨转移的灵敏度更高，可提前 $3 \sim 6$ 个月或更长时间发现骨转移灶，因为当骨转移瘤使局部骨转换有 $5 \% \sim$ 15% 的政变时才可使显像剂摄取增加，而便所＂物质丢失超过 50% 时才能在 X 线上被辨认出来，且 X线对于不同部位的疋敏度不同，脊柱较肋骨，骨盆部位更难以发现。文献报告约有 $26 \% \sim 45 \%$ 的背转移瘤骨显像阳性而 X 线阴性。表10－6综合了国内两组 204 例骨转移瘤两种检查方法的炶果对照，表明有 34.3% 的骨转移瘤骨显像阴性侕 X 线阴性。

萠大禹等对骨转移癁 ${ }^{9 \times m}$ Tc－MDP 骨显像与 CT骨检查作了对比观察，发现骨业像能检监 30.4% （ $14 / 46$ ）的 CT 阴性病灶，而CI检出骨显像阴性者仅为 $4.3 \%(2 ; 46)$ 。北京医院探讧了骨品像与于 MR 对于诊断脊柱骨转移瘤的临床价值，提出MR对脊柱骨转移瘤的沴断灵敏度不低于核素平面骨显

像。
总之，核素骨显像在诊断骨转移瘤巾监列为首选，X 线，CT 和MR因能罡示清晰的解剖结构 IIIj作为核素骨显像的补充：诊断骨转移瘤的影像学检查程序如图10－12所示。

骨品像

终1012 诊断骨转移瘤的影像学检杰程痛

第4节 原发性骨肿瘤

一，分 类

来源于骨骼系统本身的肿瘤称源发珄骨肿瘤 （primary bone tumour）。原发性骨肿瘤根据肿瘤的结构，生长，犦延和对机体的影响分为良性骨肿瘤和恶性骨肿疾两大类。多数骨肿瘤为单发。但骨软骨瘤，软骨瘤，骨髓瘤等常为多发，骨巨细胞瘤，骨肉瘤也有多发者。在我国，原发恶性骨肿瘤最美见的是骨肉瘤，其次是软骨肉瘤和骨道瘤：良性骨肿瘤多见为骨软骨瘤和软骨瘤，骨曰细胞瘤边是一种多见的骨肿瘤。

二，骨 肉 痹

（一）临床概述

骨肉瘤（osteosarcoma）是最常见的恶性骨肿瘤，其特征是肿瘤细胞直接形成肿瘤骨样组织和肿瘤骨组织，在恶性骨駉瘤中最具代衣性。据国内资料统计，骨闪瘤的发病率占原发骨肿瘤的 19.1^{c} ：。古原发恶性骨肿瘤的 41.6% ，明显高十WHO 的统计（ 12.21% 和 22.36% ），是原发恶性骨肿瘤的第一位。冒闪瘤的发病率男性为 1.1210 か，女性为 $1.06 / 10$ 万，好发手龄为 $10 \sim 30$ 岁．发生在骨出长的相对迅速期，主要危害青少年。骨肉瘤的发病部优以四肢长骨多见，股骨下端，㺼骨上端和脏

骨上端为最好发的部位，腓骨，颌骨，骨盆，脊柱等部位均有发病。咨肉嗝多为单发病灼，也有多发者。

发生于长骨的骨领痛，原发病变多井始于十㩆端．少量位于骨于部，骨肉鹪的病理变化主要是骨的破坏和瘤骨形战交错进行。中央型骨肉㽾由筲髓腔起源。向周围骨质扩展并在戧愹内蔓延。肺瘤向骨外发展，穿过骨皮质达骨膜下方，再侵人周用软组织。骨旁骨肉瘤发生于骨膜，骨皮质附近炶缔组织或骨皮质表面部位，又称皮质旁骨肉瘤。

骨肉瘤开始发病时病人症状轻微，仅有间歇性隐痛，逐渐表现为持续性剧烈疼痛，终痛之后，局部肿胀或出现肿块亣有沾著正痛，可伴有皮肤温度增高，表面静脉曲张，关节活动受限，患肢肌肉萎缩，随病情进展呈进行性加重。并逐渐出现消瘦，发热，贫血而呈酓液质病态。骨肉瘤谷易早期发生肺转移，表现火咳嗽，绹痛，咯血或出现病䧉骨

逄 10－1：3 4 例发病部位不同，的势肉瘤（前位）

结果，其中有 4 例多发骨肉瘤和 3 例肺转移灶对 ${ }^{\circ} 0_{m} \mathrm{Tc} \mathrm{c}$－ MD ） 有摄取。

图1014 骨肉瘤肺戟移
患者，男， 19 岁．右臤骨骨肉留术证 1 年：肺内多发㪄射性浓集区提示为转移灶（右肺上叶尖段，左肺上叶尼段，

朔段，左肺下叶肯段），与（T 所见一致
a．前位 b．府俍

（三）诊断和比较影像学

骨肉瘤的诊断根据临床病史，X 线片发现和碱性磷酸酶的变化，白病理组织学确诊。 X 线片是最重要的常规检査方法，骨肉瘤的 X 线主要表现为肿瘤性骨或软骨破坏，瘤骨，瘤软骨形成，多形态的骨膜反应及软组织肿块，原发性骨肉瘤可分为髄内的（中央型）或皮质旁骨肉瘤，主要的组织学类等可以由 X 线片反映出来，各数骨肉瘤是混合型，也有硬化型和溶骨型。X线检查恶性骨肿滛的准确率达 90% 以上，其中骨肉瘤的准确率达 70% 以上，因此X线片对骨肉瘤的诊断具有重要价值。 ${ }^{\text {Nas }} \mathrm{Tc}_{\mathrm{c}}$

MDP 全身骨显像对发现多发病灶，检查骨肉瘤的转移性病灶有价值。胸部 X 线片和（T）可检查肺的转栘性病灶。CT 和 MR 对确定肿瘤皆与软组织的界限范围，确定肿瘤与较大神经血管结构和临近关节的关系是有价值的检查力法。手术前和化疗前后的影像比较，可通过肿瘤对治疗的反似确定外科治疗方案。肿瘤外科的随访则通过 X 线片，放射性核素骨显像和多学科影像结果来监测肿瘤局部复发和确定转移灶的部位。

三，软 骨 肉 瘤

（一）临床概述

软骨肉瘤（chondrosarcoma）的发病仅次于骨肉痛，综合因内统计，古原发骨肿瘤的 9.0% ，占原发恶性骨肿㿇的 19.7% ，也是常见的恶性肿瘤之一。软骨肉瘤是以肿瘤细胞形成软骨为特征的恶性骨肿痹。软骨肉瘤有原发和继发两种．后者可由软骨瘤，骨软骨瘤恶变而来。大多数软骨肉痹病人为 20 岁以上的成人，男女之比为 $1.7: 1$ 。阴肢长骨和角盆为好发部位，也见于房胛骨，椎肖，觝骨，锁骨和足骨，指骨等部位。继发性软骨肉瘤的病程一般较长，可达十余年．治疗以古期彻底于术为主，顶后较骨肉瘤为好。

（二）显像表现

由于软骨肉瘤形成的软骨细胞可以直接成骨，软骨钙化以及软骨肉痹对骨的破坏。随着软骨肉瘤的缓慢生长，肿瘤匤迫，侵蚀骨皮质出现膨胀性破坏区。当骨皮质被穿砤时，在骨外形成弥漫性肿胀或肿块。因此，骨显像表现为肿㿔的放射性浓集病灶，边缘不规则，可唚及软组织，呈团块状或絮状，甚至可以将骨破坏所表现的放射性减低区遮盖起来（图 10－15）：

（三）诊断和比较影像学

软骨肉瘤的诊断根据病人的年龄，肿痹部位，临床病史及 X 线片的表现可以诊断。 X 线方的主要表现有：（1）骨质破皮：（2）痹软骨钙化一一软骨肉瘤最基本的 X 线炋象，骨软骨瘤恶变常呈菜花样钙化：（3）骨瘤 一象牙质样钙化：（1）软组织肿块，骨显像对肿瘤在骨内或肖外转移灶的确定与评估有意义．对 X 线片还畐不到的病变．特斺是对占原发软骨肉瘤约 6% 的背杜病变的发现存帮助。

图10－15 牧用肉瘤
左肩朋骨潨化样蜰物；骨㫫像可见左的胛皆表现为込缘不规则的团块状放射性浓集；病理证实为软骨肉㨨 ：．．前位：b．后位

四，骨 软 骨 瘤

（一）临床概述

骨软骨痖（osteochondroma）又称外生骨䏙，是最常见的良吽骨肿疾，有单发和多发，多发者义称干骷端续连症。国内资料统计骨软骨瘤占原发骨肿瘤的 15.5% ，占良性骨肿瘤的 28.6% ，耏 WIIO统计的数据较国内统计的高，分别为 19.89% 和 43.80% 。骨软骨瘤可以恶变为软旨肉瘤，单发和多发的恶变率分別约为 1% 和 5% 。

骨软骨瘤多见于儿童和青少年，也有 60 岁以上的发病者，劣多于女，以软骨内成骨和四胶长骨

十煱端发病最多，也见于扁骨和不规则骨，如肩盰肖，锁骨，骨盆，肋骨，脊柱，坐骨等。单发性骨软骨瘤最多发生在膝关节组成骨，以脸骨上端较多。早期无病状，仅在局部出现破肿块或在青春期因畸形而就诊。骨软骨瘤靠近关节可引起功能障矽，长迫神经血管叮引起神经症状，产生疼痛。多发性骨软骨瘤与单发性者相比较，主要的不同之处在于有明显的遗传因素，对称发病，局部出现畸形，叮触及硬性不活动肺块，受累骨局部增粗变宽，比单发者发病比率低．恶变率略高。

骨软骨瘤的病理形态多种多样，大体分为两部分：基底部与啠部。基底部可以细长或者短粗，细长的形成蒂与骨相连，骨皮质延续成蒂的薄层皮质，内为松质骨。冠部为软骨层，薄厚不一样，呈梂形或潨花样，在软骨㝴的表面有一层很薄的纤维膜与软骨冠紧密相连。 ${ }^{\prime}$ 基者的软骨面积较大，而带蒂者只在顶端才有软骨覆益，称＂软骨帽＂。

（二）显像表现

骨软骨瘤的骨显像反映骨软骨瘤的病理形态•表现多种多样，有单发或多发。瘤体有厂＂基和带蒂者，都可看到基底部的骨度质显影，肿瘤顶端的软骨幅不必影，但在软骨增生活跃时有软骨钙化带呈多峰样凹凸不平，可见到环形钙化带，多个不形钙化带重叠起来构成放射性分布不均匀的增高区（图 10－16）。

十解端续连症在骨端可生长多个骨吽肿物，局部出现畸形，特别是在膝部和踝部。多发骨软骨瘤的生长政使长骨骨十的生长力量问周闱分散，骨端不规则粗大变形，骨下缩短，影响发育，患者身材矮小。全身骨显像可清唽地表现H这些变化的全貌 （图1017）。

（三）诊断和比较影像学

X 线为诊断本病的首选方法，其 X 线片征象有三点：（1）蚛瘤的骨体：（3）肿瘤顶端的软骨幆： （3）软骨钙化。如上所述，骨显像可反映出与 X 线检查一致的病理变化．鉴別诊断主要是良恶性的鉴別。当骨软骨瘤已停止生长，又突然生长活跃，迅速增大或出现朋显疼痛时，X 光片有软骨帽增大，瘤内钙化和骨化作用增强，特別是基底部或骨干有破坏时，多表示有恶变。㤥素骨显像示局部放射性浓集灶有软骨肉瘤的表现时，必须加以重视，及时 F术。

图 1016 单发骨软骨䆚

折叮见白坐骨补生的短蒂; 病理报出为骨软骨瘤
a．前位；b．后位：c．骨分断层前位：d．骨盆断后后分

五，骨巨细胞瘤

（一）临床概述

骨巨细胞瘤（giant cell tumor of bone）为常见的骨肿瘤。骨巨细胞瘤的主要组织有两种，即条核巨细胞和间质细胞，认为巨细胞是由基质细胞融合而成，基质细胞是肿瘤的主体。因此病理分级按骨巨细胞瘤组织学上间质细胞的分化程度，巨细胞形态和数目的多少等表现分为三：级：良性，生长活跃和恶性骨巨细胞瘤。综合国内统计，约占原发性骨肿瘤的 3.3%（WHO 统计占原发骨肿瘤的
8.63% ）。男女之比为 $1.2: 1$ ．午龄以 $20 \sim 40$ 多发病最多，约占 70% 左有。其余年龄段都有发病者。发病部位以股骨下端，趽骨上端及桡骨远端最多，发生于欧肢长骨的总计约占 80% 左有。其他部位如脊柱，骨盆，肩胛骨，指骨，骽骨等都有发生，绝大多数为单发，也有多发者。临床主要表现为不同程度的疼痛，肿胀。尽管临床上发现有的骨下细胞瘤的生物学行为并不完全和组织学特点—致，病理学分级并不完全说明其良恶性，但目前仍是一项重要的参考指标。骨巨细胞瘤的治疗以经于术厂泛切除为宜。复发率为 $18.3 \mathrm{c} \%$ ，恶变或转移
ω

均可见大小不等的寻性兴起㖪隆起，甚底部究，峰状。前性突炄处骨皮质薄，未见青櫒反应：打显像消晰地表晛出上述抆体变化的全視
a．的位：b．hifi
占 $9 \% \sim 13 \%$ 。

（二）显像表现

较大的良性骨干细胞痹和牛长活跃的恶性骨户细胞瘤的㫐像表现为不问程度，不问大小，不同形态的放射性增高或浓集（骬壳和骨膜的反应），中心的破坏区则表现为放射性分布减低断（图 1018 ）。骨显像可显か复发和恶变转移病叶。

（三）诊断和比较影像学

青巨红胞瘤根据临床病电，四肢长骨局部肿胀疼痛出现包块或外伤引起病理吽骨折以及 X 线片

别诊断的参考标准。骨户细胞瘤的良恶性风分应结合临床病程，X线和病理综合考虑，骨显像痉对此有所帮助。并且在复发，恶变和转移灶的诊断中，泛应用。

第 5 节 代谢性骨病

一，临 床 概 述

在正常情况下，骨组织不断有旧骨吸收，又有新骨形戊，以经持骨代谢的平衡，保证骨的正常质量和功能。自 Albright 私 Reifenstein F19．48年提出＂代谢性骨病＂（metabolic bonc disease）这一概念以来，人们对它的认识に益深入，当营养缺え，肉分泌失调，酸碱失衡，肾脏疾病和遗传缺陷时，都可引起青代谢的絮乱，造成弥漫性肙骼病变，即代谢性骨病。代谢性省病包括很多利疾病，常见的有原发性甲状旁腺功能元进，肾性骨营养不良，枈质疏松症，骨软化症和 Paget＇s 病．罕现的有维＇t素 D过多症，甲决腺理能元进和蚑端肥大症。

二，显 像 表 现

（一）典型表现

全身骨受到累及，主要是增加骨转换和增加对骨显像剂的摄取，冒和软组织的对比增扐，吕优秀质量的骨显像图，以至于因图形太好的认为不是真的。较严重的骨代谢增加的病人可以显示如下特征：长骨对称吽放射性摄取增加；几人轴情放射性摄取增加：顾骨和下领骨的放射性摄取增加；关节呵围组织的放射性撖取增加；肾呈淡影战不显影；肋骨软骨连接处有明显的放射性摄取，呈串珠样 （beading）；胸骨影明显，呈领带征（tie sign）。

Fogelman 和 Carr 曾提咕用记分法评价上述䇅种特征，0：正常；1：异常；2：显著异常。每个病人七个特征的记分之和称代谢指数（metabolic index），当代谢指数超过4，斯 5 或以上时则判断为寻常。

（二）非典型表现

在轻度骨代谢增加的病例，骨显像可以表现为正常。

严重的病例可见肺，胃钙化，或由于棕色瘤所致的中间放射性减低，同边不均与放射性增高的类

环形影。肺，䁍钙化不是代谢性脋病的侍征，因为化恶性肿瘤病人小曾发现有肺，胃钙化，
（三）局部骨代谢性疾病，如 Paget ${ }^{\circ}$ 病琙假胃折，其具体表现将化下面叙述。

三，临床应用

（一）原发性甲状旁腺功能六进

近 20 年束。在发达国家随着的钙测定篮选的记用，原发性甲状旁腺功能尤进症（primary hyper－ parathyroidism）的患者约有 50% 无症状。同时带见泌砝系，胃肠道和神经精神症状，骨䯘改变的发生率龺逐渐下降趋势。在国内， 80% 的原发吽甲状旁䐂功能充进以骨骼病变衣现为主㖪与湡尿系结石司时存在，骨苌像不仅存助于诊断，而且可用于术后随访。一般认为钎状穷腺肿物手术切除后，骨摄取昆像剂增多仍可维持一年。北京匠院曾报道1例原发性甲状旁腺功能亢进病患者有肺，胃和软组织多发异们钙化（ectopic calcification），其机制是锎盐在肺，胃粘関和软组织的异位沉积，术有上述异常摄取恢复止常（图10－19）。原发唑忛状旁腺功能几进存纤维囊性骨炎或标色瘤（brown tumors）时可见类不形影（图10－20），其骨显像剂是否们庆灶内浓集取决丁棕色瘤的形成阶段。如果以破惄为主，则表现为放射性缺损，如同时有新骨生成则摄取骨显像剂，表现为放射性浓集。

（二）肾性骨营养不良

慢性肾功能不全的病人，由于有功能的肾单位减少，活性最强的维生素 D 的代谢产物生战受陮。造成钲磷代谢絮乱。即低钙血症和高磷血症，继而引起继发性甲状亭腺功能亢进。核素骨显像在代谢性骨病中发现的最严重和最显弯的特征性衣现常常发生在严重的肾性骨营养不良（renal osteodystro phy）的病人（终10．21）。通常2．1 小吋示踪剂的全身滞留却增加，骨与软组纤之比开高，偶见异位钙化，肺，胃，肾白影。在肾移植后的骨显像可逐渐恢复正常。

（三）骨质疏松症

骨质疏松症（osteoporosis）是老年人的一种常见病，其特征是低骨量和微结构的破吥，在飨微外㘯和无外伤的情况下容易发生，骨折。病情较轻时常无朋星症状，往往由骨密度测吾和 X 线检查发现。病人初次就诊最多的情况常常是骨折，骨折部位以
\qquad

图10－19 宗发忙虫状旁腺功能尤进多发吕位钲化

左股同及左睩关节外侧皮下局部隆起的结节处（箭头）有明显的放射性浓集，为异位钶化表现。

椎体，䯝部和腕部为多见。在轻微外伤或无外伤的情况下都容易发生冐折，甚至发生在咳嫩或打喷啶之后，75罗以」奴女的骨折发生率高达 $80 \% \sim$ 90% 。

骨显像在骨质流松症时可见骨摄取小踪剂量普遍较低，骨与软组织的对比度减少，椎骨轮廁较差。由于明显的脊杆后队，椎骨高度降低，在多发性椎骨骨折时有时肋骨架接近骨盆。由骨显像第－次发现骨折然后诊断骨质疏松拝并不少见，特別是能发现 X 线阴性或可疑的䯈折。椎能压缩性骨折有强的线性特征性放射性浓集，其他部位的骨折有

局灶性放射性浓集，经 $6 \sim 18$ 个月放射性逐渐减淡，因此应用显像剂被摄取的强度能够帮助评价骨折发生的大约时间。如急性和慢性背痛的病人，X线表现为椎体萎陷，骨显像能帮助评价该疼诵是否由压缩性骨折所致，并可根据骨放射性浓集程度确定有无近期骨折的发生（图10－22）。正常骨显像可除外近期骨折，应当进一步寻找疼痛的原因。

（四）骨软化症

骨软化症（osteomalacia）是新形成的骨基质（类骨质或称骨样组织）不能正常矿化的一种代谢性骨病，有诊断意义的 X 线表现为假骨折。为一种条
\qquad

：
图 10－20 原发吽甲状旁腺现能元进纤维蟗性骨炎患者，男，50岁，腰痛3个月双下肢痽疾20 天： X 线 5 腰椎
变：右股骨内侧丞穿刺活捡和驹 11 病变切除术原病理为呩㐌描：骨显像示胸推 11,12 ，右䟡憼关节及右滕关节分别有一中

高区；四肢胃放射性增成，股骨及膘骨皮质尤为清晰，临头及

病珜诊断为廿状旁腺腚背

a．前位；b．后位
状透明区称 Looser 区，一般呈对称性分布，多发生于耻骨支，坐骨支，肋骨和肩胛骨外侧缘，髂骨睤，股骨上 $1 / 3$ 骨十，，腓骨上 $1 / 3$ 部位，因这些部位均有供萓养的动脉，血管搏动损蚀软骨，山久形成沟槽所致。在骨软化症骨显像上显示代谢性骨病的典型特征，尽管在疾病早期的骨显像上叮以正常。假骨折部位表现为局部的放射性浓集以，骨业像为发现假骨折提供了一个灵敏的手段．特別是常

图 1021 肾吽骨营着不良
坌非，临床诊数为摱性肾功能小企。贫显象示冎影普遍增㳖，九以顾盖前，下顽骨，四抆长骨阴显．双肾㛫不消，符合肾性骨焉养不良表现：双手小关节朋最的放射性增高为类讽潶性关光炎所致 a．前泣：b．居位

被 X 线漏诊的肋骨假骨折。一些学者认为，假骨折的发现是骨显像在骨软化症中最有价傎的应用。

（五）Paget＇s 病

Paget＇s 病义称畸形性骨类（osteitis defor－ mans），在西方国家是－种常见病．特别是在英格关和北欧国家以及他们的原営居住的区域。国内少见。值得注意的是大多数病人无症状，仅因发现血清碱沚磷酸酶增高或经 X 线检查，核素骨显像偶然診断，脊椎和骨盆是最易受侵犯处，其次为股骨，詮骨，头骨，官胛骨和胘骨。古期为溶骨性破

图1022 化缩性肖折分期（宿位）

 12 为攻近期（粗箭义），腰栫1（空心箭头）为陈 18 性压缩骨折

坏，以后为成骨性变化，最后骨骼变形。过去被认为是不治之症，现在随着有效治疗约物的出现，认为是可治之症。

核素骨显像在．Paget＇s 病有朋显的特征：受累骨的全部或大部分有显著的放射性掫取增加并分布均的，唯一常见的例外是局限性骨质疏松（ostcoporosis circumscripta）（囊性病变累及颅骨），这种情况下仪在病灶边缘表现为强摄取；常发现多个骨受累，单发少见，约占 20% ；受累枈直径变人（expansion）和变形；受累病灶边界整齐，倾向于保留甚至放大骨的正常解剖，可见解剖学上的细微构造，如惟冒的横突常受累：椎骨病变呈倒 二角形的＂米老鼠＂（mickey mouse）征或＂小鼠面＂（rrouse face）征（图 10－23）。F颁骨单骨病变呈＂黑胡＂（black beard）征，脊柱，骨盆和股育上段病变呈＂短罩＂（short pants）征；岖肢骨的病变几乎总是源十关节端。向骨干进展，严重损害可见有锐利的 V＇形边缘，此表现与 X 线片上所见的囊性火焰形吸收相符：军见的报告显示 Paget＇s 病局限于怪省的骨干，甚至是前脰骨结节；病灶多年变化缓慢。

典型的 Paget＇s病骨咷像容易识別。骨业像对评价Paget＇s 病的骨䯘病变范用，单骨还是多骨受累夜其独到优势，是理想的篮选技术。同时，骨显像比放射学检查有更高的吴敏度。另外骨显像也能

图 10－23 Paget＇s 病骨显像＂小少面＂征
患者，男， 58 岁，X线及 MR 疑有骨转移：骨亚像示行侧育盹
个局灶珄放射性浓集区，呈＂氮面＂（mouse fare）佂（箭头）；手活检病理诊断为 j’aget s 病 a．前位；b．后位

追踪疾病的进展及治疗效果，对治疗前血清䂸性磷酸酶正常的病人，骨显像是了解治疗反㠃的客观手段。当然由于骨显像的低特异性，在诊断中骨显像与 X 线检查有互补作用。骨显像不足以排除 Paget’s 病造成的骨折和恶性变化，有时 Paget＇s 病和骨转移痛难以区分。除可用X线检查帮助以外还可作 PET 骨显像。

第6节 骨创伤及随访

20世纪90年代以来，骨显像在发达国家运动

医学上的应用增加，一些核医学医师已成为运动医学专家。 日前国外X线检查仍是诊断骨创伤的首选手段，但当 X 线检查阴吽或可疑时，普遍冉作：三时相骨显像，以除外 X 线未能发现的骨折。骨折骨显像表现为骨折部位及其周围的放射性浓集，这与骨折后的一系列生理过程．如出血，血肿，炎症反应，胶原基质形成，骨化和修复等有火，并受骨折的大小，被累及骨和骨显像技术等因素的影响。高分辩延迟骨显像能正确定位病变部位，血流相和血池相检查有助于估测受损时间。急性期持续 3～4周，延迟背显像示放射性浓集风域的护展远离骨折线；亚急性期持续 8～12周，较广泛的放射性浓集区域变得局限，在长骨上常呈线性．更接近解剖学上的骨折部位；以后的 $4 \sim 24$ 个月放射性浓集減淡。有的学者报告与运动相火的应力骨折 （stress fracture）。应用三相骨显像的血流相阳性直至 4 周，平均 2.9 周；血池相吅性直至 8 周，平均 5.2 周。

在骨折部倍出现放射性浓集的时间受年龄等因索的影响。老年，身体衰弱或骨质疏松症的病人作骨显像时可能在热折后前几天不出现放射性浓集。一般认为，在骨折后 24 小时 80% 的骨显像异常， 72 小时 95% 的骨显像异常。骨折或手术创伤的骨显像表现亦依赖于年龄，年轻人骨折愈合后放射吽恢复的时间正常最短为 6 个月， 90% 为 1 年， 2 年几乎全部恢复正常，但老年人骨折的骨罩像异常可保持数年。

一些前瞻性和回顾性研究表朋，老年人可疑或已经证实的䯝部骨折，在损伤后 $24,48,72$ 或大于 72 小时作骨显像的灵敏度为 93.3% ，特异性为 95.0% ，阳性预测值为 91.8% ．阴性颃测值为 96.0% 。在 14.5 例 X 线检查正常或可疑组的灵䑤度为 97.8% ，阴性预測值为 99.0% 。其结论是骨显像可在摄伤后任何时间进行，仅对高于 75 岁的老年人，当伴有严重疼痛和正常骨显像时，脅显像应观察直至受伤后 $48 \sim 72$ 小时。

全身骨轿像的应用在骨创伤后隐性骨折（oc－ cult fracture），应力骨折和原肉不明的骨痛的检查，以及在脊杜或关节术后持续疼痛患者的随访方面有明显优势。例如隐性股骨颈骨折，血流和成肯细胞活动增加，导致骨显像剂 ${ }^{17 m} T c-M D P$ 的摄取增高；骹关节置换术后假体松动（prothesis loose－
ning）和菣体感染（prothesis infection），假关节形成等术后合并症，都产生骨显像剂援取增高的下同表现．为骨科提供了有价值的高灵敏度的诊断方法：

一，隐 性 骨 折

门诊和急诊病人如有朋确的创伤史．加上体检和 X 线平片，即可诊断为骨浙。但也有一些隐性骨折，无移位骨折和广泛性创伤所致的多发县折不能及时明确诊断，如股骨颈琙粗隆间骨折，腕舟骨骨折和足跗跖骨骨折脱位，肋骨的无移位骨折和骶骨骨折，腰椎的压缩性骨折等，骨显像被有效地运用下这类创伤的检查。

（一）隐性股骨颈或粗隆间骨折

隐性股骨顽或粗隆间骨折的患者多为跌倒后骹部持续疼痛的老年好女。因为妇女中骨质疏松较为多见，随着年龄的增高．股骨颈内渐进性骨矿丢失容易引发这类临床问题。而由于骨质疏松使 X 线片对隐性骨折的诊断更加困难。三时相＂＂uTc－MDP显像可观察到血流，血池相的灌注增官和延迟显像的摄取增宂。因此，对持续䯘炵痛而 X 线片仅有明多骨质疏松表现的老年患者，骨显像可见通过股骨领或粗隆间有摄取增高的线状带。这种征象即为诊断骨折的依据（图10－24）。此种骨沓像对骨折的准确诊断和及时治疗其有实际应用价值。

图1024 隐性股骨顼骨折（后位）
显像示左緟F及近股等颈外有局恃性放射吽增高，步虑为左股骨领隐匿性骨折：层经 CT 证实

（二）腕骨和足骨骨折

手或足创伤后持续他现疼痛而 X 线片未朋确

（三）背杜和骨盆的隐性骨折
核素骨显像有助于诊断脊杆的隐性骨折和骶骨的不全骨折，如老年性骨质疏松患者容吻州现雑体骨折，当仅有椎体高度轻度降低的床缩性骨折时， X 线片检查的诊断常不明确。而核素骨步像可以发现椎体隐性骨折，椎体压缩性骨折的骨显像常表现为椎体的条状浓集。新鲜骨折的放射性分布较高，而陈泪性骨折的放射性：则随骨折愈合而逐渐减低。

（四）创伤所致多发骨折

全身骨泉像对广泛性创伤所致的芕发骨折的诊断很有帮助。由于车袺造成的多处损伤如胸骨和肋骨的多发骨折，可能因多部位的骨折和各脏器的损伤而被忽略。由于骨显像有全身显像的优势，所以应用骨显像检查多发骨折不易遗瀮病灶，骨折部位表现为放射性分布浓集。用骨哑像检查无移住的肋骨骨折，出现相邻肋骨上的多个圆形增高病灶且㺼线性排列（图 10－9），这对很多创伤后胸壁疼痛的病人，即使 X 线片止常，也可诊断为肋骨骨折。
（五）儿童隐性骨折

儿童在 $1 \sim 3$ 岁学步时有时发生隐性骨折，如无移位的脸骨螺旋状骨折利其他足骨的骨折。这些隐性骨折都是通过对下肢疼痛或㗞行的学前儿童进行骨显像来确诊的。 由于骨折线细且无移位，所以 X 线平片难以辨认。为此可对有红肿表现并拒绝走路或无法解释原因的腿疼儿童应用骨显像。

二，应力骨折

应力骨折义称疲劣骨折，应激吽骨折，是在运动和训练过程中骨的肌肉附着处受到超负荷作用而产生的损伤，如果粙续超量训练将可能导致完全骨折．因此识别应力骨折非常重要。如果临床矤生不认识应力骨折的临庆所见和特征性的影像学表现。将导致不适当的治疗和不必要的活检。

骨显像在运动医学上应用很重要的一方面就是诊断疾力骨折。急性应力骨折作三时相检查可见血供增加和骨皮质的摄取增高（图 10－26）。如果葶止运动和训练 6 周后，一时相显像可见向流增加和充血的恢复，而延迟相仍有显像剂的摄取增高，为应的骨折部位骨的修复表现。

图19－26 应力骨护

近侧端放射性稍高，H于 ： $1 / 5$ 处有 - 不均约横向型放射性浓集区（前头）
a．效胫骨前立血池相；b．双胫骨前位持显像

三，不明原因骨痛的检查

骨显像的临床底用很重要的一个适应证就是对不明原因骨痛的检查。骨痛（musculoske．etal pain）的病因很多，恶性肿瘤，感染，骨关节炎的患者用现代医学影像技术多数都可以作社诊断。在除外肿

瘤，感染，关节炎这组人群后，如果在 $3 \sim 6$ 个月内仍有严重的下腰背痛（low back pain）。就应该用骨显像的方法诊断发病原因，包括骨折，椎骨脱离和脊椎前移，关节面的骨性关节炎，骶骨埙伤，骨样骨瘤和共他度性肿痛。监用 SPECT 技术在观察腰能部的复杂结构时有重要价值。

四，脊柱或关节术后的随访

（一）背柱或关节融合术后的假关节

脊柱知关节融合术是为了提高稳定性，减缓终痛和改善氻能。近年来临床上人量的包括腰骶部，膝关出，腕关芦，贞骨等部位的融合术都得到了发展。然而全关节或部分椎体融合术失败底会守致疼痛性的假关节（pseudoarthrosis）。由于假关节对邻近骨的表面产生持续负荷而导致成等细胞活动增加，使 ${ }^{\text {² }} \mathrm{ma} \mathrm{Te}-\mathrm{MDPP}$ 的摄取增高。例如在腰椎融合术后的持续高摄取超过一年，应高度怀疑假关节的存在。

（二）假体松动和关节感染

镜火节置换术言的假体松动，假体感染等并发症，可观察到不同衣现的异常骨业像。由于金属固定材料的使用限制5 CT 和 MR 的监用，所以骨业像在关节置换术后的假体松动和感染的诊断中十分有用。当假体松动时，可见假体远侧端骨组织或两端骨组织有放射性增高表现（图10－27）：当假休植人后感染时。假体周围有弥惯性放射性增高，采用
假体周㭏弥漫性放射性增高的程度更为明显，范闱也有所扩大，因为附近的软组织感染亦显影（图 10－28），

图 10－27 右能假体松动

集，偕休十凨国放射性增高

H

閣 10－28 右䯠假体感染

a．而显像：12．Ga－55 资症显像

第7节 骨血管性疾病

一，临 床 概 述

骨组织由于各种原因导致的血运中断都可造成

骨的缺血性坏死（avascular necrosis，AVN），如股骨颈骨折或髋关节脱位后引起的股骨头缺血性坏死。本节重点讨论非创你性骨坏死，如最多见的股骨头无菌环死，病例巾有 90% 都与使用皮质类固醇和饮酒有关。其他相关的临床情况有：镰状细胞性贫血及其他类型的贫血，Gaucher 氏病，骨髓增

殖性疾患，凝血机制缺陷，外伤性胰腺炎，潜水病和放射性损害等。

非创伤性股骨头缺血性坏死的发病机制有很多说法，其中包括供应股骨头的血运中有来自血循现中的脂肪滴，急速减压形成的气泡或形状异常的细胞（镍状红细胞）所形成的检子造成血管检寨等

股骨头缺血性坏死虽有多种病因，但其所致的病理改变在不同病例中都基本相同。早期在股肾头前外侧关节软骨下有一楔形骨坏死区，覆盖它的火节软骨尚完整。如果该病变区甚小，则愈合过程使其不再发展：但沙床报告有 90% 以上的病人这种愈合反应奏效甚微，骨吸收超过了骨形成，病变中心没有修复，周边的修复也不完整，使死骨只能得到部分吸收并为纤维组织和肉芽组织所代替。有㳅；力的骨直接沉积在死骨上，形成较粗的骨小梁，最后关节软骨由于失去骨质的支撑而发生場陷，导致关节广泛破坏。

主要临床表现是关节疼痛，㳅动障碍，肌肉痉挛等。股骨头缺血性环死的病人通常为 $30 \sim 50$ 多。男性较多，其典型临床症状是腹股沟处疼痛，有时放射到膝部，臂部：疼痛为搏动性，部位较深，徒

往呈间歌性逐渐开始，边有时会突然发生。体检时发现髋关节活动时叮引起疼痛，多在用力内旋时，如果病人有单侧缺血，也挶仔细检查对侧髂关节。因为袂骨头缺血性坏死的双侧发病率可达 50% 以上。

儿童特发性股骨头缺血性坏死（Legg－Perthes disease）可在 $2 \sim 12$ 岁发病，男女儿童的比例为 4 ： 1，至为单侧发病，双侧病变约 1512^{\prime} ）。

二，显像表现

股骨头缺血性坏死骨出像的表现依据病程的不同阶段而异。初期衣现股骨头呈放射性减低仪：随着骨的修复开始，讨现典型的＂面包卷＂征，股骨头放射性缺损区周围有坏状浓集，这表明在坏死骨与反贸骨相交界的边缘处骨周转加速：如病变治愈，放射性恢复正常，荷病变进一步发展至晚期，则放射性浓集更为明显（图10－29）。儿童特发性股骨头缺血性坏死（Perthes 病）的阳性骨显像先于 X线片 $1 \sim 6$ 周，早期表现为股骨凶部分或全部放射性减低（图 10－30），骨显像诊断该病的灵敏度为 98% ．特异性为 95% 。

图 10－29 双股骨头峡血性坏死

性浓集；有段骨头放射性球低，闻问古印状放射性增吕
a. 前位, b. 后位

许多资料表明，应用配疽针孔准直器的 γ 照相机平面骨显像，断层骨显像或定童分析手段能够提高诊断股骨头缺血性坏死的准确性。Collier 等报告断层骨显像诊断成人股量头缺血性坏死的灵敏度

为 85% ，平面显像为 55% 。一般采用双䯘局部骨显像，当患者有其他聅病，如镰状细胞性贫血或肾移植等．有可能发生多处骨坏死病灶时，宜采用全身加局部骨显像。

骷部前位
图10－30 儿童特发性段肖头缺任吽妼死
血不死沚：局部门显像可见左及骨头放射牛分有酢代（箱头）。

符合左股舟之峙发性缺血性新死（I＇erihes 病）

三，诊断和比较影像学

股骨头缺血性坏死的古期诊断是治疗成功与否的关键，最首先和最常用的影像学检查手段是 X线片。早期病变的 X 线方诊断常汮阴性，呵骨出

像股骨头放射性瑊低是特异的衣现。所以骨显像代下 X 线占。MR可以发现早期股骨头不死病灶细微结构的变化，诊断灵敏度高．当 X 线片和骨显像均阴性而临床仍可疑股骨头缺血性坏死时，应采用 MR 检查。

第8节 骨关节疾病

从放射性核素显像的角度将火节垁病分戊两类，其一原发干县膜，其一原发于脅。一者常混合化在．原发于滑膜的疾病常累及至骨，原发于骨的疾病地叮伴有滑膜炎，常见的炎症性（节病有类风湿吽关奜炎（rheumatoid arthritis），瑞特综合征 （Reiter＇s syndrome），银屑病（peoriasis），痛风 （gout），强直性脊杜炎（ankylosing sponciylitis），全身性红斑狼抢（systomic lupus erythematosis）和感染等，核素炎症显像有助于诊断，详见第 1.5 章。非炎症性关节病最常见的是骨性关节炎（osteoar－ thritis）。骨性关节炎义称为退行吽关 ${ }^{*}$ 病（degen－ erative joint disease）或骨 天节病，是一种常见的中老年慢性关节炎，在 65 岁以上的老人中止 $85^{i}:$ 。其基本病变是关节软骨的退行性政变及新骨增生。

降10－31 少性美节炎

胃性关节炎在不同的文节发病时可有不同的表现。局部疼痛为常見症状，特別是在大的负重关节。病程持续发展，灭节活动受限，疼痛明解。当关节退行性变不规律和关少软肙缺失吋。关茄力线不正常．可见㪊行，内，外翻畸形，符性关节炎骨血流，血池显像和炎症定位显潒一般是平常的。倠得注意的是，不存所有的骨性关节炎的欳品像均星阳性表现，骨显像依病变代谢活为的程度而不同。在生长过程宁的骨版表现为放射㤢：增高。而成熱性熬的放射性稍增加或正常。这点呵解释 X 线检令发现骨赘大公和放射性增高程度不呈相关的表现。在大关节如腕，肩，骹和膝关节的放射性摄收饳高，吴伺灶性，有別于在㴆膜炎所见的近大节处的珎漫性放射性增高。积水潭医院不； 17 例 3 个 个膝内翊型骨性关节炎进行与核素骨显像的分析研究，结果提示膝关节内侧的放射性开常浓集。断下骨显像因改善了靶组织与本底的对比度，提高了对骨性（节炎的诊断准确性。尽管如此，仅从一次野思像来鉴别老年肿㨨患者的退行吽病变和骨转移是困难的，需结合 X 线，（CT，MR 等检查或系列留显像以明确诊断（图 10－31）。

> (屈婉堂 䧐京京)

参 考 文 献

 12404 刨病理统计分析．中化核延学杂志，1985，F （3）： 1 f 2
像，中华核医学杂志，198．3．5（1）：193
3．李家灀，杨氷泉，张永梅，等。全身骨显像诊断背转移瘵 311 例分析，中华核医学杂志，1986，6（2）：7
4．蒋宁一，骆绳植，王勇，等．施射性核素角显像诊断曼转移 317 例分析。中华核医学杂志，14．88．8（3）： 159
 1：的应用，中华核医学杂志，1988．8（i）：216
俊的临床价值．山华核区学杂志．1989， $9(2): 96$
\therefore 浣友谋，黄肩号•温体源， 490 例䍐吽肿癌骨转移个自

的杨碝品，实㚿莹，不同病理类型肺㿋骨转移的特点及规律，中华核医学杂志．1992．12（1）：24

乳腺癌骨转移氺的影响．中华核医学杂志．144． 15 （3）： 19.0
11．张利华．激文轫，俞志号．150：例腑癌患者核素昌显像結果分析。中华核医学杂志，1999．19（1）： 1

 10.6

尔志． $1996, ~ \operatorname{Lb}(2): 129$
振成像对下一诊断滕性骨转移瘤的对比研究。中国临床医严影像杂志，1998． 5 的：： 188

 $1.5(1)=26.4$

1x．Krannow AZ．el al，Dagnostic bonc scanning in onceio 8y．Semin Nucl Med，1：997． 27 （2）：； 1 i
19．Ryan PJ．Fogelman I．Bone aclatigrapuey m metabuic

20．Tryciecky FW，et al．Oncolugic inlaging：wherection of the clear medicine with CTI and MRI ueink the bene scon

21．Kim CK．ot al．The＂Mouse Fare＂appeatance of the
 （2）： 104
22．Algra PR．ct ai．Do melawiaes in sertichrac begin in the

23．Fogelman I，Carr detus．A compation of bous scannung and radiology ir．the craluation of pateent，woth metaboli． bone divease．Clminat radiology．1980．31 ：ה3：
24．Jacebson A．Fogelmarn 1 ．benc samming in c mateal on cology：does it have a future？Eur I Nucl Med．is， $98.2=$ （9）：1219
25．Berker W．A changing role for bone scint：graphy in on cology：the road from routine imaging acrecning to pr．－
 13.5 .9

26．Musray IPC，EII PJ．Vielea：Mcdirme in Clinical Diag． nosis and Treatracnt．I＂editom．New York：Churchioi Livingstonc，1991．949961．
27．Philp Matin．Basic prinetplo of ruclear tredicune lee：
niques for detection and evaluathon oi 1 rawnet and sporte medırine mjurıes．Srmin Vacl Med．1999，2k：1）＝Gu

ZS．Brown ML．，et al．bone scintigraphy：Part L．Oncology and unfection．J Vucl Med，1：993，34：2236
20．Collier BD Jr，tit al．Bone scintigraphy：Part 2，（Urtho
pedre bonte scanning．J Nucl Med．1993． 34 ： 2241
30．Fogelman 1．et al．Bone scintugraphy：Part 3．Bont scanneng in metabolic bone diseasc．J Nucl Med． 1993. $34: 2247$

第11章 内分泌系统

内分泌系统内内分泌腺包括作为腺体独立仍在的内分泌器官及散在于其他器官的内分祕组织。本书为＂影像＂诊断学，故本章所敛为守状腺，肾上腺，甲状旁腺及垂休四人腺体的显像。

第1节 甲状腺显像

最早底用放射性核系于体外显像的胧器是甲状腺。出状腺是像（1hyroid imaging）不仅反映了甲状腺的大小，位置，形态和结构，更重要的是反映了币状腺的功能状况，它代表了核医学的特点，功能显像。

一，解剖生理基础

（一）甲状腺的解剖

や状腺是肧胎发育期第一个法现的内分泌腺，也是人体内最大的内分泌腺。 原始甲状腺组织发尘于胚䏩期的第 2 周，从呐底中线内胚去细胞外突生长竎下移至气管前方䚲成左，在丽叶，中间融合成峡部，其与舌相连的部分形成甲状腺壬筼，以斤形成锥叶或退化消失。 中状腺实质主呶由甲状腺滤泡组成，滤泡上皮细胞是合成，储存和分泌川状腺激素的场所。号外代滤池壁战滤泡问质巾还有一种细胞称为滤泡旁细胞，期（纽胞，产生降饮䒺。
的两侧，上达讨状软骨，下抵第四气笛软等环，分今，存两叶，有叫略大十左叶，龵间有峓部相连。正常甲状腺重约 $15 \sim 25$ 克，女性梢大士男性，青亘期最大，老年：期逐潮萎缩。

中状腺的血运非常丰富，出一对甲状腺上动脉利一对甲状腺下动脉供血，前者来门颈外㖪领总动脉，在甲状腺上极分成 $2 \sim 3$ 条分父，分布于腺体上部及峡部；后者来自锁胃卜动脉的甲状颈干，其分支进人腺体的下部及后面。用状腺的血流在腺体表面汇合成丛，经上，巾，下二对甲状腺静脉可流人项内和头臂静脉。

（二）甲状腺的生理

甲状腺的主要功能是合成，贮存和分泌甲状腺

激素，以调节怄体的代谢和小长发育。甲状脉激系
酸（thyroxinc，T：）和3，5．3－一碘甲腺原氨酸 （triodothyronne．T；）。

叩状腺激素（1hyroid hormont）的原料是无机倎和酪氨酸。要合成甲状腺激素．甘状腺首先必须
碘雀的 80 夋在用状腺。用状腺简犬摄収的嬹量根据其琏境‘的含碘革而分（土要是食物和水中的碘），约为 $150 \sim 20(\mu \mathrm{~g}$ 。 召外，体内甲状腺激素代谢过程中脱下的碘度了也可用利用，食物中的碘在：肠送内还原成无机碘进入血液后很㤨被旧状腺所摄取。年状腺内的碘浓度比血浆中的䃆浓度吅高达 25－250倍。中状腺队的碘离子能与血浆巾的碘离子自由交换。不参与合成激素的碘以品以上由肾脏排山，只有微去由汀及喷液排出。

用状腺的功能活动受脑腺垂体分珌的促甲状腺激索（TSH）的控制，而后者义受下丘脑神经分泌细胞产生的促甲状腺激尛释放激索的（TRH）调芦。但TRH，TSII的释出与用状腺激素（主要是游离激系）的水半之间又有相示制约，即兴在个反溃性控制的天系。 系状腺玻能与 TSH 利TRH 又间的

图11］下「脑－岳体用状腺粙ぶ意洛

这种入系称为下盾脑一巫体一升状腺紬（图11－1）。
巴状腺摄取碘的功能受很多肉条的影川向，除 ［SH叮兴奋甲状腺，使摄唺能〕增强外，许多附离子，如与碘同族的溴，硫氮酸盐（SC．N），过氯酸盐（Cll），）等都㞴以被出状腺抆取，而阴止中状咏从小血浆引摄取碘离子或促使碘离个从中状腺内释出。此外，甲状腺摄取碘离子的多少还受血浆打碘离子浓度的影响，血浆打碘离子浓度低时（缺䃆状态）。出状腺摄取碘增加；血浆中县离与浓度岗时
（服用含碘食物或约物），甲状腺摄取碘堿低。
碘化物被出次腺滤泡 I：皮细胞援収届，化细胞顶㟨很快被过絴化物酶手化成活怅的元系碘（I 或 $\mathrm{I}^{\prime \prime}$ ），并主即与甲状腺梂蛋白的酪氨酸部分结合。成为一䃆酪氨糉（MI＇）或 倎酪氨酸（DIT）。两个
个丙氨酸成为 T_{3} 㖪 $\mathrm{T}_{1}, \mathrm{~T}_{1}$ 与 T ：之桜为 $1: 1$ 。亦南高达（ $10 \sim 20$ ）：1，然后贮存化滤泡腔内（图 11－2）。
球些向
H \I！

136）
 Cll

图 11 亿 用状㟫激素的合上

中状腺球蛋门舁一种糖蚉向，含有 120 多个敝氨酸．它的分子革为 660 KD 。 安状腺球蛋忙上的 T ，及 T ，仆 TSH 的刺激下，被蛋H分解酶水解为游离的 T ；及 T_{1} 应，才分泌到血胙坏中去。其中 T 的望足 T ；的 $10 \sim 20$ 倍，血循环吽的 T ，除少部分是由本状腺分泌外，大部分定由 T_{1} 价汗状腺外经 5 位七脱碨形成（如果是住 3 位卜脱椣，则形成反 T_{5} ，反 T ，无生物活性）。 T 在血液 f^{\prime} 的浓度虽较 T_{1} 低得受。但具生物活性却远灾十 T_{1} ，它的代谢也快得多，T 的米衰期为 $6 \sim 7$ 大，们 T_{3} 的半夜期为 1.5 天。正常甲状腺内合 $5 \sim 10 \mathrm{mg}$ 有机嬹。每大约有 1 無贮仔量的激素释人血循环。Ts及 T 。进人血液后， 99% 法即与血浆蛋户结合。向浆打存一种可以载带开决腺澈素的蛋向质：α_{1} 和 α 问的球蛋 I^{\prime}（TIBG），前清蛋 H（TBIPA）和清蛋H （ALB），TBG 与开状腺激素的穼利ノ撮强。H寸
埋活性，只有游离的 I_{3} 及 T_{1} 才能逃人细胞内起
${ }^{4}$ 生理作厈。
些药物如酼腺类药物有服止：用状腺合成激素的作用，碘剂除能使口状腺技収䃊降低外，用状腺细胞内的碘浓度增高还有抑制酷氨酸的碘化，限止：状状腺激素释心的作用。锉也可以阴止碘化物的释出，减少敂状踪激素的合成与释性。

二，显 像 原 理

H状腺，w像是将能被中状腺选样性浓聚的放射性：核素或其标记化合物（统称显像剂）引人人体，然后通过探测仪啚，γ 照相机或 SPECT 仪。记家放射性核素在出状腺内的分布图像，从而把甲状腺的形态，大小，位惪及整体和和部组织的功能显示中米。

三，显 像 利

最早用于井状腺的显像剂是放射性碘（radioio－
（dine），因为甲状腺有摄取碘并使之有机化的功能。最常用的是放射性碘－131［ ${ }^{331} \mathrm{I}_{\text {－}}$ ，但由于其半衰期较长，又是 β 衰变，傮甲状腺接受的轵射剂量较高，它哀变时产生的主要 γ 射线的能堇又较高，γ照相机显像分辨率差，图像不清晰，目前除子找甲状腺癌转移灶外已少用。最理想的放射吽磺是硔 $\left.123_{-}^{-123} \mathrm{I}\right]$ ，它的情衰期及 γ 射线的能量均符合显像要求。可惜它是加速器生产，价格昂贵义不便供应。
甲状腺显像剂。因其来源方便（随时可从 ${ }^{a r} \mathrm{M} 0$
${ }^{4}{ }^{\mathrm{n}=} \mathrm{Tc}$ 发生器得到），物理性能优良，又和鲪类似能被甲状腺摄取（但不能有机化），所以既可用于甲状腺血流显像，也可用于静态亚像。除少数情况外。作为甲状腺显像剂，${ }^{3} \mathrm{Hm} T c$ 已取代了 ${ }^{14} I_{0}$

此外，为鉒別甲状腺结予的良恶性，也有用 ＂亲肿瘤＂的核素，佗［ ${ }^{1}{ }^{1} \mathrm{TlCl}_{-}^{-}$，锅 $\left.{ }^{-n \mathrm{Cl}} \mathrm{Tc}\right]$ 用氧异
 （dimercaptosuccinic acid．${ }^{\text {W\％}} \mathrm{Tc}$（ V^{\top} ）DMSA），镓
 （ ${ }^{114} \mathrm{In}$－Octrcotide，${ }^{111} \mathrm{In}_{\mathrm{n}}$（）ct）等，常用的苌像剂及其特性见表11－1。

表111 常用的甲状腺显像剂及其特性

4304	M！	t \％，魏變 	縉紋維	
：	$8{ }^{\text {c }}$	3 n	肿及寻找甲状腺癌转格叶。	井
${ }^{124} \mathrm{I}$	13 小时	159	甲状湶亚像	国内成供货
${ }^{\text {Osan }} \mathrm{TeO}_{4}{ }^{-}$	6 小时	140	中状腺血流及静态显像，妿儿，儿童均可用	不角成于胸肖后甲状腺肿显像及子找甲状腺澏转移徒
${ }^{2 n 1} \mathrm{Tl}$	3 天	79	結范的良恶性签别，寻找甲状腺癒转移灶，亚示功能被抑制的甲状腺组织	加速器生产，价格资，不能随对得到
${ }^{49 m} \mathrm{Tc}_{\text {c }} \mathrm{MIBI}$	6 小时	1.10	同 ${ }^{-11} \mathrm{Tl}$	应用时问较矤，尚待积累经验
si Ga	78 小时	$\begin{gathered} 93 \\ 185 \end{gathered}$	分化不良的甲状腺癌显像	特异性差，析本氏甲状腺炎，淋已㿋地能摄取
${ }^{n} \mathrm{Te} \mathrm{Te}(\mathrm{V}$ DMSA	5 小时	140	甲状腺癌及其转移灶， 41 状腺䜔样療品像	同内尚少报渞
： J －Oct	2.81 天	$\begin{aligned} & 172 \\ & 247 \end{aligned}$	甲状腺䯠样癌及其转移灶亚像	国内无供货

四，显 像 方 法

甲状腺显像按操作方法可分为：动态（血流）显像；静态显像：断层显像；为反映垂体调控甲状腺功能的关系，叉有药物介人试验显像；为鉴别甲状腺结节的良恶性可用亲肿瘤显像剂品像；为了解甲状腺内稳定性磺的分有有㱑光显像。

（一）甲状腺动态显像

甲状腺动态显像用来反映甲状腺的丘俱，故亦称甲状腺血流显像。所用仪器为 γ 照相机。病人仰卧位，头后仰，充分伸展颈部（可在颈及上背部埜一枕头），使甲状腺尽量靠近探头准直器（低能平行

孔通用型准直器）。白肘静脉（如有结节，取对侧时静脉）以＂弹丸＂式注入 ${ }^{* * m} \mathrm{TcO}_{i} \quad 555 \sim 740 \mathrm{MBq}$ （ $15 \sim 20 \mathrm{mCi}$ ）$/ 0.5 \sim \mathrm{i} .0 \mathrm{ml}$ ，立即启动相机以 1 帧秒速度连续采集 30 杪。

（二）甲状腺静态显像

显像前应先做甲状腺摄 ${ }^{131} \mathrm{I}$ 试验，根据摄 ${ }^{131} \mathrm{I}$率及所用相机及准直器的灵敏度计算所需剂量。如用 ${ }^{131} \mathrm{I}$ 则口服后 24 小时显像：用 ${ }^{39 \mathrm{~m}} \mathrm{TCO}$ ：可在静注有 $20 \sim 30$ 分钟显像。匤为 ${ }^{54 \mathrm{~m}} \mathrm{TcO}$ ）被用状脂摄取仅为吸附作用，不能参与有机化，其摄取高峰在 20 分钟左右，摄取率很低，且唾液腺也能摄取 ${ }^{4}{ }^{1 \mathrm{~mm}} \mathrm{~T}_{\mathrm{CO})_{1}{ }^{-} \text {，故棰液腺及口脘也显影。 }}$

病人体位同动态业像。准直器则最好采用针孔型，根据所用显像剂远用低能（ ${ }^{9 s_{m}} \mathrm{~T}_{\mathrm{c}}$ ）或高能 （ ${ }^{(31} 1$ ）。党规取三个位置：前位（AP）及两个斜位 （右前斜 45° 位，RAO 45° 。左前斜 15° 位，LAO 45° ），可转动探头调节角度。：个体位照相时，准直器距领部 6 cm 。

（三）断层显像

甲状腺是小脏器，位置又表浅，一般不需要断层昆像。针孔型准直器及三体位显像足以分辨南径 $0.5 \sim 1 \mathrm{~cm}$ 的结节。但在计算甲状腺体积时，有报告认为断层显像更为精确（半面恢像没有写度）。显像方法与其他脏器的断层显像相似。病人平卧于断层床上，探头对准顽部上方（尽量管近颈部），围绕颈部 360° 采集数据，然后用计算机处理成横，坒状及矢状：个方位的断层面，

（四）荻光盢像

黄光显像也是静态显像，但不需要放射性核素作为显像剂。其原理是将长寿命的银［ $\left.{ }^{2 H 1} \mathrm{Am}\right]\left(\mathrm{T}_{1}\right.$ 。为 458 年）作为放射源。 ${ }^{211} \mathrm{Am}$ 发射的 60 keV 的 γ 射线激发甲状腺组织内的稳定性倎（ ${ }^{27} \mathrm{I}$ ）作义靶子，使其产生 28.5 keV 的特征 X 射线．后者被砵（ Si ）锂（ Li ）探头接收。当发射源与探头在甲状腺卜同步移动时，就！-j 一般扵描机一样得到甲状腺显像图，但图像所反映的是甲状腺内 ${ }^{1 P 7} 1$ 的分布。此法在过去亚用于不同甲状腺疾病的 ${ }^{2} \mathrm{I}$ 含量及分布变化的研究，国内末引进过，目前国外也已不用。

药物介人试验哑像和齐肿瘤显像剂显像因操作：方法与静态显像相扪，只是约物及显像剂不同，将在临床应用山介绍。

五，正常显像表现

（一）血流显像

甲状腺血流显像（thyroid angiography）反填甲状腺组织的血流灌让状况，让常时．颈总动脉显影万ri 2～6杪甲状腺开始昆影，其放射性略低于颈动脉，以后颈动脉影逐渐消退，而中状腺随着摄取显像剂的增多，影像逐渐增强，此时颈静脉开始显影 （位于颈动脉的外侧），见图113．

（二）静态显像

千口状腺静态显像常规采用 AP，RAO 45° ， LAO 45° 三个位置，是为 「更好地显示甲状腺前，后，左，在各方面的情况，以避免组织的前厔重

图113 正常中状腺血流图（帧（秒）
叠，更好地发现病变火烟断其功能。
正常甲状腺位于颈部正巾，胸骨切迹上方，有左，在一叶，中间有一峡部相连。甲状腺形态变昇很大，主要分一型：蝴蝶形及马蹄形。峡部可由很宽到看不见，峡部或一叶上方存时可见锥形叶（甲状甹管远端残余形成）。Levy 等报告，正常本状腺显像约有 $10 \% \sim 17 \%$ 可见锥形叶。但这与所用鼣像仪器的灵敏度右关，因锟形叶很溥，浓聚的显像剂很少，过去用扫描机往往看不见，而现在 γ 照相机显小的机会多。甲状腺肿大，肙元或术后，锥形叶增生肥大，容易显示。

正常甲状腺组织对 ${ }^{131} \mathrm{I}$ 或＂${ }^{\prime \prime}{ }^{\circ} \mathrm{mm} \mathrm{TcO}$（的摄取比较均玜，图像上的放射性分布均匀，右叶常大于左叶．两叶的放射性较高（中部组织阳（们最高），峓部较低，边缘轮廓光滑。

用 ${ }^{34 \mathrm{~mm}} \mathrm{TcO}_{4}{ }^{-}$作品像剂时，注人后的等待时间不苗过に，否则唾液腺分泌的 ${ }^{24 \mathrm{~m}} \mathrm{Tc}$ 吞咽入食道而正影．易误认为锥形叶。正常出状腺平角及断层图像见图11－4，11－う。

六，先天异常显像表现

甲状腺在胚胎期如发育不正常，它的形态和位置可有各种变异。先大异常的甲状腺常呈球形或卵侧形，不分叶，位置可上起舌根，下达横䐱，也可

图114 计常甲状腺平面虽潒图
a．期蝶形．AP；h．R．I（1；c．I． t （）； d．守碚劤：e．焕部卜方钴忛；
f．术后锥叶增生，用状腅下 \boldsymbol{j} 圆点为胞员上切迹标志
—叶或整个甲状腺缺如，常见的为出根部甲状腺肿或上颈部平状腺肿。湿像图上表现前者为乭根部肿物，对 ${ }^{1.13} \mathrm{I}$ 或 ${ }^{3 a_{n}} \mathrm{Tc}$ 有㭚聚。而频部无常甲状腺的位置却未见甲状䐆㥩影，㒶者则表现为颈上部肿物，为甲状腺组织，但形态不正常，位置较正常高。申状腺一叶末发育比较少见，Melnick 等 （1981）报告 4 例，连同世界文献报告才 S4 例，一般左叶缺如的机会品于右叶（4：1），我们发现的一例为右叶及峡部缺如。先天中状腺异常（congenital anomaly of thyrod gland）的儿种表现见图11－6。

图115 螞常甲状腺断层显像图
1，？行，冠状面：3，1行，人状向：5，的行．横断面

七，临 床 应 用

（一）甲状腺结节的功能判断

甲状腺结节（1hyroid nodule）是最常见的甲状腾病变． 1 而且其发生率随着多龄的增长而」：升： Quirn 和 Brand 报告 757 例非用状腺纹病患考的用状腺显像图，分析发现结北的发生率在 10 岁以下
 80 岁以上者， 7 人中有 5 人有害发结品，临條检查为正常的所状腚，显像图常发现结节。

甲状腺显像上的放射性分布可以反映用状腺结节的功能状态。按照结引的摄碘能力，‥般将结节分为三类：（D＂热结兯＂，络节的摄碘能力高于正常甲状腺组织，图像士：表现为结节的放射性高于沟闱组织：（2）＂温结卢＂。结预的摄碘能力等于或接近正常甲状腺组织，图像上㩁节的放射性与周围组织相近；（3）＂冷结节＂，结节无摄碘能力或能力低于正常甲状腺组织。佟像 \perp 的结节处无放射性：或放射性：

性较高。有人建议，当＂${ }^{w n}$＂ Tc()$_{1}$ 业像为＂有功能＂的结节，但并非自主功能性时，应重复＇${ }^{131} \mathrm{I}$ 显像。对于结节不浓聚 ${ }^{(m m} T(0)$ ，反而浓聚 ${ }^{[3]} I$ 的现象，可能衣示病变处对 ${ }^{[31} \mathrm{I}$ 的摄収功能品有减低，但将虽有机化的功能却正常或增高．故以良性叮能性大。我们曾报㶵 1 例 ${ }^{[4] m} \mathrm{TCO}$ ，显像为＂冷结节＂。 ${ }^{131} \mathrm{I}$ 显像为＂热结节＂，其病理结果为甲状腺腺瘤。

图11－8 甲状腺多发有理能结出（温结节） a．AP．椟部＂温结 $\mathrm{H} " ;$

从显像图上＂冷结节＂的形态分析很难区分良恶性，虽然良性腺瘤的轮廓常比较清晰，规整，甲状腺组织破坏较少，常表现为将正常组织压迫移位；癌则表现为轮廓不规整，边缘不清，甲状腺组织破坏较多，使甲状腺变形．但这些现象已是在肿物长得很大时才出现。临床表现为甲状腺癌山 80% 无症状，典型症状如声音嘶哑，结节较硬，固定不活动，生长快及有到部淋山结或远处转移等。亦为晚期症状。唯一特殊的是山状腺髓样嵒•此种肿物较少见（约占用状腺癌的 9% ），来中や状腺滤泡芳细胞（C 细胞）。可为散发或合） 1 嗜络细胞鼬及甲状旁腺瘤（称为多发性内分泌肿瘤 II 型或 Sipple综合征，有典型临床症状和家族史）。诊断主要依靠血清降钙素浓度的测定。甲状腺显潒如㘰节很小则不易发现，结节较大时的典型表现为两叫对称的 ＂冷结节＂（图 11．9）。

为进一步鉴别＂冷结节＂的良恶性。下列応法可提供一定的帮助：（1）甲状腺血流显像。如静态昆像为＂冷结节＂，而血流显像乐结节不血供或血供很差，则为囊性或脉瘤出血，裹性变所致，以良性可能性大。Cowan 等报告 20% 单发的＂冷结节＂为囊性，而衰性很少是恶性；如结节的血供丰富。

图 11－9
少毕的状腺组织影影外，均被一大＂冷结另＂「括。边界隐細

不规则的＂冷结川＂
尤其是其放射性强度高于颈动脉，则为实性，细胞寺富的肿物，恶性儿率峭。有人认为血供丰富的 ＂冷结节＂$\ddagger 55 \%$ 为樒，我们的经验是血流显像只
血供本富的结节也常为腺溜，而癌的血供不一定丰窝。良，雭性＂冷结节＂及不同血供的图像见终

像，如原来 ${ }^{[3]} \mathrm{I}$ 或 ${ }^{4>m} \mathrm{Tc}()_{i}$ 显小的＂冷结节＂处有放射性浓聚，则恶性可能性大：反之，如仍无放射性，则良性可能性大，但这些显像剂对用状腺癌均无特异亲和力，而是由于良性肿瘤常有退行性变，囊性变，中心栓塞或出血等，所以＂ Ga 等不被浓聚，而有浓聚的结节大多为细胞专富的肿瘤，恶性：的可能性大。因此，对它们的评价各家意见不一。据文献材料显示，以＂置 1 的阳性率以及叮以替代它的 ${ }^{4 \times m}$ Tc－MIBI 为最奌，故目前其他的亲肿瘤核索已少用。 力外，抗甲状腺癌抗体显像的特异性强，但尚限于实验室研究，不易推广：尘长抑絭受体显像剂 ${ }^{11}$ In－奥曲肽可用十甲状腺髓样癌显像。 ＂亲肿瘤＂显像剂甲状腺㾔的显像见图11－1？。 （3）正生f゙发射断层显像（positron emission compu－ ted tomography．PET），常用的够像剂为氟－${ }^{-x} \mathrm{~F}_{\mathrm{C}}$ 脱氧葡萄糖（ ${ }^{18}$ F FDG）。此法因设备号贵，即使国外也应用不多，主要应用于无授碘功能或分化不好的甲状腺癌的术后随访及专找不摄＂I的转移灶。

图 1110
a．结节性甲状股种囊性变，静态品像左叶＂冷纱节＂，血流显像动泉期結节处尤血供；b．中状脉左叶腺瘤。

（终111－11

 b．台节性甲状腚肺恶性忿（乨头状病），静态显像，甲状腺姣
放射怅高丁预动䟿

图1112 中状缐右叶乳头状瘵

h．迫流显像，动脉期种物放射吽极低，且挤压领动脉外栘；
c．对＂M－c－M1Ri有摄取，品影清断

2．＂热结节＂的功能向主珄 出状腺业像结节表现为＂热结节＂苻，恶性的可能性极小，功能亢进的甲状腺癌仅有个別报道。但是，是像为＂热结

节＂者在诊断上有特殊意义。很多＂热结节＂属于自主功能亢进性结节（单发者亦称自主功能宅进性腺瘤）。虽然临床上不一定有甲状腺功能亢进（甲

克）的症状。此种炶节的特点是其功能不受昰体分泌的TSH 所调节．而是其滤池 上皮细胞本身的功能元进所致，但结节外甲状腺组织的功能与垂体间的关系仍是正常的。由于血液巾甲状腺激素的浓度增高，结伺外甲状腺组织的功能往往不同程度地受到抑制。显像图可以有下列表现：（1）单发＂热结节＂，图像显示一个＂热结节＂，结节外甲状腺组织可因摄碘功能完全受抑制而不显影，战功能未完伞受抑制而有不同程度的显影：（2）多发＂热结节＂。图像显示为甲状腺肿大，多个＂热结节＂之间的甲状腺组织因功能受抑制而不嘤影或稍显影，多发 ＂热结节＂可散在分布于两叶甲状腺，亦可财聚成

一个们块状类似单发的＂热结节＂。不论是多发还是单发的＂自主功能亢进性结节＂都称Plummer恼，其确诊均依靠甲状腺显像．而结节外甲状腺组织显影的多少反映了血液中守状腺激索的水平及反馈抑制TSII的程度。单发热结节，尤其是体积较大时，窝易发生返行性变，这时图像上＂热结节＂中有放射吽减低区，称＂猫头鹰眼征＂。＂热结节＂的各种表现见图11－1 今。另外＂白主功能完进性热结节＂由于功能元进。在血流显像时与甲元相似， ＂热线节＂显影提早。常在颈动脉显影㕣玄即出现。其放射性强度可岗于颈动脙。

节，放射性分布不均匀，呈＂猫眼征＂（中心盾坏死），其余组纠功能完全受抑制不虚影：

单发＂热结节＂有时需与非白主性＂热结节＂或甲状腺先天性一叶缺如或局部甲状腺组织增生较厚相鉴别（局部增厚相对浓聚碘较多，比㓮闱组织高）：多发＂热结节＂则需与结节性甲状腺肿因结节功能不一而造成图像上的放射吽分布不均的相鉴别。从血流显像看，自主功能性＂热结节＂－－般血

供比较上穹，常较周用中状腺组织提前亚影，且放射性强度高于颈动脉。

鉴別是不＂热结予＂的 $广$ 法为：TTSH 刺激试验后重复显像。如为白主功能穴进吽结节，则结节外原来被仰制的出状腺组织因受到TSH 的刺激，恢复了拫碘功能而显影。图像显示空整的甲状

腺。但由于这部分组织长期处于受抑制状态而常有晏缩，因此较正常小。如为非自主性热结节或一叶缺如或局部甲状腺组织增厚或炶节性や状腺朋时。则泈像不变。此法的缺点是 ISII 制剂需从国外进 11．价格较高。 ．月牛的垂体制剂为异源性訟白质。有时会引起过敏反应，故已不用，近年来采用
的显像原理与TSH刺激试验反显像不同，＂＂mTc MIBI 或＂＇Tl可被正常甲状腺组织摄取（这什肿瘤显像时早就炠察到），H1－j甲状腺细胞的碘代谢功能无关。也不受血液中壮状腺激労TSH水平的影响。因此．即使存在功能亢摙性＂热结节＂，边不影响忖常や状腺组织的显影。广法是在 ${ }^{1,1} 1$ 或
閂甲状腺组织完全或部分不显影时，可代＂＂Tr MIBI 或 ${ }^{2 n 1} \mathrm{Tl}$ 显像。如正常用状腺纽织显影，即证实原来不哾影是由下功能受抑制所致：否则图像与 ${ }^{191} \mathrm{I}$ 或 $\left.{ }^{50411} \mathrm{TcO}\right)_{1}$ 显像相同，即垪不存在受抑制的正常组织。甲状腺白主功能六进性＂热结节＂的＂＇m Tc －MIBI 显像见图11－14。（2T T 或 T ，抑制试验谷重复亚像。即在口报 T_{1}（干燥甲状腺片， 40 mg ，一日三次，连服一，周）或 $T_{0}(80 \sim 120 \mu \mathrm{~g} / \mathrm{d}$ 。连服 一周）后重复甲状腺 ${ }^{1 \%} \mathrm{I}$ 㣝 ${ }^{91114} \mathrm{Tc} \mathrm{O}_{1}$ ，显像。如为自主功能性＂热结节＂，则＂热结节＂的图像不变，向结节外甲状腺组织的功能因受外源吽甲状腺激素水平的影响而被抑制不昆影：如为非白主性＂热结节＂。则结节及周围甲状腺组织的功能均受抑制而全部不显影或显影明显减弱。甲状腺激素抑制试验后昆像见图 11－15。

图11－14 用状腺自主功能性＂热结 ${ }^{\mathrm{j}}$＂

图11－15 本状腺＂热结节＂
 b． T_{1} 仰制试验压显像，热结奖功能不受卯制，具余组织功能朋显受抑制。仅稍银斯

3．甲状腺功能元进症的诊断及治疗后随访甲元治疗前的病因诊断关系到治疗方案的确定：甲状腺显像可以鉴别是 Graves 病甲充还是 Plummer病甲広，Graves 病甲元又可鉴别是弥漫性甲状腺肿合并甲元还是结节性中状腺肿合并中边。Graves病甲方血流显像时，全甲状腺的血运特别卞富，常与颈动脉同时显影，且强度超过颈动脉（图11－ 16）：Plummer 病中杂仅热结节处的血运丰富。

Graves 病甲尤休 ${ }^{131}$ I治疗后最明显的变化是甲状腺体积缩小（常常比正常甲状腺还小）。形态和放射性分布在治疗前后一般相似，但偶可见治疗前的细节吽甲状腺肿经治疗后放射性呈均匀分布，而弥漫性增生经治疗后出现多发小热结节，后一种情况常需作第一疗程治疗＝Plummer 病甲 九治疗后热络节消失（或变成冷结节）。被抑制的周國组织的功能恢复正常，表示治愈，但恢复正常功能的组织中如出现小热结节，则表示有复发的叮能性，不同中元 ${ }^{31} 1$ 治疗后的甲状腺显像见图11－17：
（周前）
4．甲状腺癌及其转移灶
（1）${ }^{131}$ I 显像：
1）${ }^{131} \mathrm{I}$ 治疗前显像：甲状腺癌（thyroid canc－ er）原发灶在放射性碘显像多为冷结节，结合腺体质硬，固定及淋凹结肿大，对诊断会有帮助。但往往结节不大，没有典型的症状。部分病例即使细胞分化较好，术后常因存在正常甲状腺组织．其转移灶并不摄取放射性碘，只有在正常时状腺组织完全被消除后。血清TSH上升至一定水平。方可见转

图11－1；弥漫性甲状腺肺合并甲尤
a．静念显像．平状腺唯漫性肿大，敌射吽分布均的；b，c．血流显像，

图11－15 中比 ${ }^{131}$ I治疗前原

抑制：d．活疗原，热结范明回缩小，全印状湶烣复正黄功能

移灶吸收放射性碘（图11－18）。但地有少数病例。虽然正常甲状腺末被完全清除，但转移灶仍能呚收放射性碘。

这些病例的 ${ }^{1.11}$ I 显像是明确診断和指导治打的

必需步骤。甲状腺癌患者经外科于术切除䅫发灶和，或尒甲状腺后，放射性碘显像能帮助了解剩余甲状腺的荲及功能，转移灶的吸碘水平，以及提示下一步的治疗う案。已知约有 50% 以上的乳头状癌， 67% 的滤泡状癌的转移灶可，用放射性碘显像显示。肺内微小结节或粟粒状转移灶（多数由乳头状癌引起）常呈弥散性摄取，亦有肺内单个结节，则呈单个摄取灶（图11－19）。甲状腺良性腺体或恶吽：转移灶均可为TSH依赖吽，血清TSH 增高时摄取增多。为了提高不吸碘转移灶的吸碘功能，可以注射TSH。由于应用牛TSH 有过敏反背，现在已有应用人 TSH 的报告。

2）${ }^{181} \mathrm{I}$ 治疗后显像：分化好的中犹腺㿋经…I治疗居 5～：4 天，应用体内治疗的 ${ }^{131} I$ 作全身显像，由于其剂量远高于诊断用荲．使得图像非常清晰，经常能见到应用诊断量的 ${ }^{131} \mathrm{I}$ 末能见到的放射性浓集区。对下一次 ${ }^{131}$ I 治疗前用 ${ }^{13 .}$ I 全身显像了解前次治疗效果及治疗方案有所豐助，

3）甲状腺癌转移灶治疗后的随访：分化良好的甲状腺癌患者除事先用放射性碘诊断外。常规否用放射性碘显像进行治疗后的随访。患者应用放射性碘显像前，疝停用円状腺素（L，－T：）6問，三碘甲腺弶氨酸（ $\mathrm{L}-\mathrm{T}_{\mathrm{s}}$ ） 2 周．以提高内源性 TSH 。

4）关于顿抑（stunning）现象：仟何显像检查。增加显像剂的用量均可使图像清哳•但放射性碘亚像若用＂「I 量偏高，能引起甲状腺细胞的顿抑。即因为显像剂应用了偏高剂量析使细胞摄取＂I的攻能受到损伤，使得下゙一步治疗时肿瘤组织摄取 ${ }^{1: 2} \mathrm{I}$

图 11－18 甲状腺孚头状癒左叶全切存叶次全切术后

b．${ }^{141} 12590 \mathrm{MBg}(71) \mathrm{ma}(\mathrm{i})$ 消除残余组织后，颁前濑巴结显影

f

图 11－19 漼泡型胛状腺㿋术后肺转移 a．X 线抅片，双肺炶节样转移灶：

的能力下降，以致治疗效果受到影响。已证朋应用 ${ }^{1.3]}$ I $111 \sim 370 \mathrm{MRq}_{\mathrm{q}}(3 \sim 10 \mathrm{mCi})$ 时可降低甲状腺细胞对 ${ }^{\mid 31} \mathrm{I}$ 治疗量的摄取；在应用 $74 \sim 185 \mathrm{MBq}(2 \sim$ 5 m （i）显像时，可有 5% 发牛顿抑 n 为了减少顿抑的影响，一方面 ${ }^{141} \mathrm{I}$ 治疗前的 ${ }^{131} \mathrm{I}$ 显像诊断的用 ${ }^{1,21} \mathrm{I}$量不宜超过 $185 \mathrm{MB} \mathrm{Ma}_{1}(5 \mathrm{mCi})$ ，力一方面在 ${ }^{13 \mathrm{I}} \mathrm{I}$ 诊断和 ${ }^{131} \mathrm{I}$ 治疗中 1 ，两次给 ${ }^{131} \mathrm{I}$ 的时间间隔应尽可能缩短。

5）一些末分化甲状腺癌，中状腺髓样癌，中

状腺淋巴瘤，其他肿瘤（如乳腺癌，肺癌，肾癌，黑色素瘤，胃肠道肿瘤等）转移到抿状腺内，均不能摄取放射性碘，古＂冷结节＂。

6）容易造成假阳性的情况：放射性碘特异性地被甲状腺组织吸收，但一些组织在正常情况下也能浓集，如唾液腺，鼻咽部腺体，甚至胸腺。此外被放射性污染的衣裤亦可在图像上出现非正常浓集灶，易误诊为甲状腺转移癌。此时，从不同体位作检查可以确定浓集灶的部位，更换农物后再查可以

明确原因
结节良恶性的鉴別有一定价值．对用状腺癌（分化好或末分化；淋匹结转移灶的诊断有较大价值。新近发现线粒体对＂！m Tc－MIBI 有亲和力的特性，对富含线粒体而摄䃊能力很少的 Hurthle 细胞癌的亚像更佳。
（3）${ }^{2: 1} \mathrm{Tl}$ ：现在对 ${ }^{201} \mathrm{Ti}$ 沴断出状腺癌的看法不一致。以往报肖 94% 的甲状腺㤲性肿溜能浓聚 $\therefore \mathrm{Tl}$ ，但对灵敏度及特异性的报詣分別为 $25 \% \sim$ 100% 及 $37 \% \sim 1: 0 \%$ 。有人主张将古期业像（洼射后 $5 \sim 10$ 分钟）与延迟亚像（注射居 $3 \sim 5$ 小时）两个时相进行比较，恶性肿瘤在两个时相内均定放射性明显增高，而良性肿瘤在延迟显像时则见放射吽朋显减退，但有的作者不能得到相似的结罡。对不能摄取 ${ }^{131} \mathrm{I}$ 的转移灶，${ }^{201} \mathrm{Tl}$ 有定们的可能。对转移的颈，胸，纵隔淋已结，可以在不停用甲状腺激素时得到清晰的图像。
（1）${ }^{67} \mathrm{Ga}$－柠㩚酸盐显像：＂Ga 能浓集于分化不良的甲状腺癌病灶内，对分化良好的甲状腺㿋效果不佳。 ${ }^{57} \mathrm{Ga}$ 也能浓集于甲状腺夏性疾病内，如桥本氏白状腺炎。甲状腺淋巴瘤也能摄取＂${ }^{\prime \prime}$（Ga，其表现为局部浓集。
（5）＂ 4 ＂II $\mathrm{Tc}-(\mathrm{V})$－DMSA 显像：已允分证明 ${ }^{99 \pi} \mathrm{~T} \mathrm{c}$－（V）－DMSA 对甲状腺髓样癌有诊断价值。制备良好的 ${ }^{9 y_{m}} \mathrm{Tc}(V)$ DMSA 可以得到良好的结果，对原发及转移病灶的诊断灵敏度均超过 $650 / 3$ 。特异性可达 100% 。
（6）${ }^{18}$ F－FDG PET 显像：${ }^{15}$ F－FDG 是北刃状腺癌的特异性显像剂，伏甲状腺腺瘤可以有摄取，而有的乳头状㾔却不摄取。 ${ }^{16} \mathrm{~F}-\mathrm{FDG}$ 显像主要历ナ甲状腺癌治疗后的随访及分期，特别是当州 1 全身显像为阴性时。一般认为，${ }^{19}$ F－FDG摄取高，${ }^{31} \mathrm{I}$不摄取的病灶发展快，预后不好，这些多属于分化不良的甲状腺癌。 ${ }^{18}$ F－FDG 显像的优点是检查前病人可以不停用甲状腺激素。
（青埛晓）
5．用状腺外肿物的诊断 甲状腺显像也常用于鉴別诊断颈部肿块是在甲状腺内或甲状腺外。如肿物对 ${ }^{137} \mathrm{I}$ 或 $\left.{ }^{95 \mathrm{sm}} \mathrm{TcC}\right)_{4}{ }^{-}$完全不摄取，11位于甲状腺轮廓外，甲状腺本身形态义完整，则为甲状腺外肿物，常见的如甲状甹骨嚢肿（图11－20）：如肿物位

5中状腺轮廓内或甲状腺形态不完整。肿块在甲状腺边缘形成川陷缺损，则肉甲状腺以肿物。但也常有不典犁的表现，如中状腺肿物从甲状腺边缘向外牛长，虽然肿物很大，仰并米被坏甲状腺轮廊，肿物对 ${ }^{131} \mathrm{I}^{.4 \mathrm{n}} \mathrm{n}$ $\mathrm{TCO}_{1}{ }^{-}$可以完全不摄取．则容易误诊为甲状腺外肿物。

B．斗状腺重量的估算 正确估算平状腺的重量划于 ${ }^{151}$ I 治疗甲元时剂量的计算非常重要。利用甲状腺平角显像图及经验公式（浽用较多的是A len 公式）可计算如下：
H状腺重量（ g ）＝甲状腺正面图面积 $\left(\mathrm{cm}^{\circ}\right)$ 入甲状
腺两叶平均高传（ cm ）$\times \mathrm{k}$
k 为常数．Allen 的 k 值为 0.323 ．北京协和医院的 k 值为 0.316 。

Allen 等报告按此公式计算用状腺重量的误差为 $\pm 10.6 \%$ 。原以是公式中的有关因素是甲状腺平面衫像洛的面积和两叶的高度，没有原度。因而面积大而溥的甲状腺的计算结果容易偏大，面积亘小但唇的甲状腺的计算结果容易偏小，但与视，触诊付计 （误差可达 $\pm 40 \%$ ）比较还是相对准确的．故很多单仿已作为常规方法。近年来随着 B 超的发展，很多报告认为 B 超测起中状㟫的体积比较准确。我们用 $\left.{ }^{2}{ }^{2} \mathrm{TcO}\right)^{-}$显像和 B 超两利 t 方法同时测量厂 102名甲完病人 ${ }^{i 31} \mathrm{I}$ 治疗前及治疗后 $5 \sim 12$ 月的甲状腺大小并进行了比较，结果表明，治疗前两种后法测得的重量相关良好（ $r=0.919$ ）。治誩合师状腺普䢟缩小，但 B 超的缩小程度大于显像（前者缩小
59.7% ， 1 lif 后者缩小 51.4% ），相关亦变差（r 0.738 ）。其原因就是 ${ }^{131} \mathrm{I}$ 治疗应甲状腺的体积缩小，厚度超过长，窥径。故我们认为，治疗前两种方法都可以会。而治疗后则以 B 超测量更为准确。特別是需要第二疗程治疗的病人，监采用 B 超计算其甲状腺重量。

八，比较影像学

甲状腺是小脏器，在人体的位罟又比较表浅，体检容易触摸，一般不需要 CT，MR 等检查。除核矢学检查外，影像学中较常用的是超声检查，超声检査简便易行，收费相对较低，而 11 其灵敏度，分辨率高，临床医生乐于采用，日前已常规用于体检发现甲状腺结节。B超可以发现直径数毫米的结节，还可鉴別㐮性或实性（囊性病变绝大多数为良性）。但是，超声反映的是组织结构的声像图，基本上是解剖形态学的图像，其缺点是：（1）受人体怸些部位的限制，如先天性异位平状腺（ectopicthy roid gland）肿（舌根部，胸骨后）的发现就有困难； （2）B 超不能判断结节的功能，尤其是功能自主性 ＂热结节＂的诊断；（3）甲状腺疾病治疗后的疗效判断，如Plummer 病甲元是否治愈，甲状腺癌术后或 ${ }^{131} \mathrm{I}$ 治疗后有无复发或寻找甲状腺癌转移灶，等，都是 B 超无能为力向只有核素显像独具功能。当然，如前所述，B 超测量甲状腺的体积较核素显像准确。

（周 前）

第2节 肾上腺显像

一，解剖生理基础

肾上腺位于双怪上极，右侧肾挝常低与＂左侧，但肾上腺由于形态的缘故常见在侧高于方侧。肾上：腺含有皮质和髓质两部分，它们的肧胎发育，组织学及功能均不相同。皮质可以分为一个带：近膜部分为球状带，主要合成醛固酮，林肾素—血管紧张素系统调节；深层为索状带及网状带，前者主要合成糕皮质激素，后者能合成微聑雄激素和雌激素。正常情况下，皮质主要受腺垂体分泌的 ACTH 调节。髓质位于肾七腺巾英部位，它能合成弁贮存肾上腺素。

二，皮 质 显 像

（一）显像原理

茾体激素的前身是胆固醇，肾上腺皮质合成的盐，糖和性激素的原料主要来源于血循环中由低密度脂蛋向（LIDI）运载的胆固醇，肾上腺皮质细胞膜上具有对 ILDL，有特异高亲和性的受体，当受体与载有脂周醇的 LDL 结合以后，释放胆固醇，由细胞膜乙酰辅酶 A，肚固醇乙酰转移酶（cholesterol acyltransferasc，AC \wedge T）酯化，并贝出存在肾上腺细胞内。如将放射性胆固醇注入血液内，其代谢途烃与非放射性胆固醇相同，在放射性胆固醇进入肾下腺皮质细胞后，即可进行皮质显像（adrenocortical imaging）。皮质显像与血中的 AC＇IH 水平有关， ACTH 可以受到大量糖皮质激奚的负反馈作用。密要坦（Op－DDD．对双氯苯二氯乙烷）也可抑制 ACIH 的分泌，从而影响到ACTH－受体的结合。高血胆固醇可使放射性胆固醇进入皮质细胞的量减少，使得皮质显像不清唽。

（二）显像剂

肾上腺皮质显像剂主要是放射性核素标记的胆周醇。就胆固醇而言，最先应用 ${ }^{1331} \mathrm{I}-19$－胆固醇，以后果用了显像效果更佳的 ${ }^{13}$ I 6β－胆固醇（简称 NP－ 59），国内合成的 ${ }^{131} \mathrm{I}-6$－胆固醇的效果优良，合成简便，是优良的皮质显像剂。除了用 ${ }^{131} \mathrm{I}$ 作为胆固醇的标记用核素以外，还存硒 $\left.{ }^{75} \mathrm{Se}\right]$ 标记的 ${ }^{73} \mathrm{Se}-6 \beta$－胆固醇（简称 SMC），由于 ${ }^{\sigma_{5}} \mathrm{Se}$ 的半衰期为六周。不需封闭甲状腺，很少有故射性降解，可以贮：存较长时间，其对患者的辐射剂量与 ${ }^{131}$ I 标记的胆固醉 （ ${ }^{1.14}$ I－iococholesterol imaging agent）相似，在欧洲各国应用厂 ${ }^{2}$ 泛。各种放射性胆固醇的性质，用量等见表11－2。

表 11－2 肾上腺皮质显像别

W綡复			
1－6－1\％	35\％		$3 \cdots \%$
\％－9316	36%		－－－－－
	1，36．	371．age	\％…）

[^2]（三）显像方法
将放射性胆固醇溶于含 Tween 80 的 $厶$ 醇中，

按用量（见表11－2）静脉注射，如应用 ${ }^{1,31} \mathrm{I}$ 的标记物，应先口服卢戈氏液，过次 10 滴，每正 3 次；或口服饱和碘化钾溶液，每大 3 次，每次 1 滴。于洁射前 3 天开始服用，并持续 7 天以上，以防止游离 ${ }^{131}$ I进人用状腺。静脉注射时应缓慢．以免注动局部疼痛，一些对酒精无耐受性者，在注射时可能会出现面部潮红，腰背酸胀，心跳加快等反，应，短时间会消失。

静脉注射后 $3 \sim 7$ 天显像，有时 7 天以㕣显像。由于本底降低，病灶显示得重为清晰。在检查前晚应服用缓泻剂，以清除肠道內存在的放射性胆固醇，使肾上腺显像清晰。
${ }^{131}$ I标记物在显像时应用高能准直器，后前位显像能获得最清晰的图像。

（四）正常显像表现

正常肾上腺皮质显像于早期并不清晰•以后见到双侧肾上腺的图形（图 11－21）。

图11－21 正常肾上腺㝿质显像讦射 ${ }^{31} \mathrm{I}-1 \mathrm{~s}$－IC：后 5 天，后前位，双侧

上腺显像，右侧稍高于左側
存侧有时浓集更多的放射性，其原以是右侧较左侧更近背面，又因肝和胆囊内的放射性与右侧肾上腺重叠。作侧位显像能帮助区分开肝和胆憲内的放射性或嘱受检者服脂肪餐，20分钟后由于胆囊收缩，显像时胆囊影消失而右肾上腺仍显影，此时两者可加以鉴别。

（五）异常显像表现

1．皮质醇增多症 当皮质分泌大量的糖皮质激素，并伴有少量战大量的性激素时，临床上町见到典型的 Cushing 飞综合征（㞰）表现。这可由于良性或恶性自主性肾上腺皮原肿瘤引起：也可由于垂

体前叶分泌了大量的 ACTH 刺激了收侧肾上腺皮质增生引迊；也可由于垂体外良性或恶性新生物 ［异位ACTH 和（或）促皮质释放激素（corticotropin releasing hormonc）所引起。

从发病情况分析。垂体分泌 ACTH 的肿瘤占皮质醇增多症的 $2 / 3$ ，一些能分泌 ACTH 的非严体的病因占皮质醇增多症的 $15 \frac{1}{3}$ 。其中由小细胞肺癌引起的约占一半。类㾸，計状腺髓样癌，嗜铭细胞瘤和其它神经内分泌肿瘤等约占其余部分：肾上腺发质腺瘤（adrenocortical adenoma）约占皮质醇增多症的 10% 。肾上腺癌及自主性皮质结节增生 （ C, NH ）各约占 5% 。

仕单侧功能自主性皮质腺瘤时，腺瘤则呈高度摄取放射吽肚周醇。出于腺癌分泌了大量皮质激素，抑制了垂体分泌A（TH．使对侧正常肾上腺皮质摄収胆固醇的功能被抑制（图11－22）。

图 11－22 左肾上腺度，质腺鎦

在 ACTH 依赖性肾」：腺皮质增生时．双侧肾上腺皮质摄取胆固醇增加（图 11－23）。如检查24小时尿游离皮质激素（UFC），可見其含童与阳性显像呈正相关。异位分泌 AC「H综合徒掫取放射性胆固醍安多于 Cushing 飞综合比。

肾上腺皮质腺癌分泌大箸的皮质激素，也可抑制 ACTH 的分泌，使得对侧正常腺体不能正常摄取胆周䣼。但癌组织体积大，总的摄取放射性胆固醇量虽较高，每克组织摄取的量不足以使肿瘤显示，因此双侧肾上腺都不能量示。非 ACTH 依赖性的 CNH 常为双侧性，但双侧亚像常不对称。

放射性胆固醇显像对非 ACTH 依赖性Cush
\qquad
\qquad

图1123 双侧情上：腺皮质增生

ing 氏综合征有价值，结合 CT 先位和生化检香的阳性结果，即可明确于术的部位。如果 C1 检查能明确肿瘤的部位，胆固醇显像末见出影，则表明肿痛为恶性。如 CT 检查认为一侧们小约肿瘤，为单个或多个，而对侧末见异常，监怀疑为 CNH。有种少见的间断性或周期性发作的 Cushing 飞综合征，也立怀疑为 C．VH。

放射性胆固醏显像对双侧肾上腺凉发性或继发性皮质增生，术后复发或肾上㟫移植居有无功能有诊断价值。

2．原发性醛固制增多症（primary aldosteron－ ism）原发性醛固酮增多症可由丁单侧腺瘤与双侧增生引起，腺瘤多为良性，直径多小于 2 cm ，增生可以是皮质球状层沙漫性或结节性增生，它们均能
钾，周期性麻痹二人症状。血循环内醛固酮增多，使永钾增高，钠滞留使得细胞外液扩张，抑制了肾索的分泌。一些高血压病人在应用利尿剂以后，也引起低血钾，在进行放射性胆固醇显像前，应停用会下扰显像的药物。

原发吽醛固酮培多症如为腺瘤引起．其治疗是采用手术切除；如凶增生引起则以内科治疗火主。在放射性胆固醇显像时，腺瘤撤取胆固醇增多（图 11－24），焦ACTH 依赖吽的正常侧有时亦能技取较高的放射性胆固醇，与双侧增牛时的图像相似，鉴别方法可用地塞米松抑制试验（详见，鉴别诊断）。以抑制 ACTH 低赖性腺体摄取放射性胆固醁，患

有腺瘤的肾上腺，由于功能的自主性，地塞米松不能抑制它摄取胆固醇。

图1：－24 䅫发吽醛湖剖增多症右侧腺瘤

有些约物能使肾下腺皮质摄取胆固醇增多，如螺内酯（spironolactone），利尿剂，口服避孕药， －些降血脂约物等，应丁检查前停用 $4 \sim 6$ 周。

3．女性男性化 女性男性化是由于雄性激素产牛过多（hyperandrogenism）所致。卵巢分泌雄激素为雄甾烷二酮（androstenedione），而肾上腺皮质分泌雄甾烷一，䣳及 DHEA－S（dehydroepandros terone），这些弱的雄激素在周制组织内转变为㿻酮，如男性化表现愈明显，病因在卵巢的可能性愈大。如血中DIIEA－S 的水平增高，则提小病因在肾上䐆的可能性大。卵巢地需摄取胆固醇作为甾体激素合成的前身物。地塞米松抑制试验也可用作卵巢或肾上腺病因的答别，肾上腺显像石被抑制，卵条术被抑制，病㝼来自卵巢，应特别注意肠道内放射性的干扰。其它影像学检查，如超声或 CT，可见肿大的卵巢。

4．偶发肾上腺结节 现代较先进的（T，发现肾上腺异常者达 1% ，其中肾 1 ：腺外肿瘤约占 10% ，CT 所见的肾上腺肿物，可能来自肾，肺，乳腺，雲等原发吽肿瘤转移所致。（T）检查为非特异性：但有时从肿物大小可能帮助鉴別，如肿块大于 5 cm ，常为恶性。偶发肾上腺结节因为没伯明显的临床表现，生化检查地多正常。具有易漏诊的可能性，（TT或MR检查与放射性胆固醇显像结合评价较有帮助，如CT 所见结节在胆固醇显像时有功

能，提示该结节为良吽，可能是有功能的腺瘤或增生的肾上腺皮质组织，如该结节不浓集放射性胆阔醇，则该结节可能是原发性或继发性的恶性屾瘤．如肿瘤较小，胆固醇显像为阴性，不能说朋垁病的性质，
（六）鉴别诊断
1．地寒米松抑制试验 在常规肾上腺皮质显像后，如不能区分肾上腺为腺瘤或增生时，叮采方地塞米松抑制试验以帮助进行鉴別。常规业像后，给服用地塞米松，然后再注射放射性胆固醥一次，继续进行肾上腺显像。

2．原发性皮质醇增多症 地塞米訟的用量可分为两种，在注射放射性胆固醇前 3 天，每口服 2 mg （低剂量）或每日服 3 mg （每 6 小肘 2 mg ）（高剂量），注射放射性胆固醇后继续服用到检査结束。低剂量即能抑制原摄取量的 50% ，可排除 Cushing氏综合征，低剂量不能抑制，在高剂量方能扣制，则为Coshing 氏综合征。在高低剂堡均不能抑制时，则为肾上腺腺瘤，肾上腺癌，功能自主性皮质结节样增生非 ACTH 依赖性病变。测定血消 ACTH，如增高为非ACTH 依赖吽 Cushing 氏综合征或异位 ACTH 综合征：如降低则为ACTH 依赖性Cushing 氏综合征。

注射放射性胆固醇后古期显像（5 大以前）出现单侧显影，显像侧为腺㿑：双侧泉影，则为双侧皮质增生。

（七）比较影像学

肾上腺非创伤性检查还可用CT 及 MR，两者对 $0.5 \sim 1.0 \mathrm{~cm}$ 直径的肿瘤可以检出，但刈更小屹肿瘤则不敏感，对双侧增生，术后肾上膘的检出难以解释，尤其对条个肿块及术厉肾上：腺，移植肾上腺的功能．不能提供信息。

三，槰 质 显 像

（一）显像原理

肾上腺髓质细胞及交感神经原等能摄取生物胺 （包活儿茶酚胺）。该摄取过程能被可卡匤，抗抑郁药物所抑制．进人到髓质细胞内的生物胺可䦨被转人到与细胞膜结合的賈胞（vesirle）内，该摄収过程能被利血平，tetrabenazine 所封闭。末储存的儿茶酚胺很快被细胞浆内单．胺氧化䣼（monoamine oxi－ dasc．MAO）所降解，进入血循环队的儿茶酚胺被

神经原外的组织所摄取，然后被儿茶－ o －計基转移酶（catachol－o－riethyltransferase，COMT）所分解：

MIBG 与去印肾上腺素的结构相似，进人血㖡后与去中肾上腺素一样能被䜔质细胞摄取并进人到囊胞内贮：存，用标记的 MIBG（就可使肾上腺髓质显像（adrenal medullary irragiug），MiBG 显像对踖铬细胞瘤，神经丹细胞瘤等的诊断有特异性， MIBG的㐫素苯环及腑基侧链。不被 MAO 及 COMT 所降解，即使从尿内排出的 MIBG．仍保持原来结构。

（二）显像剂

$\mathrm{MIBG} \mathrm{F}_{\mathrm{F}}$（间）位磺代苂胍 ，meta－iodobenzal－guan－ dine）是现今最有效的肾下腺骶质显像剂。由十其结构 1 去甲甲肾上腺素相似，因此，进人血循坏 MI BG 能被髄质细胞摄取进人囊胞。静永注入后•除了被撮取的部行外，其余部分被弥散进人红细胞内，血小板亦浓集部分。大部分从尿内排出．汗射后 24 小时约排具 55% ， 96 小时约排出 90% ，M1－ I3G 为极性化合物，不能穿透血脑屏障．不进人中抠神经。
${ }^{131}$ I－MIRB 为常用于㫆断和治沵的放射吽药物。刈诊断间言，${ }^{15 s} 1-\mathrm{MiBG}$ 更为合适．因为它可以用大＋${ }^{15} \mathrm{I}$－MIBG 10 倍以上的剂量，辖射量并不增加，可以获得更清澵的图像。不过 ${ }^{[25 .} \mathrm{I}$ 的半衰期仅13 小时，价格贵，难于推厂＂应用。现今另一种
 no－3－iodo－benzylguanidine，${ }^{123}$ I－AIBG），其标记 方法筒便，快速，对恶性嗜铬细胞瘤的探测有价值，应出苄解作为配体，以 ${ }^{18} \mathrm{~F}$ 标记为 ${ }^{19} \mathrm{~F}$ 间位氟代芐胍（ ${ }^{18}$ F－meta－flurobenzylguanidine，${ }^{18}$ F－MIBG）。作为 PET 的显像约物。此外一些标记化合物如 ${ }^{1-i}$ I－ MIBG．${ }^{88} \mathrm{Br}$－间位滇代芐胍（ax Br meta bromo－ benzylguanidine，＂ Br －MIBG）以及＂${ }^{\circ}$ C 标记的化合物均隹研究中。

（三）显像方法

1．病人准备 病人应停用干扰摄取 MIBG 的药物，抑郁㑊约物，拟交感神经约物，可卡因，酸唌溙，利血平，钙通道阻滞剂，这些药物的作用机制见表11－3．

在注射 ${ }^{151}$ I－MIBG 前 $1 \sim 2$ 天，给病人服用铇和碘化钢溶液， 1 口 3 次，每次 1 滴，或复方碘溶液．1 日 3 次，每次 10 滴。连续服用2周（ $1 \times 3 \mathrm{I}$－

表11－3 肾上腺喡质显像的影响因素

MIBG 可用 3 म）以保护甲状腺。
2．注射放射性 MIBG 静脉缓慢注射 ${ }^{13:}$ I MI－ BG $18 \sim 37 \mathrm{MBq}(0.5 \sim 1.0 \mathrm{mCi})$ ，如用 ${ }^{123} \mathrm{I} \mathrm{MIBG}$ 则注射 $111 \sim 370 \mathrm{MBq}(3 \sim 10 \mathrm{mCi})$ 。注射后 24 小时， 48 小时，必要时进行 72 小时后位及前位业像，对疑有肾上腺外或恶吽：嗜铬细胞瘤时，应进行全身显像，有时 ${ }^{131}$ I－MIBG 显像可延长至第 7 天，由于夙围组织本疷的降低，病灶更为清晰。显像见到的病灶，定位往往困难，如进行相应部位脏器亚像，可以帮助定位。结合 CT 或 MR 显像对定位可有帮助。

（四）正常显像表现

体内一些正常组织，于显像图中可见摄取 MI－ BG，这些组织多由肾上腺交感神经原支配，其巾有心肌，垂液腺，J无常肾上腺瀡质。一些代谢 MI－ BG 的脏器，如肝，肾，膀胱，肠地可显像。正常肾上腺髓质多数于 ${ }^{131}$ I－MIBG 显像时不显像，在 ${ }^{12}$ I－MIBG 业像时约有 $1 / 5$ 的患者显像。其它正常组织如泪㟫，鼻哃部，脑，肺可见到放射性。非上述部位浓集放射性 MIBG 应考虑为异常。
（五）异常显像表现
1．嗜铬细胞瘤（pheochromocytoma）放射性 MIBG；可用于肾上腺内良性嗜铬细胞疰（图 11－25），肾上腺外良性嗜铬细胞瘤（图11－26），恶性嗜铬细胞潟转移灶，嗜铬细胞瘤伴有家族染色体显性遗传疾病（如 MEN 2a，MEN 2b）等的定位诊断。嗜铬细胞瘤摄敢 MIBG 的多分与神经内分泌颗粒的多少相一致，摄取率不高是与神经内分泌颗粒缺乏或不典型有义。患者有嗜铬细胞瘤表现的症状，但可能是髓质弥散性或结节性增生，显像表现为双侧放射性㳖集，这多见于家族性疾病。

搘铬细胞瘤常称为 10% 疾病，即双侧肾上腺肿瘤，肾上腺外肿瘤，恶性嗜铬纽胞瘤，正染色体家族吽综合征各占 10% ，家族性综合征应进一步检查有 尤甲状腺髓样癌，并对家族成员做进一步检查。

应用放射性 MIBG 作肾上腺髓质检查。不是过筛试验，在决定检查前，应有较多的证据，临床上有高度怀疑，生化检查见儿茶酚胺增高，CT 检查有弁常肿块，临床不能排除嗜铬细胞癌。MIBG显像可发现肾上腺外的病灶以及恶性病变的转移灶。

图1125 左侧肾卜腺喑铬细胞瘤

b．术中所见，显示肿甭

寺 11－26 䒜位嗜铬细胞㾤
a．${ }^{111} \mathrm{~J} \cdot \mathrm{MIBG}$ 显像．F䘏部中线部优可见放身：性浓聚灶；

2．恶性嗜铬细胞瘤 恶性嗜铬组胞瘤与良性嗜饹细胞瘤的区分是恶吽者具有转移性，从 MII3G显像观察，除可在肾上腺部位见到放射性浓集外，价其它部位永可见到摄取放射性 MIBG 的病灶。较常见的部住为腹主幼脉旁，其它如膀胱，肝，肺，脑内均可发现。

（六）比较影像学

CT检査发现肾上腺肿块，如结合临床及生化检查，可以诊断嗜铬细胞㿑．但（T 对肾上腺1×肿块的检出率约为 80% ，MR 及 B 超的作用相似。对异位及丠性嗜铬细胞瘤的转移灶，（T，MR 及 B超检查，即使发现肿块，亦难于判定病因。放射性 MIBG 显像对肾上腺内以及肾上腺外的并常昆像则具有定性价值：
（马寄晓 朱瑞森）

第3节 甲状旁腺显像

一，解剖生理基础

出状旁腺来源于胚胎发育吅的第四及第代对咽鉵。一般为四个，上下务一对，上对位于甲状腺上极后方或环甲关节附近；下对位于用状腺下极前或后外方，但出状旁腺的位置及数月变异很大，其位置可上至颈动脉分叉，届至咽或食管后，下全纵隔内（胸皆后胸腺奴占 20% ），也可包埋在甲状腺体内（ 5% ）。甲状旁腺約体积很小，正常的每个只有

35～$~ 0 \mathrm{mg}$ ，其血供束号用状腺下动脉或甲状腺上，下动脉问吻合支的分支。

甲状旁腺的功能主要是分泌甲状旁腺素（para thyroid hormone，PTH），以维持体内铐的平衡。 PTH 分泌过多，即円状䟫腺功能尤进症（hyper－ parathyroidism，HPT）时．恧钙升高，血磷降低：分泌过少则反之。正常时血钙水平可反馈调节 PTH的分浃，1IPI时，失去此调节作用，引起高钙血症，并产生骨质蓅松，骨折，甚至棕色瘤形戊。

二，显 像 原 理

甲状旁腺显像（parathyroid imaging）主要用于定位诊断 HPT，其中尤其是原发性 HPT。因为原发性 HPT 80% 是由于本状旁腺腺瘤引起。11多为单发， 20% 为腺体增生，只有不足 1 c 的为癌。继发性 HPT 常因维生素 D 缺之，肾功能不全所致低血钲，刺激甲状旁腺使之增生；－发性 HPT 则是在继发性 HPT 基础上，部分增生组织转变为腺瘤，但病因需要临床及生化指标诊断。业像的目的是术前定位．尤其是异位或术厉复发，准确定位非常重要。

中状旁腺显像的研究已有很长的所史。早在 1962年．Sisson 和 Beierwaltes 用过钴［＂－ $\mathrm{Coj} \mathrm{c}^{\circ-\mathrm{Co}}$
因这些约物均非甲状旁腺特异性㷎像汶。に用状旁腺体积小，又紧邻甲状腺，本底高，难以分辨而末能获得满意效果。直到 20 世纪 90 年代 Ferl’n 等庪

道出 ${ }^{201} \mathrm{Tl}$ 种 ${ }^{54 \mathrm{sm}} \mathrm{Tc}()^{-}$双核素减影法，改进了甲状旁腺显像图的质量，大大提高「甲状斊腺瘤定们的准挽率。其原理是：${ }^{201} \mathrm{Tl}$ 是厂＂谱肿瘤显像剂．可使功能亢进的甲状离腺组织显影，但正常甲状腺组织也能摄取少量 ${ }^{241} \mathrm{Tl}$ 而显影，因拍不易辨别。ゆ
的图像减去 ${ }^{n \times m} \mathrm{Tr}_{\mathrm{c}} \mathrm{O}_{1}{ }^{-}$的图像（即减去正常中状腺图像），剩下就是功能亢进的甲状旁腺（肿瘤或增生的组织）。由于 ${ }^{9 n} \mathrm{~T}_{\mathrm{c}}$－MIBI 已厂泛用于肿瘤显像茄代 ${ }^{201} \mathrm{~T} 1$ ，目前也已用于玗状旁腺显像，且发展为只用 ${ }^{09} 9_{m}$ Tc－MIB1 的双时相法。

三，显 像 利

用于甲状旁腺显像的显像剂都是亲肿瘤显像剂，如 ${ }^{2011} \mathrm{TlCl}$ ，${ }^{9+\mathrm{man}} \mathrm{Tc}$－MIBI 和性能与之相似的 ${ }^{49 n}$ Tc－tetrofosmin（ ${ }^{49 \mathrm{tax}} \mathrm{Tc}-\mathrm{TF}$ ），可被功能元进的甲状旁腺组织摄取而显影，如甲状旁腺增生（para－ thyroid hyperplasia），甲状旁腺腺瘤（parathyroid adenoma）及甲状旁腺癌。近年来，有关用＂F－FDG及碳－${ }^{-11} \mathrm{C} 7$ 蛋氨酸 $\left({ }^{11} \mathrm{C}\right.$－methionine，$\left.{ }^{11} \mathrm{C}-\mathrm{M}\right)$ 作甲状旁腺显像剂也陆续有报道。几种甲状旁腺显像剂的特性见表11－4。

表114 甲状旁腺昆像剂及其特性

四，显像方法

（一）${ }^{201} \mathrm{Tl} /{ }^{99 \mathrm{mx}} \mathrm{TcO}_{4}{ }^{-}$双核素减影法

静注 ${ }^{49 \mathrm{~m}} \mathrm{TcO}_{4}{ }^{-} 74 \mathrm{MBq}(2 \mathrm{mCi}), 10$ 分钟后病人仰卧于 γ 照相机探头下，颈部伸展，视野包括颈部及上纵隔，先用 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ 能峰采集 5 分钟为甲状腺显像．然后改用 ${ }^{2 J 1} \mathrm{Tl}$ 能峰采集万分钟 ${ }^{201} \mathrm{Tl}$ 显像时，体内 ${ }^{99 m} \mathrm{Tc}$ 产生的散射线）。病人保持不动，再次静脉注人 ${ }^{2 n 1} \mathrm{TlCl} 74 \mathrm{MBq}(2 \mathrm{mCi})$ 。 5 分钟后用 ${ }^{2,1} \mathrm{TI}$ 能峰采集 5 分钟为甲状腺及中状旁腺显像。 ${ }^{2: 1} \mathrm{~T} 1$ 图像经散射校正后，进行减影（减去＂${ }^{\prime 4 m} \mathrm{TcO} \mathrm{C}_{4}$ 图像），得到功能亢进的甲状旁腺图，即为双核素减影法 （dual radionuclide scintigraphy）。

（二）${ }^{99 m} \mathbf{T c}-\mathrm{MIBI} /{ }^{9{ }^{9 \mathrm{~m}}} \mathrm{TcO}_{4}^{-}$减影法

由于 ${ }^{2 n 1} \mathrm{Tl}$ 是加速器生产，不能随时得到，故来用 ${ }^{99 m} \mathrm{Tc}$－MIBI 替代 ${ }^{201} \mathrm{Tl}$ ，因同为 ${ }^{40 \mathrm{~m}} \mathrm{Tc}$ ，故地称为双显像剂减影法。方法基本同（一），不同处为： （1）只用一种核素，不需改变峰值及采集散射线： （2）${ }^{99_{\mathrm{m}}} \mathrm{Tc}_{\mathrm{c}}$ 的 T_{12} 短，可适当加大剂量。两者的剂量均用 $185 \mathrm{MBq}(5 \mathrm{mCi})$ ，以缩短受检时间：（3）均在汗射后 $10-15$ 分钟开始采集。所得图像同（一）。
（三）${ }^{99 m} \mathrm{Tc}-$ MIBI 或 ${ }^{99 m} \mathrm{Tc}-\mathrm{TF}$ 双时相法
减影法的缺点是病人至少需保持半小时不动，

比较困难，尤其对于病情较重的病人。如果两次的图像位置稍有挪动，则减影后造戊假阳性或假阴性。双时相法（double phase study）是根据 ${ }^{0 y_{n n}} T_{c}$ MIBI（或 ${ }^{999_{m}} \mathrm{Tc}-\mathrm{TF}$ ）在正常甲状腺组织和甲旁元组织中的代谢速率不同（正常组织中清除快，功能亢进组织中清除慢）的机制而建立。

病人静注 $222 \sim 296 \mathrm{MBq}(6 \sim 8 \mathrm{mCi})^{45 \mathrm{~mm}} \mathrm{Tc}-\mathrm{MIBI}$后， 15 分钟采集＂初始相＂图像，甲状腺及功能亢进的甲状旁腺均显影，但两种组织的放射性强度差别不显著。两小时后再采集＂延述相＂图像，此时正常甲状腺影已消退变淡，而功能元进的甲状旁腺显示更清晰。

注意事项：（1）减影法 ${ }^{49 \mathrm{~mm}} \mathrm{TcO}_{1}^{-}$显示的甲状腺㾉结节（如滤泡状瘤／癌，胶样结节等）。有时也可浓聚 ${ }^{201} \mathrm{Tl}$ 或 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－M1BI，减影后可出现假阳性。（2）双时相法的灵敏性一般稍低于减影法 （特异性相同），如双时相法结朰阴性而临床又高度怀疑原发性 HPT，最好重复减影法，以免䨟诊。原因是有些甲状㝑腺腺瘤清除 ${ }^{99 m} \mathrm{Tc}-\mathrm{MI}-$ BI 比较快。（3）术后复发或怀疑异位甲旁亢，平面显像未发现或定位困难时最好采用 ${ }^{9041} \mathrm{Tc}-\mathrm{MI}$－ BI 断层显像。

五，正常显像表现

甲状旁腺功能正常对蹅像不显示，减影法相减后仅留下比本底还低的甲状腺空白区（图11－27）。双时相法仅见甲状腺显影，领部无异常浓聚灶。

六，临 床 应 用

（一）甲状旁腺腺瘤

甲状旁腺腺瘤的大小范围很大，从几十毫克到近百克。国内由于医疗条件所限，确诊往往较晚，手术时很少发现 10 克以下的腺瘤，病史长的腺瘤。常可发生出血，穣性变等。显像图上腺瘤表现为异常放射性浓聚区．形态常为圆形或椭圆形（图11－ 28），但变异亦可很大，如有出血或嚢性变。浓聚区内可出现放射性缺损区，或仅边缘有放射性，呈月牙状。

图11－27 正常用状离腺㯡像双核素减影法

图11－28 双显像剂掝影法，中状旁腺腺简（2．5cm $\times 2 \mathrm{~cm} \times 1 \mathrm{~cm}$ ），位于甲状腺右叶下极

异位甲状旁腺腺瘤的位置变异也很大，位于上纵隔者较多见，亦可包埋在胸腺组织内（图11－ 29）。显像时如颈部未发现异常浓聚灶，而临床义高度怀疑 HPT，显像范围务必包括胸部，以免漏诊。病史长的病人最好加做全身显像，以了解有无合并骨骼棕色瘤。

（二）甲状旁腺增生

一般四个腺体都增大，但地有一个增大为主 （图11－30）。

（三）甲状旁腺腺癌

较少见，切除厄往生复发，从业像图上不易与

腺瘤鉴别，必须与临床结合丮能诊断。

（四）棕色瘤

や状旁腺功能立进不论原发与继发，由十゙长期血中 PTH 升高的刺激可引起骨骼代谢变化，病程长的还可引起棕色瘤（或称破骨细胞瘤）形成。此种詝瘤乃企身性骨病，常为多发，侹程度不同。《线片或 CT 均有典型表现，称为纤维囊性骨炎或棕色瘤。核医学骨显像甲旁元时，常见代谢性改变引起的全身骨骼放射吽增高：如有棕色瘤存在。则有新骨形成的，表现为放射性浓聚，以破骨为主柇表现为放射性缺损，因软组织肿瘤细胞不摄取 MDP。

肳部AP 显像

恩1］ 30 甲状旁腺增牛；
95＂Tr－MIBI 显像（又对相法）示甲状楾左，右背侧•上，下四个甲犾旁楾地增尘 手术证实，最大者肖径 2 cm 。最小者 0.8 cm ）
${ }^{231} \mathrm{TlCl}$ 或 ${ }^{9 s_{m}} \mathrm{Tc}$－MIBI 均可被棕色瘤摄取，但摄取的机制与骨显像剂不何，亲肿瘤显像剂反映的是肿瘤组织细胞的活性。因此，中汱旁腺功能元进合并标色瘤时，${ }^{99 \mathrm{ar}} \mathrm{Tc}$－MIIBI 全身显像的浓聚灶可 ${ }^{\text {t }}$ 全身骨显像的结架不完全一致。

七，比较影像学

US，CT 或 MR 用于定位诊断甲状旁腺功能旭进国内外均有不少报道，总的来说各有优缺点。 US 简便，无创，缺点是体积小的病变不易发现，而异位甲状旁腺，如气算原，胸骨茞或纵隔内，以检查部位受限制而漏诊。另外，也不能与甲状腺内实性结节相鉴别。CT 则对位于颈部的病变价值不大，而异位者发现率高。MR 的定位准确率并不优于其它方法而价格却高于其它方法。核素显像由于是功能显像，玵此，灵敏度高，但体积太小的斿变

小有可能涌诊。有人报告加做断层显像可提高检出率。北京协和医院报告的 17 例与同时做 US 的 15例比较。前者的定位准确率为 94.4% ，而后者为 81.3% 。

第4节 垂 体 显 像

一，解剖生理基础

垂体位于蝶骨的垂体窝（蝶鞍）内，由垂体柄与下丘脑相连。垂体呈卵圆形，分腺垂体（前叶．占总体积的 $3 / 4$ ）和神经垂体（辰叶）两部分。腺垂体细胞可分泌 6 种激素：生长激素（GH）。催乳素 （PRL），促肾上腺皮质激素（ACTH），促甲状腺激素（TSH），黄体生成素（LH）和毁泡刺激素 （FSH）。垂体的分泌受下丘脑的调节。下丘脑分泌的激素有两类：一类可促进垂体各种激素的分泌，如促甲状腺激素释放激素（TRH）；一类可抑制垂体激素的分泌，如生长抑素（SST）。

垂体腺瘤（pituitary adenoma）是较常见的肿瘤，肿瘤细胞可从分泌激素的细胞发生并保持其分泌为能，也可从无功能的细胞发生。发生率最高的是分泌PRL 瘤（过去诊断为嫌色细胞瘤的垂体甭，现在认为也是 PRL 瘤〕，其次是 GH 瘤。

二，垂体显像刘及显像原理

垂体显像（pituitary imaging）主要用于垂体肿瘤的显像，垂体体积很小，又位于顾底，必需要有能被垂体肿瘤特异摄取的放射性药物才能使垂体显影。常用于颅内肿瘤显像的亲肿瘤显像剂，如品 Tc DTPA，${ }^{99 m} \mathrm{Tc}$－MIB1，${ }^{21} \mathrm{Tl}$ 等虽可被垂体腺瘤搞取而显影，但由于是非特异性，颅底的本底高，只有瘤体较大时才能显示，而且不能反映瘤体的类型。 ${ }^{111} \mathrm{In}$－Oct 可使有生长抑素受体的垂体瘤显像，如 GH 瘤的阳性率最高，其浓聚的程度还反映病人是否适合用生长抑素约物（Sandostatin）治疗，并可用于监测疗效。

PET 显像大大提高 了垂体显像的作用，显像剂如 ${ }^{11}$（ 登氨酸（ $\left.{ }^{11} \mathrm{C}-\mathrm{M}\right)$ ，不论分泌型还是非分泌型腺瘤都能浓聚，可用于鞍旁肿瘤的鉴别，垂体肿瘤治疗府有无复发等。 ${ }^{11} \mathrm{C}$ Raclopride，${ }^{1} \mathrm{C}$－I－Depre－ nyl 或 ${ }^{\prime \prime} \mathrm{N}$－Methylspiperone 等 D_{2} 拮抗剂，可使富

含 D_{2} 受体 PRL 瘤及约 30% 的 GH 瘤显像，并有助于预测多巴胺激动剂，滇隐亭（bromocriptine），治疗这些腺瘤的疗效。

三，显 像 方 法

（一）${ }^{99 \mathrm{~m}} \mathrm{Tc}$－DTPA 显像

静注 $555 \sim 740 \mathrm{MBq}(15 \sim 20 \mathrm{mCi})$ 后 $5 \sim 10$ 分钟，平面前位，后位，右侧位，左侧位显像，然后断层显像。

（二）${ }^{99} \mathrm{~m}$ Te－MIBI 显像

静注 $555 \sim 740 \mathrm{MBq}(15 \sim 20 \mathrm{mCi})$ 后 $20 \sim 30$ 分钟断层显像。

（三）${ }^{141}$ In－Oct

静注 $185 \mathrm{MBq}(5 \mathrm{mCi})$ 后， $1, ~ 4, ~ 24$ 小时显像，平面，断层均可。一般 4 小时显像最清晰。

四，正常显像表现

${ }^{99 \mathrm{~m}} \mathbf{T}_{\mathrm{c}}$－DTPA 或 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－MIBI 显像，正常垂体不显影；${ }^{141}$ In－Oct 显像，正常垂体摄取很少，其放射性一般相当于颅骨的强度。

五，垂 体 腺 痖

腺瘤较大时，${ }^{59 . . .7 c-D T P A ~}$ 或 $^{49 m} \mathrm{Tc}$－MIBI 显像均能显示，${ }^{111}$ In－Oct 显像以 GH 瘤阳性率最高，腺瘤有较高的浓聚，平面显像就可清晰显示（图

图 11－31 垂体分汹 GH 腺瘤，${ }^{11} \operatorname{In}$－Oct 品像。 a．AP 位；b．PA 位；c．RL；d．IL 位；均叮见鞍区异常放射性浓聚灶

11－31）。

六，比较影像学

垂体肿瘤的诊断主要依据血清激素水平的测定，侣激素水平升高不一定是肿瘤，激素水平不够高也可能是肿瘤，这时就需要影像诊断的帮助。在发现肿瘤，确定其形态大小方面，CT，MR 优于核医学显像，但 CT，MR 不能反映肿瘤的类型，更不容易判断治疗效果及鉴别有无复发，这时垂体功能星像有特殊价值，尤其是 PET 显像还可以帮助制定治疗方案。
（阔 前）

参考文執

1．周前，林祥通主编．甲状腺核医学．北京：科学出版社，1990．140－170
2．张朝佑．内分泌腺．见：土永贵主编．中国医学白科全书解剖学分卷．卜海：十海科学技术出版社，1988． 102－105

3．李方，周前，${ }^{39 m} T c-M I B I$ 显像诊断自主功能性甲状腺结节．中华核医学杂志，1996．16（1）：31
4．周新建，等．核素显像和 B 超测算叶状腺重㶳的对比研究．中华核医学杂志．1997．17（3）：165
5．周前，等，中状旁腺显像定论诊断原发性甲状旁腺机能 え进。中华核医学杂志，1994，14（1）：5
6．周前，等。原发性用状旁腺观能亢进合并棕色瘤 ${ }^{5 \times \mathrm{m}} \mathrm{Tc}_{\mathrm{c}}$ MIBl 亚像二例．中华核医学杂志，1995．15（4）：264
7．朱瑞森，等．${ }^{131}$ I－MIBG 枈上腺髓质显像 80 例㨫床底用．中华核医学杂志，1986．6（4）：226－227
8．与寄哓，姚中一，${ }^{131} 1$ 治疗甲状腺瘭转移．见：几寄晓．刘秀杰主编．实用临床核医学，北京：原子能出版补。 1990． 344351

9．Melnick JC，Stemkowski PE．Thyrold hemiagenesis （Hockey sick sign）：A review of the world literature and a report of lour cases．J Clin Endorrinol Metab． 1981. $52(2): 247$

10．Krausy Y，et at．Somatostatin－reccptor unaging of ree－ dulldry thyroid carcinoma．Clin Nucl Med．1994． 19 （3）： 416
11．Kalicke T，et al．Clinical indications for the use of fluo rine 18 fluorodeoxyglucose Position emissior tome－ graphy in thyroid cancer．Clin Positron Imagıng． 1998. 1 （3）：193－199

12．Guerra U，et al．The use of ${ }^{3 \% m}$ Tc（v）DMSA as Imaging for the Medullary Thyroid Carcinoma（MTC）．J Nucl
\qquad

Med Allied Sci. 1988. 32: 242
13. Latmberts SWJ, 11 al. Clinical arplications of somatosta Lın analog. TEM Jan 'Fab, 199世. 139
14. Kloos RT. et al. Adrenal. in: Maisey MV. Britton KE and Colher BD. eds. Clinicai Nuclear Mcderine. 3 rd . Iondon: Chapman \& Hall, 1998. 358378
15. Beierwaltes WH. Endocrine imaging: parathyroid, adrenad corlex and medulla . and other endocrine tumors. 1'art II. J Nucl Med • 1991, 32 (8) : 16:2'
15. Chen CC, et al. Terhnetium 99 ran Sestambi imaging before reoperation for primary hyperparathyrotcism. I N N 1
cl Med . 1995, 36(12) : 2186
17. Neumann DR, et al. Comparison of FIDG PEJ and ses-tamibl-SPECT in primary hyperparathyroidism. J Nucl Med, 1996. 37 ¢ 1) : 1809
18. Dinatur PA, et al. ${ }^{3 n} \mathrm{Tc}$ sestamitri maging of brown tumors oi primary hyperparathyroadistn . Clin Vıel Mcd. 1996. 21(3) : 192
15. Sergstrom M, ct al. PET as a tool in the climical cwalua tion of pitutary adenomas. J Nucl Med. 1491. 32(4): 610

第12章 泌尿生殖系统

第1节 解剖生理基础

肾是实质性器宫，位于腹腔后上部脊杜两旁，形似䖯豆。戌人男性肾长约 11.5 cm ，宽约 5.5 cm ，厚约 $3 \mathrm{~cm} \sim 4 \mathrm{~cm}$ 。重量 $120 \sim 150$ 克。左肾上端平第11胸椎下缘，下端平第2腰椎下缘；右肾比左肾略低，上端平第 12 胸椎，下端平第 3 腰柱。

肾实质分皮质和䯏质。皮质位于肾实质的浅 F云•其深入锥体之间的部分称肾柱。髓质位于肾宾质的深部，由 $1.5 \sim 20$ 个锥休组成。锥体伸向肾窦称肾乳头。肾窴内约有 $7 \sim 8$ 个坒漏斗状的肾小蓋包绕怿乳头，以承接㐕肾乳头排出的尿液。 $2 \sim 3$个肾小盋合成一个肾大狵，2～3 个肾大揾再合成一个漏斗状的肾盎，肾䨋出肾门届问一下弯行变细，移行为输尿管。

肾单位是肾的功能结构单位，笧个肾约有 100万～ 400 万个肾单位，分为肾小体和肾小管两部分。肾小体由肾小球及 Bowman 氏毒组成，分布在皮质中。肾小管与肾小体相连接，起始端在肾小体附近蟠曲行走，称为还端小管曲部，直行人髄质后返回皮质，称为远端小管曲部，最后汇人集合小管。

肾脏的血液循㳅来白腹主动脉，注人左，右肾动脉，肾的血供丰富，约占心输出量的 $20 \% \sim$ 25% ，成人每分钟约有 1200 ml 血液流经肾脏，其中 94% 流经皮质， 5% 流经髓质。肾有爾套毛细血管结构，分别为肾小体及肾小管毛组血管床，有利于血浆物质的淈过及重吸收。肾的主要生理功能有：排泄蛋白质和氨基酸的代谢终末产物，包括尿素，肌酐等含氮物质以及硫酸盐；同时能够把血浆中的全部的蛋向质，氨基酸，葡萄糖及绝大部分的水和电解质保留下来，以保持内环境的朴对稳定；还能产生多种生物活性物质，如肾素，高度活性的维生素 D 和红细胞生成素等物质。

氺的生成是在肾单位和集合管中进行，包括肾小球的滤过作用和肾小管与集合管的重吸收及分泌作用。

睪杂位于阴素内，左左各一，椭圆形，表面光

滑，前缘游离，后缘附有系膜，血管，神经，淋巴管由此肌人，并与附罢，输精管下段相接触。崒丸的血供米自辞丸动脉，阴囊壁血供来自阴部动脉分支。覀丸是男性的主要生站器官，只有产：生精子和分泌雄激素双重功能。

第2节 肾动态显像

一，肾血流濩注显像

（一）显像原理

以＂弹丸＂形式注人显像剂。当其通过腹士动脉，肾动脉，肾血管㕅时，迅速采集系列影像，可以了解双肾血流灌注，双肾的一大小及形态，双肾血流灌注曲线和有关参数。

（こ）显像剂

注嘟像（renal flow perfusion imaging）的芼选药物，属于肾小球滤过型显像剂，静脉注入居 $2 \sim 3$ 小时内只有 $<101 \%$ 显像剂留在血液中． 90% 以上显像剂被肾小球滤过，快速随尿液排出体外，30分钟约有 $70 \% \sim 80 \%$ 排全膀胱，只有约 $5 \% \sim 10 \%$ 昆像剂与血浆蛋白相结合。甴于该显像剂能快速被清除适合用一于仵价双肾血流灌注以及肾耻功能显像。亦用于怪小球滤过率（glomerular filtration rate，GFR）测定。成人使用量 $111 \sim 148 \mathrm{MBg}(3 \sim 4 \mathrm{mCi})$ 。儿童酌减，注射体积 $<1 \mathrm{ml}$ 。
 acetyltriglycine and stannous chloride．＂sw Tc
 dicystcine．$\left.{ }^{4+\pi}{ }^{5} \mathrm{~T}-\mathrm{EC}\right)$ 均属于肾小管分泌型显像剂。静脉注入人体后可快速被肾胜浓集和排泄，但出于显像剂 $70 \% \sim 80 \%$ 与血浆蛋白相结合，很适定于动态观察肾小管功能。使用量同上。

（三）显像方法

1．准备 一般无需特殊准备。

2．体位 坐位或仰师位，坐住时背留探头：仰卧位时。探洪置丁检含床下，双紧区对位于探头视野中心。采宋后位投影，必要时汀采集前位投影。此时探头省于捡杏床上方。

3．采集条作 探头配置低能半行孔通用型准直器，能峰 140 keV V，窗宽20\％：的阵 64×6 的㭜 128×128 ．I 颃‘秒，采集 60 颃，Zoom $1 \sim$ 1．$\overline{3}$ 。

4．影像处理 府用感兴趣住（region of inter－ est．R（I）技术分别公画出两肾区及腹这动脉义，获取血流櫵注井线和行天定量参数。

（四）正常显像表现

1．时相 白肘静脉注人少像剂开始讣算．腹主动脉宁期允恐相 $10 \sim 12$ 秒：腹立动脉充埛高峰相 $12 \sim 16$ 秒：背动永早期充笽相 $11 \sim 10$ 秒：肾微恠坏相，静脉和和古期皮质相 $16 \sim 20$ 秒：恃líl 流消除和肾排泚相20秒以后（图121）。

2．影像 在腹主动脉肾影清晰时，双肾影隐
对称，形态完整，放射性分有均劫，随后，当血流灌注：淢低时。以吹洔1：方脾脏向流灌注影像增强 （图121）。

3．肾血流灌注曲线 1：开文斜率代串灌注速度•高度代表濩注足（图12－2），

二，肾功能显像

（一）显像原理

静脉注人肾小管分泌型业像剂。肖其流终肾脏时可讯速被肾头政细胞浓集，经肾盛，少否随尿排人膀胱。连续采集影像吅获取䡙像齐以肾实质浓集

至情素，肾亚，输尿管排入膀胱的动态过程，经 ROI 技术可获取亚像剂通过肾脏的时间放射性曲线和行火功能定量参数，称之为肾理能坚像（renal funcrional imaging）。

（二）显像剂

1．肾小管分泌型肾功能显像剂

的缐像剂经上尿路排入膀胱。 H脉汗入的显像剂＇j而浆蛋白相结合访为肾小管排事，注而它是很好的背小管功能品像剂 使用量为 $185 \sim 370 \mathrm{Mbq}(5 \sim 10 \mathrm{~m}(\mathrm{i})$ ，
 01 H 。静脉洋人后绝大部分被肾小管摄取及排泌。约 $2 \sim 4$ 分针双肾皮质浓集达高峰， I_{1} 约 7 分钟， 20 分钟约 70% 排至膀脱。使用哩同上：
 thonodohippusate．$\left.{ }^{\text {N }} \mathrm{I} \cdot{ }^{\prime \prime \prime} \mathrm{I}-(0) \mathrm{H}\right)$ ：是经典的肾小管分泌型肾品像剂•静脉注人斤约80：シ 被肾小管摄取及排泌． 20% 被少小球滤过，泣人吅分钟向尿
适合 γ 照相机䗉像。网外已经改用＂ 1 （OII1。

2．肾小球滤过製肾功能显像剂－．Tr Tr－I）T－ PA，常在肾岶流灌注少像之钓，继续采集动态影像，综合了解肾血流篧汇，肾实质功能㕲 $1:$ 水路通畅情况。

（三）显像方法

1．准备 病人饮食饮水如常，检点前 20 分钊便水 360 ml 垪排水。

2．体位 与肾血流灌注品像相同，探义视时需创括双肾和膀胱。采集行位影像，必要的河采集前位影像。
低能平行孔通用型准直器，能峈 11 CkeV 。覓葸 20% ，柜阵 64×64 或 128×128.1 分钟．／颃，共雨集 40 颃，Zoom 1～2。

4．影像处理 应用 ROI技术分别勾国出两肾区及腹主动脉区，获取双肾时间 一放射吽曲线即肾图（ronegraphy）。

（四）正常显像表现

静脉注へ它了分钟双肾显影，2～1分钟双情放射性活度达高峰，肾影消晰，大小对称，形态完整。此质肾盛，肾盃放射性浓集，肾影环始淡化， $15 \sim 20$ 分钟时，肾影基本消头，向膀胱影像逐渐浓集。输尿管通常不显影（图12－3）。肾图朋线分为：段：a段称血管段：b段称小踪剂拨取段：c段称排泄段（图 12－4）。

（五）肾小球滤过率测定

1．原理 肾小球滤过製（CFFR）是指单位灲间内从肾小球滤过的们聚容量（mi，min），是肾功能的重要指标。利用只从肾小球滤过，无肾小管分泌的鼠像剂，连续动态采集获得显像剂的灌注到清除的企过楃影像。由计算机得出（9FR值。

图121式常肾图曲线
2．最象房法
 （ $\mathrm{rFR}=(\% \mathrm{KU} \times 9.81270)-6.82519$ 。式中 $K L^{\text {为为肾摄取率。 }}$
（2）检查步骤：
（1）记录病人身高，体重：探以与注射器距
计数；雪病人取仰卧位，使双情及膀胱包括在探头视野内。以＂弹丸＂昣式静脉活人显像剂原即刻连续幼态乐集左位影像：问测定注，射器肉残留的计数，方法同（2）。
（3）采集条件：探头配置低能平手；孔通用型准昼器，知阵 64×64 或 $128 \times 1 \geqslant 8$ 。第 \cdot 时相为 1秒／颃，采集 60 颃，第二扵相为 15 秒帧．采集 120 颃，总采集吋间为 31 分钟。
（4）结果计算：分㽗出双肾及本旅R（II，将各 ROI 的计数值代人公式计算H 总的 GFR 值和分肾 GFR 㑲，由认算机软件来完成。

3．iE常参考值 $110 \sim 130 \mathrm{ml}$ min．随年龄増长（GFR 有下降趋势。

（六）肾有效血浆流量测定

1．顾理 肾脏作单位时间内能清除响浆中某种物质的毫外数称为该物质的肾消除资或而浆清除
 OlH 儿平抙部从肾小管排泌荿不被重吸收。故其清除率相当于肾有效血浆流量（effective renal plas－ mal（low，ERPF）。

2．显像方法
（1）ERPF 计算公式：

1）以 ${ }^{99_{m}} \mathrm{Tc}-\mathrm{MAG}_{3}$ 或 ${ }^{99_{\mathrm{m}}} \mathrm{Tc}-\mathrm{EC}$ 为显像剂，采用 Taylor 的方法：

$$
\mathrm{ERPF}=\mathrm{CL} / 0.53 \quad \mathrm{CL}=[\% \mathrm{KU} \times 10.4 \times
$$ （ $\mathrm{BA} / 1.73 \mathrm{~m}^{2}$ ）］－4． 7

式中 CL 为肾脏清除率，$\% \mathrm{KU}$ 为肾摄取率， BA 为体表面积。

2）以 ${ }^{131} \mathrm{I}-\mathrm{OIH}$ 为显像剂，采用 Schlegel 的方法：
$\mathrm{ERPF}=5.029 \times[(0.3698707 \times \% \mathrm{CU})--$ （2． $31476 \times 10^{1} \times \% \mathrm{CU}^{2}$ ）］

式中 $\% \mathrm{CU}$ 为经衰减校正后的肾脏摄取率。
（2）检查步摖：同 GFR 的测定方法。
（3）采集条件：使用 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ 标记物时，与 GFR测定相同；使用 ${ }^{131} \mathrm{I}$ 标记物时，探头配置高能平行孔准直器，能峰 364 keV ，窗宽 20% ，矩阵 $64 \times$ 64,15 秒／帧，采集 120 颃，总采集时间 30 分钟。
（4）结果计算：勾画出双肾及本底 ROI，将各 ROI 的计数值代人公式计算出总的 ERPF 值和分肾 ERPF 值，由计算机软件来完成。

3．正常参考值 $600 \mathrm{ml} \sim 750 \mathrm{ml} / \mathrm{min}$ ，随年龄增长 ERPF 有下降趋势。

第3节 肾静态显像

一，显 像 原 理

静脉注人显像剂后，当其通过肾脏时可被肾实质细胞缓慢浓集，经尿路缓慢排泄至膀胱，进行昆像可获得双肾放射性显像剂的分布，从而了解肾脏位置，大小，形态，有无占位性病变，即为肾静态显像（renal static imaging）。

二，显 像 剂

（一）锶 $\left[{ }^{99 \mathrm{~m}} \mathrm{Te}\right]$ 二巯丁二酸盐（ ${ }^{99 \mathrm{~m}} \mathbf{T c}$－dimercap－ tosuccinate，${ }^{99 \mathrm{~m}}$ Tc－DMSA）

是目前最常用的肾皮质结合型显像剂，静脉注入后主要与血浆蛋白相结合，自血液半清除时间为 1 小时，主要浓集在肾皮质近曲小管和远曲小管七皮细胞内， 2 小时约 80% 被浓集，极少量存留在肾髓质， 20% 自尿排出肾脏， 24 小时排出量仅为 37% 。由于肾皮质浓集该显像剂且排泄缓慢，因而适于观察双肾形态及有无占位性病变。成人剂量： $148 \sim 370 \mathrm{MBq}(4 \sim 10 \mathrm{mCi})$ 。
（二）锠［ $\left.{ }^{99 \mathrm{~m}} \mathrm{Tc}\right]$ 葡萄糖酸钙（ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－calcium glu－ conate）和锝［ ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ ］葡庚 糖酸盐（ ${ }^{99 \mathrm{~mm}} \mathrm{Tc}$－glacohepto－ nate，${ }^{99 m} \mathbf{T c}-\mathrm{GH}$ ）

可用于肾皮质显像，静脉注人后 1 小时，该显像剂浓集于肾小管上皮细胞内达高峰，此时显像可获得清晰的皮质影像。

三，显 像 方 法

（一）平面显像

1．准备 受检者无需特殊准备，显像前排尿。
2．体位 仰卧位，双手抱头，探头中心对准两肾，取后位（POST），左后斜位（LPO）及右后斜位（RPO）投影。

3．采集条件 探头配置低能平行孔通用型准直器，能峰 140 keV ，窗宽 20% ，矩阵 128×128 ，采集 $6 \times 10^{\circ}$ 计数或 300 秒，Zoom 1～1．5。静脉注人 ${ }^{98 \mathrm{~m}} \mathrm{Tc}-\mathrm{DMSA}$ 后 2 小时显像；注人 ${ }^{98 \mathrm{~m}} \mathrm{Tc}$－calcium gluconate 后 1 小时显像。

（二）断层显像

体位同平面显像，探头围绕病人体轴旋转 330° ，采用低能平行孔通用型准直器或低能平行孔高分辨型准直器，矩阵 64×64 或 128×128 ，每 6°采集1帧，共 60 帧， $20 \sim 30$ 秒／帧，Zoom 1～ 1.5 。经重建技术，可获得双肾沿体轴的横断面，冠状面及矢状面断层图像。

四，正常显像表现

（一）平面影像

双肾形似奮豆，边缘光滑整齐，外侧面向外突

图 12－5 正常肾静态显像（ ${ }^{9910 .}$ Tc－DMSA）
a．辰位；b．左后钭位；c．右辰斜位

出，肾门区略向内凹陷，呈＂八＂字型居体轴两侧，多数右肾略低下左肾。左肾稍长，有肾稍宽，大小约为 $11 \mathrm{~cm} \times 6 \mathrm{~cm}$ ，放射性分布均匀。两侧对称，周边略高，肾门区略低（图 12－5）。

（二）断屋影像

各层面肾皮质显像清椭，边缘光消，放射性分布均匀，髓质放射性减低，肾盂部位放射性缺损。

第4节 介入试验

一，疏甲丙脯酸试验

（一）原理

蒓甲丙脯酸（captopril）是一种新型抗高血压药物，作用迅速，口服后 15 分钟即可发挥降正作用。其结构与血管紧张素 $\mathrm{I}\left(\mathrm{AT}_{1}\right)$ 转换酶类似，可强烈抑制血管紧张素I转换为血管紧张素 Π（ AT_{g} ），从而降低外周阻力，使血压下降。

当患有单侧肾动脉狭窄（renal artery stenosis）时，肾脏动态影像的典型表现是患侧肾脏影像出现和消退均延缓，肾影小 I1放射性减低。患肾肾图表

现高峰值降低，峰时后延和排泄段下降缓慢，此时肾动脉狭窘所致肾血管性高血应不难作引诊断。但当肾动脉狭窄程度较轻，特别是存在区域性缺血时，肾动态影像和肾图可表现为基本正常，造成诊断困难。 L 服巯甲丙脯酸后导致血压下降，加重了患侧肾脏的缺血程度，耐正赏肾血管对疏甲丙脯酸无明显反应，这样可使患侧肾动态影像及肾图的轻微异常变为明显异常，正常变为异常．从而提高肾血管性高血压（renovascular hypertension）的检出率。
（二）方法
口服巯甲丙脯酸 $25 \sim 50 \mathrm{mg}$ 以前㕲服后 1 小时分別作两次 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$－DTPA 肾功能显像．比较两次检查结果。

（三）适应证

协助诊断肾血管吽高血压。

（四）影像所见

当口服巯甲丙脯酸后，两肾动念显像皇现患侧肾影出现及消退均延缓；肾图示患侧曲线峰时延缓，则认为疏押丙脯酸试验（captopril test）阬性。支持肾血管性高血压诊断。

图12－6 利尿临图（箭头示法入利尿剂时刻）
B．兵性梗组：b．假性㳏阻

二，＂速尿＂利尿试验

（一）原理

由于非机械性梗阻原因导致肾盖扩张，此时因怿孟张力降低使尿流速率减慢，上尿路出现假性梗阻影像。应用利尿剂后，在短时间内川于尿流量增加，尿流速率加快，则使淤积在肾孟巾的泉液加快排出，因而肾图及学影像明显攻善。如为机械性梗阻所致肾盖扩张，呈现上尿路㳏阳 Cobstruction of urinary tract）影像，则在法射利尿剂后，虽然使尿流量增加，但因梗阻未解除，因而患肾梗阻型肾图及影像无改善。

（二）方法

1．肾动态显像中注入＂速氺＂法（diuresis re－ nography with furosemide）当检查结果示排出不良型肾影及梗阻型肾图时，约 20 分钟时静脉济人速水 $0.5 \mathrm{mg} / \mathrm{kg}$ 体車，继续采集影像并描绘田肾泈自至达到预期目的。

2．肾动态显像前注人＂速尿＂法 肾动态显像前 15 分钟静脉注人＂速尿＂，获取影像及肾泈。

（三）适应证

机械性上尿路梗阻与单纯肾出扩张的答别诊断。上求路梗阻术后，观察梗阻是垈己经解除：

（四）影像所见

对比注射＂速尿＂前后的两次肾图曲线，可以作出判断。机械性梗阻吋，注射利胈剂后肾图曲线缓慢与种，利氺剂无作用。非机械性梗阻的，驻射利尿剂店加线的高峰很快下降，可在 10 分钟内下降一半以上（图 12－6）。

显像前 15 分䬣注人＂速氺＂，若性现正常肾泈曲线则排除机械性上尿路梗阻（图12－6）。

第5节 肾脏炎症或感染

一，临 床 概 述

肾眚肾炎（pyeleonephritis）是指肾实质及肾盉，肾愠系统由于细菌感染所致的炎症吽损害，分为急性和慢性两类。急性怿毒肾炎起病急，多出现高热，发㾉，寒战，腰痛及肋脊角压痛，常体有氺频，氺急，尿痛，排尿困难等下尿路感染钲状，一般不伴有高血版及浮肿。尿液显微镜下可见大竞成堆

的向细胞，数目多少度一的红细胞，少至蛋门尿，尿

慢性肾孟肖炎是由于长期持续性或反复发作性细菌感染所造成的肾脏损喆，使肾实质教瘄形成。肾功能受损。病人叮出现全身乏力，食欲不振，恶心呕昍，体重减轻，头晕头痛，口渴多水，贫血，氮质血症，代谢性酸中毒，肾病等症状，无胀尿及细菌水，多死于尿毒症或继发感染，合并访血压者可死于冠心病及脑血管病。

二，显 像 表 现

（一）急性肾盂肾炎

1．肾血流业像 病变区呈现血流灌注減低。
2．肾功能显像 根据病情听出现不同程度的异常影像，双肾影出现和消退延达，肾图显示拋物线型或高水平惐低水平延长线型，GFR 及 ERPF侑降低。

3．肾静态显像 双肾位置，大小正常，放射性分布不均匀，晏现单个或多个边界欠清晰的放射

（二）慢性肾盂肾炎

㣠静态情像，功能显像（包括肾图），肾血流显像：由丁瘢痕形成使皮质变㳑，出现不同程度的肾功能受损，类似于急吽肾嗢肾炎影像表现，严重者肾萎缩（nephroatrophy），肾影缩小，放射件分布不均匀，出现楔状缺损。

三，比较影像学

X 线肾孟造影，尿路造影：对肾孟肾炙探测阳性率较差。

肾脏超声：探测肾严肾炎更敏度偏低。
CT：可清晰显示肾朋，尿路结构．但不能显示其功能•且辐射量大，对诊断肾責肾炎不是优选的方法。

核索肾显像：可定位病变，业示肾应帅态及牪能受损情况，是诊断肾孟肾炎的良好方法，

第6节 肾小球肾炎

一，临 床 概 述

急性肾小球肾炎（acute glomerulonephr tis）又

称急吽：肾炎。是烟感染后变态反底引起的两怿捇湿
和蛋向冰为主要临床表现。发病午龄多体儿童利点少多，男女之比约为（2～3；1．发病有恢复较快。

慢灲：怿小球悄炎（chronic glomerulonephritis）
炎相似。为变态反应所致。多数以其怟涘渞厚为巟。临床表规多种㐱样，病情轻者可无症状，引行
 H病，先致血浆蛋白低下。病程时持续数H仚数
 nal failure），

二，显 像 表 现

（一）急性肾小球肾炎

1．肾功能显像 早斯 ERPF 值升鬲，肉肾肺充血血流量增処所致。病情发龪肎圲劝肾影出现和消退延缓．（iFR，ERPF 均降低。

2．肾静态显像 双肾位置，大小，形态正常，放射性：分布不均圢。

（二）慢性监小球筒炎

1．肾功能显像 双肾影才现和消退延迟，严重者（ GFR 明昆降低，ERPF 降低（图12－7，128）。

2．肾静态显像 早期肾㘦能受损轻微，肾影像叮正常•随病情卯湖，憭脏放射性分布朋业降

考情分能严重受损
低。

三，比较影像学

核素肾鼠像叮显示肾比念机功能，可作为肾小球情炎的辅助诊断方法。闹时可有效地观察病情进展，评们治疗效果。（｀），MR 品可涽晰品小肾脏非态，结构，但难于收小奴肾功能•敌通常不做此项检倠。

第7节 肾 肿 简

一，临 床 概 述

肾肿瘤（renal tumor）多数是恶性肿瘤。其中肾癌最常见，约占肾肿瘤的 75% 肾癌主要发生化巾旿年， $10 \sim 60$ 岁约占 30% ，男性多于女性，多呈圆形，位丁怿脏上极琙卜极•少数位于肾突质的巾以㖪全肾弥漫性浸润。肾瘭转移有 ：个途径：时壇度润；淋巴转移；血行转移。最常转移至肺脏，约占 $40 \% \sim 75 \%$ ，其次是骨能，还仃转移至脑，

块。

肾節肿（renal cyst）是常见的良性肿物．小囊

二，显 像 表 现

肾盂，肾血的关系。＂＂＇Tc DMSA 静态显像可显小肿瘤的大小，位置析形态．肾将（图12－9），肾素肿（图12－10）病变部位均古现放射性缺损。

后位影像小左肾下极敌射性嵝埙

三，比较影像学

肾核素业像叫品示故仼性病变的大小，位置，形态及对肾功能的影响。鉴别实吽肿瘤或囊肿。提小肿瘤宁肾盂，肾揾的关系，提小肿瘤守肾脏周闱组绥的大系，叮作为常规检查与段，但代能义分良性和业性：肿瘤。

肾桩超击可以显小゙肿物大小，位崌，以分蔍性及实质性肿物。

X 线肾孟造影时，肿物快迫可伐肾盏发生位置
质性肿物诊断率为 83% 。

C5及 MR 均可洁晰显小肿瘤的位置，大小及结构，特別是肾边缘的小肿物，确诊率极高。

第8节 肾血筞性高血压

一，临床概述

监血管性：高血快（renovascular hypertension）是由于肾任管所致高I血压。如肾动脉狭窄。多为单侧。发病率占全部高血压的 $5 \% / 15 \%$ 。发病年龄小丁 30 岁，一般无家族电，发病急，多数收缩压在 $160 \cdots 200 \mathrm{mmHg}$ ，其早达 270 mmHg ，舒张压 $100 \sim 150 \mathrm{~mm} \mathrm{Hg}$ 。药物治疗效果不佳．以肾切除，血管重建及肾山体移植等手术治疗叮取得良好的效果，被称为可治紧的高血压：

图 12－10 左情察肿（＂＇＂TCDMSA）后兴影像不灰：肾上：下极财形饭射牛：蝧拟

二，显 像 表 现

（一）肾血流显像

患侧怿性流㴖泪娍低（图121］）。

（二）肾功能显像

（三）肾静态显像

并侧肾动脉狄窄致单侧肾姜消，患肾体积洐小，放射性分有减低，健肾代供吽增人，放射性增离。

三，比较影像学

（一）核素肾脏显像

何少小怪㳀的抢状，大小，缺向的部们，双怿

（二） X 线腹平片

可显示仅怿大小，形态•们能显示肾虽流及肾

（三）排泄性肾盕造影
高血小大的辅助沴断方汰。
（四）肾脏超声影像
可业业小双肾人小，任流情炕，是常少的力法。
（五）肾动脉造影及数字减影（1）心呙）
近清哳显小肾肚动脉结构，狭帘部们和积度。
下术皮发病。

第9节 尿 路 㤦 阻

一，临 床 概 述

水路仕何涪位计观㳏阻均会守玫不 1 i$]$ 星度的肾
功能资害，梗阻时问越长，意损找严重，走终肾勖呵成为，慗腔，并全丧火山能。

或等不降至输尿管，持矨是膀胱人以处多发生忩性

维，前列腺肥夫等。

二，显 像 表 现

忠侧肾影出现及消退均延迟。忬泈昗扡物戊型㭜高卡平延に线型，方畒阴时间长。肾功能堂损

出临似品影，肾图嘋现低水平延に䛖型或低水

梗肬以1：部位可訕洜像剂滞留小坡路打张
号持实1开製，小急性梗阴（图12－131）

\qquad

三，比较影像学

（一）核素肾显像

能确定涍朴。

（二）超声检查

及肾，翰尿笽，膀胱，的列腔管解剖形态改变，自勖与发沁梗阻父共原心。

（三） X 线腹平片

（四）肾需造影

有它新们等。

第10节 泌尿系统先天畸形

一，临 床 概 述

羊，表现为们宜，数1，大小或㜆态异常等。常见的少先大畸肜（renal congotrital anomalion）有： 1 前肾：一侧肾不发变，手侧肾代偿增人：总可肾：多数彼此融合一体，各有独方的肾点及输水晏。角作一个一输尿

二，显像表现

（一）单肾

少像 侧肾影缺如。刈侧学影代学性增に，背

\qquad 폄

（二）重肾

显小重肾佃肾影增人，可见双肾血，无并发症时肾叻能正常。若发生合并症，则呈现该病异常影像。

（三）马蹄肾

湿小两肾自外L方问内下方倾斜呈倒＂八＂字形马踇形肾脏•两肾中间融合部常肉无功能而不显像（图1216）。
（四）肾发育不良
亚示患肾缩小，放射性分布减低，各项肾功能指标减低；健侧肾多数代偿吽增大，形态及功能正常。

（五）多囊肾

显示位置正常，双肾影增犬，放射性分布減低 H．不均匀．可见多发放射性缺损区，ERPF，（GFR降低，图 12－17 为多業肾（polycystic kidney）的影像－叮耽两肾多发圆形放射脮缺损。

图12－17 多篹肾（＂1m） T_{c}－DMS：い）
京两肾考发圆形枚射性峡损

三，比较影像学

（ - ）超声检查

可显示肾脏大小，形态及肾轘肿的大小及数 H，方法简便，安全，无创伤，费用低，是诊断肾先天崎指的优选方法。

（二）静脉肾血造影

可业皮肾脏位置，肾实质，肾狵，肾孟形态。是诊断情先天畸形的重要的检查方法。

（三）CT，MR

可洕晰诸示肾脏的影态，结构，是准确的诊断

方法，但前者辐射量大，后者检盆费用唯．故在超产不能磁诊的情况下可采用。

（四）核素显像

可显示肾形态及肾功能，在有合并症时听提供肾功能受损信息。

第11节 䏽胱输尿管返流

一，临 床 概 述

倿脱输尿管返流（vesicourcteral reflux）是由十譄胱输尿管连接部活群作用不企所放。名为先大畸形，婴幼儿发病率高，有遗传区素：返流也可继发于尿路梗阻或神经性膀胱功能障碍，并发尿路感染，㞧致继发性高血压及慢性肾功能不全。

二，显 像 方 法

（一）直接法

病人排尿后捎人导尿管，将出像剂＂；${ }^{9} \mathrm{Tc}()$ ； $37 \mathrm{MBq}(1 \mathrm{mCi}) / 5 \mathrm{ml}$ ． VS 自导尿管玨：人膀胱，然后再注人生理盐水，注人量 $=($ 年龄 +2$) \times 3 \mathrm{ml}$ ，以使膀胱充盈。在膀胱充盈过程及排尿前后动态采集双肾，输永管，膀胱影像，采集速率为 1 顿：2 秒。

（二）间接法

静脉注，人 ${ }^{\omega_{m} \mathrm{~m}} \mathrm{Tc}-\mathrm{DTPA}$ 或 ${ }^{\mu=\mathrm{Na}} \mathrm{Tc}$ EC 185 Milq （ 5 mCi ），当膀脱充盈后排尿前采集膀胱输尿管及双肾影像。然后梮病人尽力逼尿，任膀譄区加压，采集双肾，输尿管及膀胱影像。

三，显 像 表 现

（一）正常影像

排㲾前后双背，输尿管无放射性代现。

（二）返流影像

轻度返流：仅见输尿管下段有放射性出圲：
中度返流：砢见输的管上段及下段均有放射吽：出现；

重度返流：憋永时自输尿管延伸至肾孟，肾或出现放射性，或不逼旅时轻压㨱胱，输原管治坝放射性。

第12节 肾 外 伤

一，临 床 概 述

肾外伤（renal trauma）是因不同方式的暴力所致肾耻不问枉度的损伤。常见有：

（一）肾挫伤

肾实质及肾周围组织出血，但肾包膜及紧盐粘膜完整，伤者只有轻微腰疼，可有血水或镜下血斿•短期可倣复正常。

（二）肾撕裂伤

肾包膜可破裂，肾实质受损严重时可大量出血；若肾包膜完整，可出现包膜下血肿：若肾冚，肾亚粘膜破损，可出现大量血尿：若粘膜完整．血尿轻微。

（三）肾蒂撕裂伤

埙伤肾萨血管，可造成急性大出血，若肾盂与输尿管交界处受损，可造成严重尿瘘。

二，显 像 表 现

（一）肾挫伤

伤将形态完整，功能减低。

（二）肾撕裂伤

肾胜形态异常，可裂开，严重时可裂为数块。
（三）肾蒂撕裂伤
肾显像不良或不洜像，在尿路外有放射性浓集影。

三，比较影像学

超声，CT 及核素显像均可明确显示肾外伤造成的肾周围血肿及尿液外漏。以超声为首选，必要时再行其它检亘。

第13节 榶尿病性肾病

一，临 床 概 述

糖水病病程 5 年以上均有不同程度的肾病发生，其土要的病理变化为肾小球硬化．表坝为肾小球毛细血管基底膜中胶原蛋白成分酶槦基化，使毛细血管壁增厚，血管腔变窄，肾内血管阻力增加。有效係流量惐少，肾脏缺血，缺氧致微丘管受抁。

通透性增加，血浆蛋白渗出增多，永蛋白排川增多。蚉白灰是糖恨病肾小梂硬化的重要标志，长期蛋白尿最终守致低蛋白血症，叮产生糖㽷病肾病综合征。

二，显 像 表 现

（一）糖尿病肾病早期

肾脏大小正常，边缘光滑，GFR 值增高，可高出正常人的 $2.3 \% \sim 40 \%$ 。

（二）糖尿病肾病进展期

肾脏大小正常，肾影模糊，严重俈能受损时，肾可不显影，肾图呈现不同程度的功能受损， GFR，ERPF 值明显减低，焥期旺坝肾功能衰竭。

三，诊断与鉴别诊断

长期糖尿病病史泊现蛋白辱，糖尿病性视网膜病变，则极大可能是糖尿病肾小球硬化，当还伴有高度水肿，低蚠向血症，高脂血症，高衁压等则标志着糖昶病肾病已是晚期，要与糖㽷病合并急性或慢性肾小球肾炎相鉴别．而紧组织活检是鉴别沴断的唯一可靠依据，

四，比较影像学

（一）核素肾显像

可显示肾脏大小，形态，提供肾图，肾功能参数，GFR，ERPF 值，从而了解肾功能受损的程度，协助沴断及评估糖尿病少病的进展及预后，星优选的影像学方法。

（二）超声，CT

可显示肾脏的形态，不能提供肾耻的功能受损程度。

第14节 肾功能衰竭

一，临 床 概 述

急性肾功能衰渴是由于肾醣本身线企身性疾病所致的急性肾实质损害，肾功能急喵减低。引起少怺或无尿，进行性氮质血症以及水盐代谢，酸碱平衡紊乱的一种综合征。

慢性肾功能衰竭是指肾脏疾病晚期将实质严重受损，出现有特征性的肾动能不全综合征，临床上

分为三期：肾功能不全代偿期，常无朋显症状，血怺素氮，盂肌酐正常，肌酐清除率降低为正常人的 50% ，GFR 轻度降低；肾功能不全失代偿期，除原发病的症状外，可有疫穷之力，食欲放退，轻度贫血等，血尿素氮增高，血肌酐增咭，肌酐清除率成低到正常人的 50% 以下，GFR 减低：尿毒症期。血氺美氮明品增高，肌酐清除率明熭降低，GFR明显降低。

二，显 像 表 现

肾功能显像可呈现不同程度的显像不良，肾图显示肾排泌功能指标异常，功能受损，严重者无功能，（rFR 明泉降低。

三，比较影像学

（一）超声影像

水，对鉴别急性肾衰的病国有辂助。

（二）核素肾显像

对肾功能衰渴提供肾妙能受损的动态变化。因㖇叮协助沴断，观察病情进展。判断预后，

第15节 移植肾的评估

一，临床兓述

肾移植（renal transplartation）是治疗晚期肾功能衰竭的重要方法之一。月前肾移植多采用同种移植，移植体和受者间存在一系列免疫对抗，产生对移植体的排店反应。此外还可采用白体移植。不存在免疫反应。还存司质移植，如司卵季生之间的移植，一般也不存在免疫反㕸。

肾移植后排斥反显是导致移植肾表失功能的主要原伏，因厉古期诊断排斥反应的发生及类型•及时采取措施是移植肾成活的夫键。

二，显 像 表 现

（一）正常移植肾影像

肾显像示肾影及各种肾功能参数均在正常范围。

（二）异常移植肾影像

最常见的是排斥反应，帄发先在移植后的任何

时问。肾显像亚示移植怪血流漟注堿少，放射性分布不均然，呈玨状浓集；肾图排泄段下降延缓，不下降或持续 乚朴，膀胱与肾区放射吽比值下゙降，各项怿功能参数异常，肾功能受损，ERPF及 GFR均降低。以上表现发生在移植术彦 27 小时内，称为超急性排卡义应；发生在 $2 \sim 5$ 大，称为加速型排斥反应；耐急性排斥反应（acute rejection）多发生在术虎 3～1 个句，慢性排斥反应（chronic rejcc （ion）发生在术后数月仝数午。

三，比较影像学

（一）超声影像

可了解肾脏大小，有无水路梗䦻。

（二）核素肾脏显像

可了解肾脏大小及肾办能，对移植肾的存活提供敏感的信息•用来监测（1）血管是出通畅；（2）急吽

（三）肾动脉造影及 DSA

有排店反应时肾皮质血管可不显影。

第16节 阴 囊 显 像

一，临 床 概 述

急性睪丸扭转（：orsion of the testis）是临床急虹，需及古外科手术探查。延诂诊断和治疗则莘九会失去仔活机会，临床出现非刏称性䔂丸水肿与疼痛的原因，通常见于睪丸扯转及附崖炎，其次还见十宽丸炎，绞窄性疝及汁血。

诊断与鉴別诊断对及时采取合理治疗非常重要。放射性核素阴囊显像是一杉无创技术，疋敏而
正常或增高，可排除睪丸㧅转（其准确率为 96% ）。而避免不必要的手术探查，而且提供重要的诊断及鉴别沴断信息。

二，显 像 原 理

业像剂自静眿注人片，随血流抵达阴囊及䓥丸，采集阴囊区域血流及血池影像，从而厂解䘔丸的血流供应。

三，显 像 方 法

检查前 1 小时口服过氯酸䬣 6 mg 。 ${ }^{\prime} \mathrm{kg}$ 以刲闭用

状腺。病人取仰卧位，两腿外展，暴露阴囊，将阴茎固定于大腿一侧。应用 γ 照相机，低能平行孔通用型准直器，探头中心对准阴襄，视野包括下腹部及大腿上部。白肘静脉以＂弹丸＂方式注人亚像剂 ${ }^{5{ }^{5} \mathrm{nn}} \mathrm{TcO}_{4}{ }^{-}$，剂量为戍人 $555 \sim 740 \mathrm{MBq}(15 \sim$ $20 \mathrm{mCi})$ ，儿童 185 MBq （ 5 mCi ）。采集阴囊区䖝流相，2秒：颃，共30帧，以显示险囊血流影像：随后采集血池相 1 帧，计数 $500 \sim 700 \mathrm{~K}$ ； 5 分钟后采集延迟相。

四，正常显像表现

（一）血流相

两则骼动脉清晰显示，阴囊风只有少量放射性分布，其活度低于大腿软组织活度，分布均动对称。

（二）血池相及延迟相

阴囊风放射性分布对称均匀，其活度与大腿软组织活度相似，无局灶性放射性浓集或减低区。

五，异常显像表现

（一）急性睾丸扭转

受累侧睪丸1义中心部分因缺血解呈观放射性缺损，缺员区周围因充血而妟现环形放射性浓集。

（二）急性附兗殬丸炎

患侧血流灌注增加，延迟相放射性减低。

（三）宰丸肿瘤

患侧血流雚注正常或减低，延迟相放射性减低。
（四）精索静永曲张
患测放射性活度高于健侧。
(䣠妙瑢 祄奢东)

参 考 文 献

1．陈仲欣，等，悩的解剖，生理，肾移植，见：万毓臌。马腾嚷主编．临栐肾边病学．犬津：天津科学技术出版补，1980．1－46． 459479
2．䢼抄㻠，肾功能劫态显像介人试验，见：中华人民共和同」生部才编。核医学诊断与治牧规范。北京：科学出版社，1997，183－187． 189151

3．曹然。重新评价紧 CT 与肾动脉造影诊断肾性血尿病因的作用．中华娆㜆病杂志．1998．（14）：251
4．缹善炎，黾视䅍氺病肾病病变的诊断与治疗。中华内分祕代谢杂志．1998，11（2）： 6 ：

282
7．Taylor A Jr，Corrigan PL，Galt．et al，Measuring ${ }^{\text {³）}} \mathrm{Te}_{\mathrm{c}}$ MA r_{r} clearance wirl．an inproved camera－based method． J Nucl Med，1995，36（9）： 1689
8．Paul J．Early．Principlcs and practice of Nuclear Medi－ cine，USA：The C．V．Morby Company．1985．582－905

第13章 血液及淋巴系统

第1节 骨髓及造血组织显像

一，解剖生理基础

人体的血液是由造血组织生成的。带髓位于髓腔内，是体内主要造血组织，也是人体内最大的器官，正常成年人的红骨骹约重 1500 g ，黄膸的重量基本相同。红髓为一种以血窦为主体，充斥于骨小梁之间的无固定形态的非实厉性组织：典隨由红髓退化而戊，主要由脂肪组成。骨髓有多种组织成分：固定的基质细肬形成网状结构，覆盖有大录单核，具有吞嗜功能的网状内皮细胞；间杂不同发展阶段的红细胞系，䯇（H）细胞系，「核（血小板）系的前体细胞，幼稚细胞以及成熟的自细胞；髓内常有少量淋巴细胞，仙尔可见淋巴小凶；并可见散在的末分化的干细胞，F述细胞由人量的血液色围，以提供造血所需的大量能量及基础物质。正常情况下，骨㵦内处于不同发育阶段的各细胞系保持较恒定的比例，

人体不同发育时期，造血组织（hematopoietic tissue）的功能状态与骨髓的空间分布不同。从肧朌期 8～10周始，体内就有造血组织活动，并随体内组织器官的形成，全身骨䯝以及肝，脾囡有十分汇；跃的造血活动。出生后肘脾停止造血，随年龄增长，红䯇渐向中心收缩。周岁时，长骨巾段的红髓开始退化，由脂肪取代成为黄髓。至 5 岁左有，红髓收缩至长骨的呵端。造血组织的收缩过程持续至青春期，大约在 $12 \sim 18$ 岁左在，红膸的分布接近成人状态，之后红髓主要分布于轴心骨，主要是顾骨，脊椎，肋骨，胸骨及骨盆，并保持至老年。

在特定情况下，如奻奴，高原，长期负荷及贫血等状态时，机体可根据需要，恢复页髓的造血功能，此时黄髓中仔留的造血细胞和支持细胞恢复功能，转化成为红髓以满足机体造血的需要。在病理决态下，朋和脾脏，甚至淋巴结都可能部分恢复造血，这种情况更多见干儿童，严格讲是一种病理改变。

二，骨相显像

（一）显像原理

骨髓显像（bone marrovo scan）主㛑显示有造 血L功能的红髓。临床上通常利用两种途径耻行骨髓显像：专门显小造血组织的特异性显像和显示单核点噬细胞系统的非特异性显像。黄䯇的主要组成为基质细胞和脂肪组织，临床意义不大，核医学显像基本上不考虑黄髓。

特异吽：显像针对骨髓主要的细胞成分——各种造血前体细胞，以其特有的代谢底物或与其表面抗原有亲和作用的抗体作为示踪剂。目剪临床卜对各纴胞系前体细胞生物学特点的了解和显像研究尚停留在较粗浅别阶段，仅红细胞系的显像比较成熟。红细胞生成过程中，大量铁车幼红细胞的线粒体内与㷧圤啉结合形成血红素，并进一步与珠蛋白形成血红蛋门，通过引入体内的放射性铁同位素的示踪，可显示红细胞生成和铁转运过程。 1 细胞和下核细胞系的特异性显示方法少，近华来有人试图通过标记单抗进行粒细胞，单核细胞及巨核细胞的显像，如 Resket 等报道用 NCA－95显示粒细胞系统，但这类方法自前尚处于开发和实验阶段。临床应用的报道不多。

非特异方法根据骨髓内单核长噬细胞与造血组织同在，且其活性与造血功能相关的原理，利用放射性胶体类显像剂，通过显示单核吞噬细胞系统的分布与功能，间接反映骨髓的形态与功能。放射性胶体种类多，标记和使用方便，因此在临沐上应用普过。本章主要介绍以胶体为显像剂的骨髓非特异要像。

（二）显像剂

人体单核吞簿绌胞系统主要分布十肝，脾，骨髓。负责清除血内的异种物质或颗粒状的代谢发物。大粘精主要由脾胜清除；中等颗粰由胢清除：而小于 $4 \sim 10 \mathrm{~nm}$ 的颗粒主要由骨髓血窴的网状内皮细胞清除。骨髓显像常用的显像剂及其土要理化特性见表13－1。

图 131 正常成人骨髓显像
毒，代谢障碍，严重损伤等可致泛发性骨髓功能抑制，也可以表现在局部。多数情况下，抑制和增生的显像改变可以同时并存。

骨髓取代发生于严重损伤之后，骨髓造血细胞及辅助细胞发生不可逆性损伤，去失，而由成纤维细胞等结缔组织取代。在亚像时表现为骨髓取代部位放射性缺失，呈＂冷灶＂。

骨髓扩张（myeloproliferative disease）表现为红髓显像范围的扩大，即在正常骨髓显像范围外出现放射性，如成年人四肢长骨显影或出现髓外造血征象，如肝，脾增大，放射性增高等。有文献报道，在极重病例，甚至淋巴结地可参与嗵外造血，表现为骨外软组织内的局灶浓聚。

必须指出，骨髓显像特别是非特异的胶体显像的表现不具备病因诊断能力。囚此，骨髓显像的判断，尤其是涉及不同造血或骨髓组织疾病鉴別的时候，应充分结合临床其它资料，包括其它影像学发现综合分析，方可避免不必要的失误。

三，再生障碍性贫血

（一）临床概述

再生障碍性贫血（再障）（aplastic anemia）是一种以全血细胞进行性减少为主要表现的临床疾病，伴有血网织红细胞绝对值降低，一般抗贫血治疗无

效。急性再障（重型再障－I 型）的特点是发病急，贫血业化快，可伴严重感染或内出血，骨髓活检示髓内三系造血细胞均明显减少，非造血细胞和淋巴细胞增多。慢性再障发病慢，贫血，感染，出血等症状均较轻，骨隨相异常表现亦较轻，红细胞系中可少晚幼红细胞。但有时病情恶化，可表现出与急性再障相似的临床政变（重型再障－II 型）。

（二）显像表现

再障的显像特点是在全身厂＂泛性骨髓抑制的基础上。中心骨髓内出现散在的岛状增生灶（图13－ 2），․ 般不伴有明显的外周骨髓扩张。随病情的不同，骨髓显像表现多在 $0 \sim 1$ 级左右波动。

图13－2 再生障碍性贫血骨桻显像表现

（三）诊断与鉴别诊断

再生障碍性贫血骨髓显像主要用于了解骨髓功能障碍的分布与程度。国内资料证实，再障患者全身骨壁活性 0 级者预后差，有岛状增生或全身活性 1 级以上者预后好。骨髓显像在确定骨髓活检部位，防止假阴性方面也有较大实用价值。

临床与实验室检查鉴别再障与其它导致贫血的疾病，如铁缺乏，营养不足，急性中毒，发热等并不难。骨髓显像时，只有再障才表现出广泛的骨髓

抑制，足以与其它疾病区别。

（四）比较影像学

再生障碍性贫血的 X 线平片，CT，MR 无特殊表现。再障诊断主要依靠骨髄活检证实。

回，白 血 病

（一）临床概述

白血病（leukemia）又称＂血癌＂，是造血细胞起源的恶性肿瘤。临床上根据发病，病情与临床转归等，分为急性与慢性两类；又根据血液学特点和免痃学检查结果，分为急性非淋巴细胞性，急性淋巴细胞性，慢性粒细胞性和慢性淋巴细胞性白血病等几类，每一类又可进一步分为若干亚类。

不同类型的白血病的临床表现不同。急性向血病常有疲倦，发热，贫血及出血等，发病急，进展快，常伴肝，䏨，淋巴结肿大，胸骨压痛，有时皮肤等处有病变浸润，外周血红细胞与血小板减少，血内白细胞数不一定增高，可见血内异常形态的白血病细胞；骨髓活检可见骨髓增生活跃，髓内有大量白血病细胞。慢性白血病则多有低热，乏力，多汗，脾大等，淋巴细胞性白血病好发于老年人，多有淋巴结，肝，脾肿大；慢性白血病外周血内白细胞计数增高，常见异常粒细胞或淋巴细胞，骨髓活检见骨䯚增生活跃，髓内异形细胞较急性型少。除急变期外，慢性白血病的病情，病程，病理改变均较急性型缓和。

（二）显像表现

白血病的骨髓显像常表现呈明显多形性，较普遍的异常表现包括中心骨髓广泛性抑制，常伴有明显的外周骨䭫扩张，据报道阳珄率可达 70% 以上。中心骨髓的放射性减低，而双下肢，特别是膝关节周围有对称性放射性浓聚，浓聚灶向骨干延伸（图 13－3）。慢性白血病常伴肝，脾肿大及放射性增高。临床治疗有效时，中心骨髓的抑制亦相应得到缓解。反之，在病情恶化时，中心骨髓抑制加重，外周骨髓进一步扩张。骨髓扩张部位也可以有白血病细胞存在，显像时局部放射性不均。

（三）诊断与鉴别诊断

白血病患者的中心骨髓抑制程度与临床病情相关：临床完全缓解者骨髓抑制減轻，显像改善；末缓解者骨髄抑制重。有报道证实，向血病外䧓骨髓扩张处，多伴有异常白血病细胞的存在。这类病人

治疗难度大，骨髓显像有助于预测治疗响应和判断治疗效果。

（四）比较影像学

骨䭫改变在 CT，MR 和 X 线片上无特异性表现。但 CT，B超等技术在揭示肝，脾肿大，包括脾内柄变浸润方面有一定参考价值。

五，多发性骨样痹

（一）临床概述

多发性骨䯚瘤（myeloma）是起源于浆细胞系的肿瘤，好发于 $40 \sim 60$ 岁之间。临床上多表现为骨痛，贫血，血液与尿液蛋白异常，易感染等症状体征，病情发展缓慢。实验室检查可见血沉快，红细胞婮钱耕征象及血内异常高滴度的免疫球蛋白，尿中出现特殊的本一周氏蛋白。

（二）显像表现

多发性骨䯣瘤的典型昆像表现为在相对正常或轻度抑制的中心骨髓的基础上，化现多发性放射性缺损灶。在病情发展时，可伴有不同程度的外周骨

髓扩张。

（三）诊断与鉴别诊断

骨髄瘤与其它影响骨髓的血液疾病的主要鉴别在于临床上的表现不同，显像上的差别一般不足以满足诊断和鉴别诊断的要求。

恶性肿痛骨转移早期，可以仅影响骨髓。据报道，约 5% 的骨转移病例的骨显像未出现异常前就表现出骨髓显像的多发缺损。一般认为，多发骨髓瘤多伴有外周骨髓扩张，与转移瘤的单纯缺损不同，但临床上必须依靠其它资料，特别是骨 X 线片区别这两种疾病。

（四）比较影像学

骨髓瘤的 X 线片表现有诊断意义。在骨髓显像出现异常同时，X 线骨片常发现相应区域多发溶骨性病灶，病理骨折及骨质疏松。骨显像对骨髓瘤的诊断不敏感，一般 X 线片表现先于骨显像改变。但有报道介绍，有并发症的骨髓痛或治疗原复发者，骨显像阳性率高。

第2节 脾 显 像

一，解剖生理基础

脾脏是淋巴与阿状内皮组织集中的器官。脾䊼

以清除血内较大粒径的异物为主，包括清除衰老或破坏的血细胞成分。在胎龄 $3 \sim 6$ 月时，脾脏参与造血，出生后停止，但仍保留着在特殊情况下恢复造血功能的潜力。脾㖢也是重要的淋巴器官，脾小体与淋巴结的生发中心有相似功能，在机体免疫系统中承担重要角色。

脾拄位于左上腹，胃的左店方，其后外侧面紧贴膈下，长轴指向前下方，整个脾脏位于肋缘之上，正常查体时触摸不到。脾脏内侧面中部为脾门，有脾动，静脉出人，正常情况下 2% 心输出量供应脾脏。正常成人脾脏随年龄缩小，从 20 岁至 79 岁时脾重从 146 g 掝少到 78 g 。

二，显 像 原 理

利用脾脏负责清除血液内大颗粒异物的特点，临床上多采用大颗粒放射性胶体或直接用标记的变性血细胞（红细胞或血小板）进行脾显像。另外，用标记血细胞进行脾显像，可以协助临床了解这些细胞成份破坏的部位及破坏的速率。

三，显 像 効

常用脾显像剂（splenetic scan agent）及其特点，用量，用途等见表13－2。

表13－2 常用脾显像剂

四，显 像 方 法

脾显像采用多体位静态采集方式。由于脾在上腹部左后部，故显像体位多取左侧位和后位，有助于充分显示脾脏，也可加作前位像。用放射性胶体类显像一般在注射示踪剂后 $10 \sim 30$ 分钟内进行。在标记血细胞显像时，应先在无菌条件下采集患者静脉血，PVP 抗凝，在 $49 \sim 50^{\circ} \mathrm{C}$ 温育（热变 RBC）或经离心分离血有形成分后，标记血小板，再回输入患者体内， $30 \sim 60$ 分钟后进行显像。

五，正常显像表现

正常战人脾在显像时表现为一椭圆形浓聚，前位像显示稍差。左侧位像示其长轴指向前下方（图 $13-4$ ）。后位像脾的长度（L）为 $10.7 \pm 1.7 \mathrm{~cm}$ ；左侧位像上横轴为 $9 \pm 1.2 \mathrm{~cm}$ 。正常 L 值与年龄（A）之间有相关性，可以表达为： $\mathrm{L}=5.7+0.31 \mathrm{Acm}$ 。脾的重量（W）也可以通过公式推算：W＝71L 537 g （成人）或 $W=22.6 \mathrm{~L}-104 \mathrm{~g}$（儿童）。正常成人脾重 $120 \pm 50 \mathrm{~g}$ 。

图 13－4 正常脾显像

六，异常显像表现

脾显像异常可以表现在脾体积，形态和放射性分布方面。

脾肿大（splenomegaly）是最常见的异常，一般认为，脾长轴超过 12 cm 或横轴超过 10 cm ，重量超过 230 g 者为轻度肿大，超过 500 g 火中度肿大，超过 1000 g 者为重度肿大。轻度肿大多见于感染，胶原病，一般的恶性肿瘤等；中度肿大见于白血病，淋巴瘤，门脉高压，传染性单核细胞增多症，其它血液病等；而重度肿大见于慢性向血病，胃髓硬化，寄生虫等。

图 13－5 脾形态异常

脾脏缩小（atrophy of spleen）见于脾发育障碍，镰状细胞贫血，放射治疗后及长期使用激素等情况。特别是在镰状细胞贫血，以标记红细胞显像时，肝内放射性高而脾低，具有病因提示意义。

脾形态变化多见于占位病变，如转移癌多表现为脾内类圆形缺损灶；脾梗死（图 13－5）多为底边向外的楔形缺损；脾破裂则表现为脾的部分甚至全部缺失；副脾表现为脾外或脾周的浓聚灶等。淋巴瘤或血吸虫等疾病可致脾极度肿大，常伴脾呈分叶状。

放射性分布变化多与其它改变并存。败血症，溶血及多种脾疾病可有脾内放射性的减低或不均匀。在脾功能亢进（hypersplenism）时，往往伴有脾放射性异常增高。一些波及脾的疾病，如白近病和淋巴瘤（lymphoma），脾显像异常提示治疗脾内病灶的必要性。

用特殊显像剂时，如标记血小板等，可以通过脾内放射性的多少，判断其破环部位是否在脾。如果脾功能亢进是血细抱破坏的主要原因，可以通过脾切除达到临床缓解的目的，反之，如果脾是主要髓外造血部位，则不目进行脾切除。

第3节 淋巴系统显像

一，解剖生现基础

淋巴系统由淋巴管道，淋巴组织和淋巴器官组成。淋巴管道是遍布人体全身的重要组织结构，负责组织间液内大分子物质，包括细胞成分或细胞本身的转运。淋巴器官包括淋巴结，胸腺，脾和具体位置尚不清楚的腔上囊类组织。淋巴器官的主要功能是生成淋巴细胞和参与机体免疫。一般临床所谓淋巴显像（lymphatic scintigraphy）主要指淋巴管和淋巴结的显像。

淋巴系统作维持人体内环境稳定方面有重要作用。菅养成分的吸收，损伤组织的清除等均有赖于淋巴系统的正常功能。淋巴组织是机体免疫的重要组成部分，许多疾病，包括恶性肿瘤，都是遍过对淋巴系统的侵犯进而影响全身的。检测淋巴系统可以协助许多疾病的诊断，甚至影响治疗方案的确定及临床预后推测。

淋巴系统的一端是盲端，另一端注人静脉。淋

巴管起自组织问隙内的非细淋巴管，毛细淋巴管网百，相交汇戊淋巴管丛，集合淋巴管，淋巴「，并经多级引流淋巴结，汇总为胸导管及在淋巴导管，在左，右静脉角处注人体循环。为保证淋巴引流的单向性，外济淋巴管内也有类似静脉的瓣样结构。淋巴一般处于一种低压流动状态，其动力源于组织间隙内压及与血液循不系统问的压力差。在空间分布上淋巴系统常 ${ }^{5}$ 血簿系统并行，以保证二者在功能上的互补与协同。除脑，脊眬，角膜与㫛体外，全身各处均有淋巴管分布。

毛细淋巴等是淋巴生成的初始部位。由单层内皮构成，细胞间结合十分松版，可受内皮两侧压力左右而自由开闭，毛细淋巴管没有完整的基底膜。一般认为物质分子量＞37000或颗粒直径＞4～ 5 nm ，生物膜通透性骤降，故仅能通过内皮㖄胞的饮泡或内皮间隙被淋巴系统吸收，转运。

经过毛细淋已管，集合淋思管交汇形成的淋せ干注人淋巴结。淋巴结多为豆形或㽗圆形，直颈，大小不等，常分布于脉管分叉及关节凹侧，并依其所在部位的脉管与结构而命名，淋巳结外为结缔组织形成的被膜。内部为淋凹组织和网状炶缔组织。淋巴结内凹一侧为淋巴结门，发出 $1 \sim 3$ 条输出淋巴管；向面则存数支输入淋巴管，接受下游淋巴的

注人。正常成人的淋巴结总数为 $300 \sim 500$ 个，总重革为 $200 \sim 250 \mathrm{~g}$ 。

二，淋巴显像

（一）显像原理

利历淋巴组织负责大分子物质转运的原理，将符合淋巴转运条件的显像剂注人组织间隙。选择性地进入淋巴系，随淋巴流向心性流动，部分显像剂可以高效地被淋巴结窦内皮细胞忝噬留滞，从而显示引流淋巴结，淋巴筲的形态，分布，大小及功能状态等信息。

（二）显像剂

用于淋巴系统的显像剂包括蛋向质，胶体，大分于聚合物等几类物质。标记向细胞，尤其是红细胞以及一些亲淋巴化合物，如 propherin，也可用于淋巴显像，近年来，一些用于肿瘤阳性显像的小踪剂，如 ${ }^{57} \mathrm{Ga}$ ，${ }^{9}{ }^{9} \mathrm{~m} \mathrm{~T}_{\mathrm{c}}-\mathrm{MIBI}, ~{ }^{15} \mathrm{~F}-\mathrm{FDG}$ 等，用于检查淋巴系统的恶性病变侵犯，取得了很好效果：还有其它物质，如甘露糖结合蛋白（MBP）等也被证实有淋巴组织亲和性。因为显像机制不同，不在此介绍．有兴趣的读者可参考本书有关章节。当前临床常用的淋凹显像剂见表13－3。

表13－3 常用淋巴显像剂

		（a）\％	2n：c．Unatht	$\ddot{3}:$
	｜\times 2na＇	$\therefore \cdots$ H，	S\％－ St	\therefore ，mi
	［．．．2men	2－3\％	50． 10	\％，\％＊＊：．．
縎高舜：				
$\cdots \mathrm{Ha}$		21．${ }^{\text {a }}$	$20 \cdots 7$	1．1．4－3，\％
	\％\％Ime ${ }^{\text {a }}$	$\because 1.306$	160…	
		2．．．．की	\％	$\cdots:$
	？－\％ntil	the	21．．．	\therefore ：

（三）显像方法

1．注射技术（injection lechnigues for lymphat－ ic imaging）淋区显像剂引人体内的途径很多，原则上可分为静脉，体腔，皮下，粘膜下及器官被膜

下或组织内注人几种方式。临床常用者多为体表皮下㖪组织间弥内注人，表13－4列举了目前临床最常用淋口显像的显示部位，注药部位及技术要求。

表 13－4 常用淋巴显像投药技术

	，\，			
諒淋豆				
				珓为：
	¢緮复3mm	（8．3．3m：		
			（不娄㸱）	
				m．\％
			［風！	
		牧呚致		619

注射时，应注意防止误将显像剂注人血循环，并鼓励病人主动运动注药肢体以利显像剂随淋巴可流。

2．显像参数 淋巴显像的具体条件，依所用显像剂及部位侕有所不同。

显像吋间可参照表 13－3 所列各种显像剂的时间参数。如一次显像效果不满意，可按 $30 \sim 60$ 分钟间陽分次延迟显像。除特殊情况外，延迟显像不宜超过 4～6小时，继续延迟不可能增加信息或改进显像质量。

淋巴显像可用静态（static lymphatic imaging）或全身显像方式进行。前者多用于相对小范围亚像，如颈部，锁骨上区及腋下部位等，显像时注意将注射点排除在视野外或加以屏蔽，以防其放射性干扰邻近淋巴管（结）显像。对淋巴结群集部位，如腋窝淋巴结群显像（axillary lymphatic scan），可使用针孔准直器以利局部细节的放大显示。全身显像方式多用于较大范周显像，特别是下肢及腹部淋巴系联合显像时，一般扫描速度 $10 \sim 20 \mathrm{~cm} / \mathrm{min}$ ，并常与重点观察部位扄部静态显像联合进行。为观察淋巴引流功能，有时可利用颗粒小，淋巴引流快的显像剂，如锠［ ${ }^{44^{4} \mathrm{ma}} \mathrm{Tc}$ ］在旋糖酐（ ${ }^{\circ 9 \mathrm{gm}} \mathrm{Tc}-\mathrm{DX}$ ）行动态淋巴显像（dynamic lymphatic study）。在远端投人显像剂后立即开始，多以 $30 \sim 60$ 秒／帧速度采集至 $20 ~ 30$ 分钟结束。

䄷巴显像的体位要求较简单。一般仰卧，取前位显像即可。有时为更好观察或为测定淋巴结深度，可加作侧们或前斜位。腋窘淋巴结显像时．显像侧上肢上举抱头以充分暴露腋部，是较特殊的要求。

3．体表标志（marker for lymphatic imaging）淋巴显像具有较高的器官特异性，除淋巴系显像外，其它组织一般不显像（肝，脾，膀胱除外）。故在显像吋应作好体表解剖标志以利解剖位置关系的判全。解剖标志一般用点源放置，于相应体表定位点方法进行。常用定位点包括下频，胸骨」：缘，耳孔，肩峰，剑突，胸骨上缘等相关体表解剖标志点。
（四）正常显像表现
1．正常动念显像 动态淋巴显像多用于四肢。正常情况下见两侧显像剂同步向心移行，迁移速度约 $5 \sim 20 \mathrm{~cm} / \mathrm{min}$ 左右，上肢略快于下肢。淋巴流动力学特吽的时间计数曲线呈周期怍波动状。大约
射后 $2 \sim 6$ 分钟显示关节带部位的淋巴结。此后淋巴摄取随时间渐增多，一般在 $20 \sim 40$ 分钟时达到最大摄取，并持续1 小时左在。正常人两侧泆巴流动力学特征十分近似。

2．正常静态显像 静态显像见正常人时或膝以下 $2 \sim 3$ 支淋巴管，肘／膝以上一般只见一条主淋巴管显影。人体的淋巴结的变异较大，即使在同体

两侧，淋巴结的数日，大小，分布亦可能颇不相同。因此对淋巴显像结果的判读，特别是特殊部位显像（如胃及肠系膜淋巴结，脏器引流淋巴等）的判读，应对照该部位淋巴系统解剖学并综合各方面信息进行。
（1）颈淋巴结：正常可见每侧颈深及颈浅两组淋巴结。每组淋巴结数日 $2 \sim 7$ 个不等。前位预深组向内下，沿气管两旁走行：领浅组体颈外侧向下延伸，两侧大致对称。侧位见深组在前，浅组在后

呈＂人＂字形排列（图 13－6）。根据投药部位不同，还可见耳后淋巴结（乳突部注射）或领下淋巴结（口腔内注射）显影。这一淋巴结显示与否可作为投药质量合格与否的客观判断指标。
（2）腋及锁骨下淋巴结：前位像示两侧淋巴结群从腋下斜向上延伸，指向颈根部，呈＂八＂字形。侧位像在显像条件合适时可显示腋部淋巴结中央群，外侧群，后群等，呈大致菱形分布于腋窝 （图13－7）。一般锁骨上淋巴结不显影。

图 137 应常腋下及销骨下淋巴显像
（3）胸骨旁（又称内乳）淋巴结：在胸骨两侧 $3 \sim 5 \mathrm{~cm}$ 处， $3 \sim 7$ 个淋巴结上下排列成串，胸廓上部分布较密集，约 $1 / 5$ 正常人两侧之间有交通文存
体积较小，是注射技术正确与否的客观证据。部分人可见位于躯干中线的剑突淋巴结（图13－8）。
（4）腹股沟及腹膜后淋巴结：前位像可见从下向上依次排列着群集的腹股沟淋巴结深，浅各组，

骼外，骼总及由 2 或 3 条淋巴结链并列上行构成的腹主动脉旁（又称腰）淋巴结，两侧均向中线交汇。从前位相见上述所有淋巴结排列成倒置＂Y＂字形。正常人乳糜池及胸内淋巴系基本不显影。部分人左，右腰干之间有交通支；约 $1 / 5$ 的人两侧骼淋巴结不对称；左侧淋巴结数目较少。一般腹股沟浅及舽外淋巴显影清晰，放射性强度高于腹股沟深及骼总，腰淋巴结。腰平右上方可见肝显影。用大分

子类示踪剂时可见双肾及膀脱显影（图 13－9）。
（5）盆腔淋巴结：多从后位观察，一般在盆内每侧只见 $1 \sim 2$ 个闭孔淋巴结或直肠旁淋巴结。前位相可见骶前及骼内，外淋巴结，但图盆内毛细淋巴管少，显像剂吸收差，故骼，腰淋巴结的显像清晰度较差，一般两侧盆内淋巴结的位置可不对称，但大小及显影强度比较接近。
（6）特殊部位淋巴结：需要特殊体位，特殊方法投药及显示，所显示的淋巴结数量一般较少，较小，分布及走行特殊，其结果判断应参照特定部位引流淋巴结的局部解剖学进行。

（五）诊断与监别诊断

人体淋巴系统的密异性甚大，位于机体两侧相同部位的淋巴在数量，大小，分布等方面常有不同，很难象其它显像一样通过两侧对照进行诊断。另外在疾病条件下，淋巴结可以肿大，也可以体积不变；可以因抗原或病理产物的刺激致使局部淋巴

结放射活性增高，也可因病变的损害导致其放射性诚低或缺如；其它因素，如淋巴结在体内的几何位置和引流过程中的地位，淋巴绩之间的连接与侧支循环等，均可能左石具体淋巴结的显像表现：加之大多数显像剂缺少病因特异性以及注射技术影响等，使淋巴显像的结果判读显得十分复杂的不易掌握。诊断时应注意下述基本原则：（1）根据显像部位淋巴系统的一般形态特点．观察，对比两侧的大体印象，走行趋势和连续性，不拘泥于淋巴结数日，大小，形态，放射性高低方面的一致和对称。（）首先鉴定注药技术，重点观测如膈淋巴结，耳后或领下淋巴结等＂标准淋巴结＂显影与否：两侧注射点放射活性是否大体相等：是否有误注：以排除技术失洖。（3）注意排除其它干扰因素，如引流区域内的近期感染，手术，组织损伤等。一般这种干扰可持续 1 个月左右；不少资料证实放疗后淋せ显像效果差，除放射线直接作用外。放疗引起病变或组织吥

死崩解，可造成与手术同样的影响。（4）全面分析，注意淋巴管，淋巴系统以外的组织，器宁的表圲：注意其下游方句的淋巴结。临床上常见＂上游＂淋巴结正常而＂下游＂淋巴结病损者，系因每 级淋巴结的输出管可连接数个淋巴结。病变可能＂跳过＂某一淋巴结，影响其下一级淋巴结之故。（5）对有疑问的病例应延迟显像观察可疑淋巴炶构的显像表现的演变。一次显像难于解释时，应间隔 $1 \sim 3$月复查，可以堤供更多的诊断依据。
（六）异常昆像表现
淋巴显像的异常（abnormal lymphatic ima－ ging）表现可以行为明确与可疑两类。

1．明确异常表现（1）显影明昆延迟，2～4 小时后仍无明确的淋巴结显影或淋巴管显影；（2）淋巴

结的缺失（尤其在浅表已触及肿大淋巴结时）或淋巴链的中断；（3）明显的淋巴结形态学改变：体积明显增大而放射活性低；淋巴结缺损；（1）淋巴管扩张迁曲或有显像剂外漏或向皮肤返流；显示为扩张，网状的小淋巴管或淋巴管外，软组织内或皮下弥散，无明确界限的放射性浓聚；（5）侧支循环征象。即正常情况下不显影的淋巴管或淋巴结显影，如锁骨上淋巴结，肋间淋巴结，骼内淋巴结等；（62～1 小时后肝不显影，组织内血本底不升高，提小重度淋凹梗阻。

异常征象多强烈提示淋巴系统器质性病变。同时表现忛 $2 \sim 3$ 条以上异常征象者基本可以确诊（图 13－10）。

图13－10 异常淋巴结亚像衣现
a 淋巴肿大；b 淋巴紩失；c 䀛淋巴显影

2．可疑异常征象（1）两侧相对应淋巴结构之较明显不对称；（2）主要淋巴结肿大伴放射性增强域

小而放射性极低或形态不整，不规则；（3）淋巴结构显影不清晰；（4）淋巴结数量明显减少或明显增多；
（5）时／膝以上多条淋巴管：（6）病变侧向健侧交叉引流；（7）病变侧淋巴结构显影尚可，而健侧有异常或可疑征象。

凡有可疑征象者，在除外其它非疾病原因后，应注意结合临床综合分析，并提示近期复査的必要性。

（七）比较影像学

在过去很长时间内，由于缺少有效的检测手段，活体淋巴系统解剖，生理方面的特性及其种种变化一直无法被真正理解。50年代开始普及起来的 X 线淋巴造影术使医学界对淋巴系统的了解深入了一大步，近年来CT，MR 技术的日濌完善也极大地促进了临床上对淋巴病变的诊断能力。但是，X 线造影术应用范围有限，有较强的损伤性。生理性差，并发症或后遗症相对较多；CT 和 MR可以显示淋巴结的大小和质地，但同样应用范围有限，面且大量临床资料证实，单凭淋巴结大小诊断有无病变的误诊率高达 $20 \% \sim 40 \%$ 。此外，X 线造影，CT 和 MR 都无法揭示正常条件下淋巴系统的引流功能。淋巴显像有针对性地克服了上述缺点，可用于几乎全身所有部位，甚至包括心包，眼球结膜等部位的淋巴系统检测，操作简便，基本无掦伤，无后遗症及并发症，生理性强，可如实反映引流淋巴的途径及功能等。淋巴显像的临床应用范围比其它诊断技术广泛。

三，省奇金病

（一）临床概述

霍奇金病又称为淋巴网状细胞肉瘤，是起源于淋巴组织的恶性肿瘤的主要形式之一。可以发生于任何年龄组，男性多于女性，发病率占所有恶性肿瘤的 3% 左右。淋巴瘤的治疗主要靠放疗和化疗，治疗方案的选择及疗效在很大程度上依赖于疾病的分期。临床上一般将淋巴瘤分为四期二型：J期为原位病变；II期为两处病灶但在横膈同侧；III期病灶分散于膈两侧但限于淋巴组织；JV期为非淋巴组织和器官受累。每一期又根据全身症状（发热，痹痒，体重下降或贫血）的无或有分成甲乙二型。临床经常面临的主要困难在于区别 I ，II 期或 II ，III期。I 期非霍奇金淋巴瘤主要侵犯一个部位（颈侧多见）的浅表淋巴结；而 I 期霍奇金病往往侵犯纵隔

或腹膜后淋巴结。是否有其它部位淋巴结受累 （II或III期）往往不易通过临床理学检查证实：对可疑部位淋巴进行显像可以为临床提供这方面的诊断依据。

〈こ〉显像表现

疾病古期显像时，受累淋巴结多明显增大，可能系多个淋巴结融合所致，放射性多偏低；中晚期可呈明显放射性减低甚至缺失：如果配合 CT 证实肿大淋巴结部位无显像剂分布则诊断更明确：最佳方案是配合 ${ }^{67} \mathrm{Ga}$ 显像可与淋巴显像互补。即不显影淋巴结浓聚 ${ }^{67} \mathrm{Ga}$ 则可提高诊断灵敏度与特异性 （图？3－11）。

（三）诊断与鉴别诊断

霍奇金病与非霍奇金淋巴㿇的鉴別主要依靠病理检查。病变首发部位相对单一，临床症状与体征相对较重，是霍奇金病的特点。但临床上与显像检查的差别不足以准确区别这两类淋巴瘤。淋巴瘤与恶性肿瘤淋巴转移的临床鉴别一般并不困难，转移癌一般有明确的引流分布关系，不同于淋巴瘤。但淋巴瘤，特別是早期淋巴瘤的显像表现与转移癌间的差別并不明显。

（四）比较影像学

CT 和 MR 在诊断淋巴瘤局部病变，特别是在淋巴结受累肿大时的效果较好。但对肿大不明显或治疗后淋巴结是否有复发灶的判断不理想。受投照视野的限制，CT 和 MR 在淋巴瘤分期方面的价值不高。淋巴显像可以明显补充前述技术的不足。—般淋巴显像对各型淋巴瘤的诊断价值可与CT 媲美，TP 达 $86 \% \sim 88 \%$（CT 为 87% ）．TN 为 64% 。

图13－1I 霍奇金病

四，非霍奇金淋巴㿔

（一）临床概述

非霍奇金淋已痛讪是起源于淋巴组织的悲性肿熘。按其细胞成份可分为两种，即淋已肉瘤和网状细胞肉瘤。非霍奇金淋巴瘤也常以无痛吽淋巴肿大为首发表现，但与霍每金病不［河，本病初发时波及广泛，病情发展规津性不虽，蓇肠道，腹腚与骨䯏侵犯多见，其至出现类向血病样血象故变，但全身中毒症状比霍奇金病轻。

（二）显像表现

金病相似。

（三）诊断与鉴别诊断

与霍奇金病的鉴別立要衣现在早期侵犯范讳り＂泛，有类问血病血象表现，以及相对全第症状轻等，但最终诊断仍需依靠病埋学检查。与其它淋巴系统疾病的鉴别司霍奇全病。

（四）比较影像学

同霍奇金病。

五，恶性肿瘤淋巴转移

（一）临床概述

恶性肿瘤的远处转移多从㿇细胞或纽胞财落从京发瘤体上解离开始，由于淋巴管的结构特征，淋巴系统在很多肿瘤的转移过程中扮演极为重要的角色。转移癌多经毛细淋巴管侵入，前沿淋巴政涂径进入局部引流淋巴炶。这个淋巴结被称为＂前哨淋巴结＂（sentinel node）。转移㿋在淋巴结内首先

分布于边缘窦中，引起淋巴结肿大，组织细胞增多等敳变。如果肿瘤进一步发展，痛细胞可以越过前哨淋巴结这道防御向下游扩散，最后入血发展为广泛转移。

肿瘤淋巴转移的方式和程度，击瘤组织的生物特性戻定，一般米讲，分化差的肿病转移发生率高。在淋世系的转移讨程过并非连续性：前哨淋也结并不一定是与原发灶空间距离最近的淋巴结：转移可以是跳跃式的，即病变与转移之间可相隔数个淋巴结。由于肿瘤的破坏，可以造成继发的淋門阻寒，侧支循环，其至返流和组织内播散。这种情况 ト，痛组织可随改变了流向的淋巴，进入正常条件下无引流关系的部位，并在该处滞留发展。产生相应的痘状和体征。

兰非所有肿瘤都经淋巴转移。临床上常见经淋世转移的恶性肿瘤包括皮肤，口悾，呼吸道，消化道，生殖系和腺体发牛的上皮样癌多经由或首先经由淋巴转移；荈外，黑色素瘤及小部分滑膜肉瘤可经淋世，血行两种途径转移。大部分肉瘤，间质瘤等则主要通过血行转移，淋巴转移较少见。

淋巴显像用于判断肿瘤的淋巴引流途径，風部及远端淋区结受累状况，进而进行分期诊断杜顶后估测等力面极有意义。

（二）显像表现

肿瘤侵犯淋巴结的早期表现无特异性。淋巴结可以表现为肿大，放射活吽增宵，也可以表现为局部放射性缺损。当肿瘤转移发展到一定阶段后，淋巴结破坏，证常结构被取代，具像时表现为淋巴结消失，淋巴走行中断，最后可以发展为不同程度的

图13－12 恶性肿瘤淋巴转移

淋巴阻塞，返流和组织间播散（图13－12），
肿瘤灶芳注射显像剂，可显小㖞灶引流的前哨淋巴结（1～3个）。有报道证实，通过内窥镜将显像剂注入食管癌病㞳㠼周粘膜下，亚小出的局部淋巴结中 34.6% 发现有㿋细胞，提示前哨淋上结确有揭示癌细胞䚾移途径的意义。前哨淋巴结民论显
刘改善预后有重慗意义。

近年来，利用肿瘤阳性显像剂，如＂Ga，${ }^{4} \mathrm{~m}$ Tc－
 H（MBP）。生长抑素受休等南接显小゙受累淋巴紋，表现为淋巴结局部的高浓聚，在肿瘤分期与鉴別力面，取得了很好的成绩，是今居重要的发展 j_{j}向。

（三）诊断与鉴别诊断

淋巴显像主要用于协助临床进行肿㨨的分期诊断。国内外文献报道，在乳腺癌，审颈癌，卵巢癌等肿瘤病例，淋凹显像可以准确地揭小゙肿瘤的淋巴结转移，甚至可以先于临休数H揭示肿瘤随返流濑巴间皮下的播散。不少作者的经验耻朋，内乳及变淋巴结显像的结果可以准确提が预后：淋巴哏像异常者乳腺癌复发率为 31 谷～ 67% ，明显高于显像正常者（ $31 \% \sim$ 3.1% ），其预后揩示比淋巴结活验的准确性还高。类似报道还见于「䅝癌，前列腺癌，睪风癌，黑色素瘤等病例。淋巴多像的诊断TP在

显像可以协助治疗。由于肿溜预片受淋世转移的影响，内此好引流淋巴结进行预防戊恨治性治疗在提高肿瘤治愈率，减少复发，改进预后房面具有肯定价值。淋巴显像可以明确淋巳结的空间分布及位置，有助于治疗计划。存人统计，至少有 2.9% 的病例因淋山覀像织果使原先的治疗计划得以修正和充实。有作者道过淋巴昆像指导淋巴结根治术，使宫预癌的淋也企切率从 $52.4 \mathrm{~m} / \mathrm{f}$ 提高到 98.3% ，使相应病例的 3年牛存率从 75% 提宂到 88% 。

（四）比较影像学

在淋巴显像技术实用化之前，淋巴系统的检测主要依靠 X 线淋巴造影和临床理学检查。淋巴造影的操作繁琐，有创：理学：检查很大程度上依赖检，查者的主观感觉和经验，聂主要的是二者的使用成

限性大。如以乳，纵隔，器官淋巴络无法触摸，切难以穿刺选影。 见外有文献报道它颈癌手心时，闪
墷灶的部位推测黑色系瘤的引流淋世结只猜对了 311 ；CI以淋巴垨 >1.0 或 1.5 cm 为标准。误诊率高达 20 重～ 30% 。而 75% 的官预瘄病例接受骼外及纵陑淋巴显像后得到厂更多的俭息，取得 • TP84公，TN90\％行的诊断效率。当然，早期淋巴侵犯或淋巴结完全取代情况下，淋巴显像可以呈腵阳性炶果，局部炎㧧可导致假阳性，因此就诊断淋巴转移米讲，淋巴显像与C1等技术结合互补。是十分必要的

六，肢体淋巴水肿

（一）临床㮣述

卜肢的淋巴水肿（1ymphocdema）是最常见的良性淋也病。原发型多为先天或遗传所致的淋巴系统缺陷所致，继发型可发牛于外伤，感染，肺病，手术戗寄生虫病等情况之后。

应发吽淋巴水肿有多种分类应法，根据临床发病古龄，可以分为早发型（congerita），发病多在1岁前，约占所有病例的 $11 \sim$ ：普通型（praecox）。 1～35岁期间发病，发病率为 77% 兴 和迟发型（tar da）。在 35 罗之后，发病率 12% 。另外有作者根据病变淋巴管形态，将水肿分为淋巴管扩张（lym－ phangiectasis）．发病率 $2 \cdot 1$ 屏：淋巴发命不良（hy poplasia） 55 兹•淋巴缺如（aplasia） 14 公和皮肤返流 （dermal backflow） 6 ！ 3 。

粙发淋巴水肿的发病原烟较明确，在病因 r_{j} 水肺发生部位间有空间上的联系。其发生率在不同较病时不可．据国外统计，大约占淋巴小肿总例数的 10ヶ～15\％。

淋巴水肿影响组织内大分子物质的转运。 60 牯代中期的实验数据证明．如集组织间漼的蛋白含量超过 5 g 㕷。组织间渗透压增高，引起水和代谢物潴留。久之组织间陁内纤维增生，硬化，龶皮地增生角化，比成不可逆的肿块，严重时最后形成象皮样变和溃汤，乐死，淋巴水肺的治疗取决于病因，影响范围，程度和其它一些达素，平术，片部却原，控制感染等诱发或影晌囚索及内科护理等，都是怗休常用的方法。

（二）显像表现

淋巴水肿的主要显像表现包括局部淋巴流缓慢甚至停滞，多山于长期反复的慢性感染，炎症所遗纤维化引起。原发性淋巴水肿多伴有淋巴管的形态

改变或不显影，显像剂向表皮返流，扩散•严重者显像区内完全无淋巴管或淋巴结显示（图13－13）：继发者可发现梗阻部位，其上游多有淋巴管扩张和侧支淋巴管显影等征象。

图 13－13 游巴水肿

（三）诊断与监别诊断

淋巴显像可用十「解水肿类型，波及范围，程度等信息，可以揭示一些淋巴肿的特征性改变．如遗传性淋巴肿（Milroy＇s 病，或称 lymphatic porosa）表现为病变部位显像剂向淋巴管外弥散。还有人通过够淋巴显像发现胸导管 V 形畸形是双下肢淋门水肿的病因之一，

淋巴显像提供淋巴水肿治疗所需的信息。特別是部分水肿可以通过业微手术吻合淋巴和血管加以治疗，其必要前提是证实病变部位有淋巴管存在，这一任务只有淋巴显像方可胜任。国内协和医院报道，淋巴显像有无淋巴管，直接影响物合术的成功与否。

淋巴显像的車要作用还在于监别肢体水肿的成因。有人在 11 例下肢水坨病例中，淋巴显像 2 例未发现异常，后来均证实为深静脉血栓所致。一般来讲，如果淋巴显像结果正常，可以认为临怵上表现出的肢体水肿多为非淋已因素造成。

（四）比较影像学

肢体水肿的临床捡查方法，仙括超袒和下肢静脉造影，是观察静脉形态学与功能改变分面十分有效的技术。但是超声与静脉造影无法显示小血管异

常，在鉴别血管性或淋巴性水肿方面的诊断可靠性不高，更无法对淋巴水肿及其分型进行诊断。根据国内经验，淋巴显像在肢体水肿的诊断效率方面，明显优于其它技术。

七，其他器官淋巴性异常

（一）临床概述

体内大部分器官都有淋巴组织。影呴肢体和体表淋巴组织的因素也可以影响脏器淋巴，引起局部病变。临床常见的器官淋巴异常包括乳糜录．乳糜胸，腹水，乳糜心包和蛋白丢失性肠病等，乳糜㲾和体腔乳糜积液是最常见的器官淋巴异常。其病因与淋巴水肿相似，包括多种先天与获得性因素，其中手术，肿瘤和寄生虫是最常见病因。在致病因素作用下，器官表面的淋巴管扩张，渗漏，含有大量蛋白类物质的淋巴液流出，经尿路排出或蓄积于相应体腔．就形成乳糜尿或乳糜胸，腹，心包积水：蛋白丢先性肠病是一种由于部分肠壁的淋巴外渗。大量富含盃白的淋巴经肠道丢失的淋巴性异常。

（二）显像表现

各种器官的淋巴异常在淋巴显像时，可表现为淋巴异常引流，流速加快，局部放射性异常增加

等。蛋白丢失抄肠病在髂淋巴显像时，亚像剤逆流回扩张之肠淋巴管内，勾画出大，小炀壁及物系膜
示相应部位的异常浓聚。但的于胸，愎腔空间大，常需延的至数小时，方可显方休腔内的放射性积聎。外伤或手术后的淋巴水肿，淋巴囊肿，如肾移植后淋巴㐮肿，表现为局部放射性缺损，外伤后胸内淋巴囊肿造成上纵隔增宽。

（三）诊断与鉴别诊断

乳糜胸，腹水，乳糜心包等病可发生于名种疾病之后，也可以是先天异常。淋巴抳像可以直观地显示其与淋巴的关系，并可显示伴发之淋巴系统的异常政变，从而明确诊断。

（四）比较影像学

淋巴显像在人体多部位淋巴生埋及良性病变的病理特征等方面的作用，目前尚无其它方法可以取代。
（甽嘉禾）

参 考 文 献

1．于保法，等，骨髓显像剂 ${ }^{9 \mathrm{~mm}} \mathrm{Tc}$－油酸多桐脂质体的制备与动物实验。中华核医学杂志．7989．9：167
巴结扫摱的初步观察．中华核医：学杂志，1982．2：85
3．下远森，等，再生障码性务血的全身身盤分布及其变化规徏的研究．中华核医学杂志．3987．7：71
発学杂志，1992，12：7．5
体会．中华核医蒋杂志．1984．4：239
6．刘秀杰，等．地中海变血综合胙的红细胞寿合及其破坏部位的测定。中华核医学杂志，1985．5：256
华核医学杂志，1985， $3: 51$
8．图毓智，等。淋巴系显像剂 ${ }^{0+\pi}$ 锠 大分与右施構酐的研突．中华核医学桇志，1984，1：218
9．构梅芳，等，核美淋妃显像诊断四肢淋巴水肿。中华核医学杂志，1994．14：41
10．栗维国，等，${ }^{\text {明 }}$ 锝一植酸钠肝脾显像判断问体脾移植存

11．周申等主编，核医学（第 1 版）。北京：人民马生出版社， 1995
学杂志．1983．3：76

13．管迅行，等．内乳区淋区结 γ 显像的临床研究 苻 +3 例报告．中华核医学杂志．1992．12：24
13．大竹英二，他．Ehateral collimator 在物いた胸骨旁けン パ゙落シンチクラフィ．日本医学放射线会志，1951． $41: 235$
肿の渗断•恬床放时线•1983．28：6n3
16．Baker l－RS．et al．Subeellular localuza：ion of indutu in human and rabbit platelets．Blood．1782． 59 ： 351
17．Beamish MR．ct al．A comparison of the behavior of ${ }^{11}$ In and ${ }^{-1}$ Fe labeled transferriti meubation with human and rat reticulocytes．Blood．1974．1，：7n3 711
18．Bergqu．st 1 ．，ri al．Particle sizing and bokoneurs oi an－ torstatial lymphoscintgraphic agent．Serin Suet Med． $1983,13: 9$
19．Bloomer WI）．I．ymphoscintigraphy in yynecologic malig－ mencjes．Semin Nucl Med，1983，13：is
20．Bomer H ，etal．The blood and lymphoad orgams，In： Rubin E．© al（eds）．Parhology．Philddelphia，l．ıpiso：1． 1788．1014
21．Crippat F．et al．Prospective evaluatoon of Flurrine－ix－ FLXG；in presurgical staging of the axilla an beast caticer． J Nucl Med．1998，3？： 1
22．Croll MV．e1 al．Itryplications of lymphormmegraphy in oncologic practice：principles and differences wis a－w other imaging tnodalaties．Semm liuct Mord，ins3．1s： 1
23．Dancker CM．et al．Radommone imaging of bone mar－ row metastases from primary breast cancer．I Sue！ Med，1990， $31: 1450$
24．Datz Fl．et al．The climal use of radoonaclide tone marrow imaging．Semın Nucl Med．1985．15： 25 s
25．Deland FH．Wangner Hiv（ads）．Atlan nf viuclear Mcd icine．Vol．3．Reticuloendothelial system，heer．splecin and thyrond．W．R．Saunder Co．193？．3－s
26．Dionne L．，et al．Interal mammary lymphoseinitgraphy in brast carcinoma：a surgeon a perspertire．Somm Xind Mod．1983．13：35
27．Ege G．V．Lymphosemntigraphy－technique and applica tions in the manageman of breast carmonos．Semun Nurl Med，1983．13： 26
23．Ellis MC．et al．Traumatic lymphocele：demomarration by lymphoscintigraphy with modified Tc inmp sulfur collaid．Am J Roent，1483，i40： 973
29．Fordhan EW，et al．Radionnclide Imaging of bone mar－ row．Somm FIcmatol，1981，18：222

30．Giisch F，et al．Intrapperative lymph scintigraphy dur ing radical surgets for cervical cancer，J visel Med． 1934 ．2．5：485
31．Gondwin DA．et al．Tndum－11l tabeled autologous p＇atelets for location of vascular thrombes in humans．J Nucl Med．1978，19：629

32．Haker IA，The kineties of platelet production and de struction in man．Clinıe in Haematol，1977，6： 671
33．International Cotomittee for Standardization in Hematol． ogy．Recommended mothods for radiorsotupe red cell A Arvival studics．Pleod，1971，38：378
34．International Commitiee for Standardization in IIcmatol－ ory，Recommended methods for radioisotope pletelet survival studies．Flood，1977， $59: 1137$
35．International Cemmittec for Standardization in Hemetol ugy．Recommended methods for indum－111 flatelel sur vival studies．Brıl J Radio，1987． $50: 873$
36．1CRP．Radiaton dose to patients from radiopharmaceuti－ cals．ICRP［1ub］．j3．1984，Vol 18，Vo．1－4．（）xiord： Pergation
37．Jager PL，el al．Seritinel node localıatiou in breast canc－
cr．Fur J Nurl Med，1998，25： 838
38．Jois1 JH．ex al．Methodologic and basic aspects of ind umplatelets．Semin Thromb Hemostac，1983， $5: 86$
39．Linden A ，et al．Malignant lymphoma：bone marrow ımagıng versus biopsy．Radio＇ogy，：989．173： 335
40．Munz DL．et al．Comparison of immunoscintigraph．s and colloid scintigraphy of bone marrow，Latnect． $194 \mathrm{C}^{\circ}$. 1：258
11．Ntoworolska A．el al．Expression of nonvpecific crosa reacting antigen spectes in myeloid leukemic patents and healthy subjects．Blut， $1989,58: 69$
42．Reske SN．Recent advances n bone marrow scanning． Fur J Nuel Med，1991，18：203
43．Valenca Kj，el cl．Somatostatin receptor expression in lymphoma of mucusa associated lymphoid hasut．Eur J Nucl Mcd，1998． $25: 837$
44．Vera DR．el al．Setinel node imaging via a nos－particu late receptorbinding radio tracer．J Nucl Med．199．． 38： 530
45．Vogler JB，el al．Bone ma＂row imaging．Radiology． 1984．168：679

第

第1节 肿瘤学基础

恶性肿瘤已成为严重威胁生命的常沈病多发病，据1998年全国卫生事业发宠情况统计公报。 1998年我国城市地区死因顺侹，昰性肿㨨已圤全第一位，每年约 150 万人死于煰症，目前与 1975年全国肿瘤回倾调查相比，常见肿瘤明显升高的为肺癌，肠癌，乳腺癌，下降的为蔏癌，子宫颈㿋，食管癌。正如1998年美国临床肿瘤学会第 34 屚大会口号，应该＂共同前进，制服癌序＂（march。 coming together to conquer cancer），

通常的概念，＂肿㿔＂是一种细胞的异常增殖 （变性，坏死）．具有结构，功能，代谢的异常。上皮性的肿瘤称＂癌＂，约占所有肿瘤 90% 以上，来自间叶非上皮组织的称为＂肉演＂：根据生长方式的不同，可分为原位瘜，浸洤癌和转移癌；根强涉及范围有早期，中期和晚期癌及原发性和继发性癌之分；根据肿瘤病理形态分级叮分为＂高分化＂， ＂中分化＂和＂低分化＂，分化程度越低，恶性程度
 MIBI，${ }^{2 m} T c$（V）－DMSA，放射免疫湿像和 ${ }^{14} \mathrm{~F}$－ FDG PEI显像等能确定肿瘤来源，恶性程度及治疗后随访监察。

随着科学的发展，对癌症有了新的认识，突仙的是以动力学的改变代芙形态学的异常，以偪息传递的调古控制为基础，经历癌的引发（T细胞 DNA突变），肿瘤的宿动，恶性边展三个阶投，其癌变的发屁因素存（1）一系列基因改变：原膈基因的突变，重排，扩增，抑癌基因的失活，变异和巨失； （D）生化和免疫学方西的改变；（3）正常先疫功能缺损，破坏了细胞生长的平衡和楜节，而致正常生：心先控。＂不协调产生疾病＂（disease as dissonance），这就是分子核医学的基础。

规代肿瘤学的范畴包活：（1）临床研究：根治性综合治疗私姑息治疗（含痛痛治疗）：（至流行病紫预防和干预试验研究：（3）基础研究面怍的三个基本问

肿 㿔

题：癌的起因，癌细胞本质，癌症利宿主的关系：肿瘤核终学会围绕这些内谷，发䢁其可达分于水平的高特弁，高决敏，无创伤义具系统性的功能性动态的影像学检查的优势，对肿奮的军期诊断，分期，治疗，疗效观察，随汸，肿瘤复发，预光及预测具行很大的临床价值。1999年6月国陈上义推中新型核垁学仪器，将力能影像与解剂影像融合一体（即㤏像䙌合断腎显像，fusion image tomo－ graphy，FIT）．正体现广为制服癌拢共同向进。

第2节 肿瘤正电 子发射断层显像

一，显 像 原 理

肿瘤的恶性行为与其特殊的代谢密切相关。发
类似物 ${ }^{137}$ F标上生物活性物质后参与其代谢．就矿用正电子发射断层铌像（positron emission compu ted tomography，PET）获得肿瘤的牛物化学影像：

隐性肿瘤的一个特殊代谢是有字截苟糖酵解

结构上类似天然蒱苟糖，二者可竞手结合膜转运蛋白进入胞内。洅经高活性的 6 已煻激酶催化分别形
由于前者既不能参与进一步的糖㽒解，又婎于逆转流失，即使经磷酸戌糖迄径进入糖代谢㸓路，速度也非常慢。㖶以 ${ }^{16}$ F FDCS 代谢陷落成为肿瘤成像的基础，组织氧含量，局部血供和周围炎性反庶可影响肿㿔摄取 FDG 及其意义。

宓性肿瘤的氨基酸摄取与蛋H质合成叮被碳 Γ_{-11}^{11} 「］卷氨酸，㡀氨酸所表现。此外，核酸代谢，
电子发射药物显示。

二，显 像 剂

如表1111所示，根据研究日的选㹣不同药物。

其川：FFDG；最常用，静脉注射用至 100 ～ 400 MBq 。体内过程符合一室模型，全身辎射量仅为 $2 \sim 3 \mathrm{mSv}$ 。同 X 线㞱肠透视和其它核缶学检查。

表14－1 肿㝝 PEI 显像研究方法及其药物

方 法	药 物
槺代谢（榶酵解）	$\left.{ }^{4} \mathrm{~F}-\mathrm{FL}\right)(\mathrm{G}$
氨基酸摄取与蛋｜${ }^{\text {f }}$ 傎	＂（－蛋氨胶，輅氨搯
合成	${ }^{15} \mathrm{~F} \cdot \mathrm{I}$（）PA，${ }^{\text {＇5 }}$ 中基酪氛酸
核酸代谢（D．NA在制）	${ }^{18} \mathrm{~F}$－脱氧尿毞啶（＂F flumoro？＇derxyun （line），1（䑦腺嘫啶核䒴
脂肪酸代谢	${ }^{1} \mathrm{C}$（ 乙酸盐
灌注	${ }^{\prime} \mathrm{NH}, . \mathrm{H}_{2}{ }^{\prime}$（）
血脑屏障通透性	${ }^{*}$ Ga－ELTI
受体	
を氧	
化疗	${ }^{18} \mathrm{~F}$ U UdR ，1amoxifen
单抗	${ }^{131}$ I－HMFGi ${ }^{\text {d }}$ ，3F\％，${ }^{51} \mathrm{Cu}$ C．EA 单抗
计：－1研究上龓性叫瘤。	

三，${ }^{18} \mathrm{~F}$－FDG 显像方法

患者应禁食呈少 4 小吋，完全休息。可步志给予肌松驰和利冰药。

先作透射断层显像以供组织衰减校正，然后静脉注射 ${ }^{18} \mathrm{~F}$－FDC． $30 \sim 60$ 分钟后进行全身及局部发射断层亚像，也可在给药后卭刻局部动态断耊采集，并定时抽取对侧静脉血以供计算肿瘤 FDG （ 摄取率。最后对所得数据进行衰变与衰减校正启重建图像就可悲得局部域全追断层图。

四，${ }^{18}$ F－FDG 影像分析

1．正常图像：脑部灰质有明显放射性摄取：心肌摄取量变异较大，决定于泙入 ${ }^{*}$ F－FDG 时血糖水平；肾集企系统和膀胱放射性分布明洜。中度摄取见丁眭周，「腙，鼻咽和咽部的肌肉，粘脱和淋巴组织，还见于肝，脾及骨髓。男肠道常有放射性分布，其中结肠肝曲，脾曲和乙状结肠处放射性：分布颇为噁显。给药期间肌紧张域肢体活动可导致肌肉放射性增强，度肤放射性摄取则形成朋显的体表轮廊。

2．异常图像：高度业性的肿瘤一般表现为局灶性异常放射性浓集，恶性度低者或经有效治疗者放射性摄取较低。假阳性山兄于肌肉摄取，炎症，

辐射损仿，血池，骨髓和肠道放射性：假阴性主要见于骨㪣病灶。可根据半定量旨标肿瘤非肿瘤 （T／．NT）比值，标准摄取值（standard uptake val－ ue，SUV．又称 differential uptake ratio．DUR）和定量指标摄取率定性肿瘤。

五，临 床 应 用

PET 显像的适应证是（1）对某些肿痹定性，分级和预测预盾：（2）鉴别诊断某些部位治疗后的改变与肿瘤残留或复发：（3）对某些肿瘤作出正确的治疗前分期和对复发者再度正确分期：（车疗效随访： ${ }^{1 \times}$ F－FDG 在各种肿瘤的应用简述如下：

（一）肺癌

一般认为肺部结节有 $50 \% \sim 60 \%$ 为良吽。（T等影像检倉认为恶性而被切除的结节中，仍有 $20 \% \sim 10 \%$ 为良性。 ${ }^{15} \mathrm{~F}-\mathrm{FDG}$ 能理想地鉴列其良恶性（图14－1），据李家敏等人对肺部单发结节的半定算分析，肺癌明显摄取放射性，SLV 为 $3.72 \pm$ 2．23．良吽者为 0.92 ± 0.36 ，二者有明显差异。而 CT 仅对其中的 14 例作讨了开确定吽。综合国内外报道，恶性者平均 SL＇V 在 5．6～11．2，良性者在 $0.9 \sim 3.5$ 。恶性检忙率为 96% ，特异性 90% ，阳性预测值（positive predictive value．PPV）及阴性预测值（negative predictive value．NPV）可达 94% ， 100% ，优于 CT，穿刺检查，假阳性仅毕十活动吽肺结核，结节病，矽肺假瘤和某些真菌

图 14－1 ${ }^{14}$ F－FDG，PET 肺㿋品像

病。
纵隔淋已结肿大徒往可能是增生或炎症，Dil lemans 等人比较了 569 例菲小细胞肺掘（non－ small－cell lung carcinoma，NSCl，C）CT 与纵隔镜检查结果，发现纵隔镜诊断纵隔淋巳结转移的泍敏度，特异性及正确性虽比 CT 要高，但这种创伤性的分期仍使 5% 的患者遭受了不必要的工术。＂F。 FDG 泥像能更证挽地定性纵隔淋巴结转移。据李家敏等人报道， 9 例肺癌术前 PET 分期完全符合手术结果，麻CT，MR只有6例符合，在 11 例病人中PET 比（T 或 MR 罗发现厂 17 个转移灶。 Knopp 等地在 50 例肺癌分期中发现PET 正确性远高子 CT（ 96% 对 33% ）。NSCLC（有时可能仅向肾上腺转移，但NSCLC 病人单发肾，上腺结扗中。 53% 是肾上腺瘤胹非转移灶，${ }^{18}$ F－FDG亚像能成功地鉴别肾上腺结节性质。 ${ }^{18} \mathrm{~F}-\mathrm{FDG}$ 空性骨转移灶的正确性地高于常规骨显像。综会各家缩果。 ${ }^{18} \mathrm{~F}$－ FDG 在 NSCLC 的术前分期中。敏感性为 $82 \% \sim$ 100% ，特异性为 $73 \%-100 \%$ ，PPV，NPV 仿钓为 85% ， 81% 。

（二）消化道肿㿔

${ }^{18}$ F－FDG 对结直肠㿋的优势在于诊断复发及复发者的分期，前者灵敏度，特异性和正确性分别为 93% ， 97% 和 95%（CT 为 $60 \%, ~ 72 \%$ 和 65% ），对复发者分期灵敏度，特异性分别为 $93 \% \sim 100 \%$ 和 $67 \% \sim 98 \%{ }^{18}$ F－FDG 比其它常规检査所探测出更多的病灶。可墄少 10% 枋带有根治愿望的手术。由于辐射损伤和炎性反应，治疗后䃕期内病灶•×F－ FDG 摄取变化不能正确预测个体疗效，但魏 ${ }^{1 \times 5}$ F 5 －氟尿嘧啶检査可用于疗效评价。

正常胰腺很少摄取 ${ }^{13}$ F－FDG，轻度灶性集聚或 SUV $>1.53 \sim 2$ 即可诊断为學灶，阴性率，特异性：分別为 $92 \% \sim 95$ ！后， $82 \% \sim 90 \%$ 。
${ }^{2 \times}$ F－FDG 透于诊断转移性肝癌，达其病灶与正常肝组织对比随时间而加强，梥易识别，灵敏度，持异性分别为 $92 \% \sim 100 \%$ 和 $87 \% \sim 100 \%$ 。对絓直肠癌肝转移灶正确性可达 98% ，并能随访疗效。而近一半的肝细胞性肝癌（hepatoceliular carcino ma．HCC）难用对比方法识别，有人提出动态模犁分析有助于定性和预后。李家敏等人切发现转移性肝癌都阳性， HCC 则有 14% 接近或低于让常肝放射性。

（三）乳腺癌

故对乳房硅胶植人整形后戏组织致密，肿决穿则失败者有用，但其临床价值更在亏对转栘性淋巴结的探测，分期和疗效随访。腋淋巴结切除（axillary lymph node dissection，AI．ND）是－种提岗生存率的治疗方法，但鉴于腋淋巴结早期转移率并不高，目前开展的日的仅在于分㭌预展。而 ALND 可产生水肿，神经损伤，肩部功能失调等并发症，延长住院，麻醉和术后护理时间。如以最保守的NPV 92 \％来估算，若每探测出 2 例腋淋巴结受累者就有 23 例密者枉开一刀。Ader 等报道 ${ }^{3 \times}$ F－FDG 探测腋淋巴结转移的灵敏度，特景性分别为 90% 和 100% ，多和心研究结果 二者均为 96% ，如在正确分期的 I，II期患者中证实有同样的结果，则 VPV可达 90% 其至 95% 以上，由此 ${ }^{15}$ F－FDC；腋淋区结显像有助于避免侌目逃行ALND，其临休价值不言而喻。 ${ }^{\text {新 }} \mathrm{F}-\mathrm{FDC}$ ；探测内乳淋巴结的报道尚不多见，对远处转移灶探测灾敏度，特异性分别为 85° 。 ， 79% ，能反映疗效。

（四）淋巴瘤

淋巴瘤摄取 ${ }^{\text {棌 }} \mathrm{F}-\mathrm{FDG}$ 的量与组织学分级成正比，对活动抄病灶的诊断优于＂${ }^{\prime \prime} \mathrm{Ga}$ 。在霍奇金病 （Hodgkın＇s disease，HD）收通常可探知黑多的淋巴瘤病灶以改变分期。但保低分级的非霍奇金淋巴摩 （non Hodgkin＇s lymphoma．NHL）扣变䒜较大， ${ }^{18}$ F－FDG还可探测脾脏和消化道浸润，侣对骨䯘浸润帮助不大。

（五）䣕巢癌

${ }^{14}$ F－FDG 诊断卵巢癌的灵敏度，特异性，PPY和NPV 分别为 89% ， 92% ， 94% 和 85% 。同期（T分別为 72% ， 43% ， 64% 和 52% ，${ }^{i 5}$ F－FDC．诊断莓发的定敏度，特异性更高，可正确分期，避免不必要的第一一次掺査术（second ！aparotomy 或 second look）。
（六）黑色素罍
治疗前高度摄取 ${ }^{1 x}$ F－FDG，微小的皮肤病灶，浅表正棠大小的淋巴约转移和小至 0.5 cm 的腹部内脽转移灶均可被识別，准确性几乎 100% 。 － 1 cm 的肺涪病灶探测率则稍低。病灶放射性掇取的变化与治疗反应直接相关。

（七）其它蜰瘤

${ }^{2}$ F－F1）G能反映头，颈部癌症疗效，目诊断复

发的 FE确性高于解剖亚像（前者主敏度，特吕性分別为 $88 \%, 100 \%$ ，后 者 N．R，C T 合讴为 25% ，
比 ${ }^{1 / 1}$ I亚像发现更多的转移灶，摄取畳反比于 ${ }^{* \hat{1}} \mathrm{I}$ ，
阳姓病烟更具侵袭性，对 ${ }^{151} \mathrm{I}$ 治泞原不肘撤碘的阳性病灶商考虑其它治疗方法。 ${ }^{15} \mathrm{~F}-\mathrm{FJ}$ ）G 可显示不摄取县 ${ }^{16}$ I］闪位碘茉胍（ ${ }^{(31} 1$ metaiocobenzylguani dine，＇＂I－MIBG）的嗜铬细胞瘤和定性：肺癌患省的悩上腺肿块，后者SLV良性时在 $0.2 \sim 1.2$ ，恶悭
瘤．但诊断劣T．1．1 I－MIBG。胸腺㿇有浸润与非浸润型，一者值术中战病理上均难以辨认，但前者的生物学行为类似胸腺㿋，${ }^{12} \mathrm{~F}-\mathrm{FDG}$ 通过评分肿瘤的 SUV（恶性：7．15 ± 2.27 ，支性： 1.8 ± 1.21 ）定㤽诊断正确性达 91% 。同期 CT 的正确性仪 77% 。＂ F － FIDG 可定吽软组织肺瘤，DUR 21.6 时可被认为
对残留，复发和转移灶的诊断特別有出。骨骼肌肉
型无关。 ${ }^{18} \mathrm{~F}$－FDG还能检け 25% 名转移性肿癌患者的原发灶。

PET在脑瘤巾的成功碰用，详灾有关章弁。

第3节 各种肿瘤阳离子灌注显像

一，显 像 原 理

对心肌显像剂的研究，发现一些常成的阳案子灌注显像剂也是重要的肺㨨阳性显像剂，首先是轱

 P53）等。
${ }^{201} \mathrm{~T}$ ！的生物特性类似钾离子，在存活肿瘤组胞脱上 $\mathrm{Na}^{-\quad} \mathrm{K}^{-} \mathrm{ATP}$ 酶的主动转运下迸入细胞，根据摄取量可判断其代谢程度，间接定性肿瘤。

MIBI 为亲脂分子，所带的正电荷与带负吨荷的线䊉体内膜之㲂的电位美促使 VIIBI 过入细胞，其中 90% 进入线核体。临床上 些肿瘤集聚 MIBI的的间较短，推测是被主动转运系统清除所致。现已证明，一种与肿熘多药耐药性（multidrug resis
\tan , MDR ）右关，存在于细胞膜上的 P 糖蚛白（ P glycoproteitı，${ }^{2}-\mathrm{gp}$ ）能将 MIBI 主动清除出细胞。因此 MIB1 乍肿瘤内集聚取决于影响摄取与清除等多种因素，被摄取的意义同 ${ }^{2} \mathrm{Tl}$ ，被清除的速率可反映 MDR 现象。P53被肿瘤摄取的机制同 MIBI．断是 P－gp 的底物。

上述显像剂在版瘤内积聚的埑还均与成部血供有关。

二，显 像 制

$(-)^{201} \mathrm{TICl}$

为测速器生产的静脉注射液。物理半衰期 73小时，经胆道及泌尿系统排泄，正常人全身有效半衰期 2.3 天。一般用量 $111 \mathrm{MBq}(\mathrm{3m}(\mathrm{Ci})$ 。

（二）${ }^{99_{m}} \mathbf{T c}-M I B I$

标记过程需募沸，静脉泣射用量 $740 \sim$ $925 \mathrm{MBq}(20 \sim 25 \mathrm{mCi})$ ，排泄途径同上，胆嚢放射性峰时约在 60 分钟。轵射剂量低 $5^{2 \cdot 1} \mathrm{Ti}$ ，

（三）${ }^{99{ }^{5}} \mathbf{T c}$ TP53

为最近发展的膦配体一价阳离子化合物之一。静脉汸射用量和体刚却泄途柊闹 ${ }^{3 \mathrm{man}} \mathrm{Tc}$－MISI，但标记简单，肺，肝放射性清除迅速，约 15 分钟胆䪄即达峰时，辌射剂量低。

上述各药时静脉给药时，为避免大血管放射性对腋窝，锁骨上下，肺和乳腺的上部等病灶的十扰，宜在健侧注射，并用 20 ml 生理盐水进－－步沖洗。

三，显像方法

（一）基本方法

病人九须特殊准备。一般在注射 $\sqrt{6} 5 \sim 15$ 分钟止行早期显像， $2 \sim 3$ 小时后做延迟观察，采集能窗和准直器的选择见心肌显像章节。病灶较深或较小时，两时相均应加做断层显像。前位或后位视野均成包括健侧，淋已引流区弛应纳入有关视野。血流动态采集或 ${ }^{9 \% n n}$ Tc MIBI 等与 ${ }^{2017} \mathrm{Tl}$ 的对比显像可能对 MDR 研究有非助。

（二）乳腺肿瘤定性显像

gy Cc－MII3I 乳腺显像技术已非常戊熟，一般只进行平面静态显像，注射店 $2 \sim 3$ 分饤内即可采集。先让患者俯卧在特殊的检查会（或休）上（图 112），两乳房下垂在台两侧，中间有放射性屏蔽。

探头尽量贴近乳房外侧面，进行两个側住的采集。然后取仰陙位，双隼上举进行前位采集（此时肺部本底减退）。最后，置－•放㞦性点源在乳头或肿块表面的中心进行平面采集，对打诊阴愹们乍所性摄取的病灶。应在皮肤表面留下标记便于超卢或穿刺

图•1－2 乳腺显像的检出装置

（三）乳腺礐＂前哨淋巴结＂定位显像

手术前于乳癌病灶彫围皮下注人放射性胶体
宜） $10 \mathrm{Mlbq} / 0.4 \mathrm{ml}$ ， 30 分钟层用特制的 γ 探测器 （gamma－detecting probe．GDP）检测腋下．न＇收肤准确标记并取出淋巴链的第一站即出现的第一只淋山结或放射性最高处之淋巴结，这病理检查有无肿瘤侵犯，决定手术范用。成功关键在子药物粒径大小合适，注射部位与技术及掌握检测时间并准确迠位 SN 。

四，显像分析

1．正常图像：心肌，旰胆，涎腺，思状腺，肠道，肾及膀胱均有正常放射性分尔，详见行火章予。高放射性流经区域，粘附在大延管 L的放射性可以造成条索状或局灶性浓集，应注意与病灶区别。

2．异常图像：肿瘤部位有放射性浓集，可根据半定量指标 T, NT 比值，清除弯（washous rate， $\mathrm{WR} \%$ ）和储留指数（retention index．RI）政肉睹分

级．灲断是㱐存在病灶或病灶是否阳性。通常 I NT比值任乳腺显像け요1．1～1． 6 ，眠部昆像 $\because 1.31$ 肘被认为限性．R1 正值符合悪怍：乳腺显像时除厂㷋性敀癌，弥漫性单侧域双侧摄職应视为阴性：

现价认为。本类显像的早期相表坝的血供，代谢，良恶性和疗效有关，${ }^{\circ} \mathrm{Tl}$ 的延迟怛衣现有助
现则可能与 MDR 关系更为密切。

五，临 床 应 用

级，分期和某些肿瘤的辅助定伍，疗效分析。近来

（一）肿瘤多药耐药性研究

MIDR 是化疗的主要璩障，表现为一些未治的小细胞肺癌和结肠㿋等有大然的抗药表型（ress：t－ ant phenotype），另一些肿瘤如浸斑性乳癌和卵巢㿋等在部分化疗药的诱臤下゙可从初步有效转为近平：全面耐药。MDR产生原因之一是MDR1基因和条药耐药相关疋白（multidrug resistancerassociated protein．MRP）基时表达物 $\mathrm{P}-\mathrm{gp}$ 和 MRP 将细胞毒性药物快速清除。因此，人们希望道过调节剂 （modulator）逆转 P－gp 等物质的解毒功能，㓦弱肿瘤细胞耐药性，叒终提高化疗效果。 $\mathrm{P}-\mathrm{gp}$ 存在一于各种类型的肿瘁和一些正常细胞胞㷬 $上$ ，在有 MDR 活性的肿癌细胞膜 1 位往表达较多。侣什急性：全䯣细胞白血病的细胞株中。发现末成熟细胞表达的 Pgp点少侏转运力强，成熟细胞 P－g．虽考加功能差。欭此，研究 P－gp等物质被表达的质与些，何重要的㩊述意义。

测定 P－gp表达含等的为法主要有蛋的质水聚的免疫组化染色和mRNA 翻译水平的多聚酸链反应（polymerase chain reaction．PCR）。除分别有抗 P－gp 抗体厓量和柞肿瘤细胞MDR1 下就的影响外。均自取材和䏲㿉细胞非均—吽（heterogerneity）的问题。1993年以来，人们发现M1BI，P53及其衍生物 Furifosmin 等化合物都是 P－gp 和 MRP 的转达底物，研究证实MIBI等异」基芳香环类化合物被 ［＇g！识制的基团是押氧基。因此，这些药物的显像结果。不仪反映肿瘤病灶 P－gp 的整体分弯含量。

更可能预示 P－gp 的功能，现在，${ }^{9}{ }^{2} \mathrm{~m}$ Tc－MIBI 已在荷人乳腺癌的小鼠中成功地成于 P－gp－MDR 的功能显像，在人体内进行肿瘤 MDR 的研究地目益增多。

北京肿瘤医院通过对71例III～TV期肺癌患者 ${ }^{\text {M } y_{n}} \mathrm{~T}_{\mathrm{c}}$－MIBI 双时相 SPECT 显像，以蝔断面上原发病灶储留指数 <0 为 $\mathrm{P}-\mathrm{gp}$ 阳性，发现 82.9%（ 29 ； 35）的阳性者化疗结果为无效， $66.7 \%(24 / 36)$ 的阴性者化疗有效，认为该显像可有效补允 P－gp 定性检查，有助于个体化化疗。国外有作者在 46 例未
除率与 P－gp 表达的关系，发现早期相（30 分钟） SPECT 像的 T／NT比值与 P－gp 表达呈负相关，在剔除坏死病例且免疫组化法 P－gp 吅性率为 45%情况下，发现 3 小时的每小时清除㿉与 P－gp 表达无关。也有作者在 30 例恶性骨软组织肿瘤中探讨了 ${ }^{99_{m}} \mathrm{Tc}$－MIBI 灌注指数，T／NT比值，清除率与免疫组化法 P－gp 表达的关系，在早期相（ 15 分钟）显像阳性率为 80% ，免疫组化法 P－gp 阳性率为 73% 情况下，发现灌注指数和早期摄取与 P－gp 表达无关，但 3 小时的每小时清除率在 P－gp 显若表达者中为 $66 \% \pm 25 \%$ ，无显著表达者中为 $29 \% \pm$ $18 \%, \mathrm{P}<0.001$ ，认为只有清除率有助于评价 $\mathrm{P}-$ gp 过度表达及其功能。

除了 P－gp 和 MRP 的清除机制外，依赖谷胱甘肽（glutathione，GSH）的生物转化酶如谷胱甘肽转硫酶（glutathione S－transferase，（rST）和谷胱甘肽过氧化物酶等对化疗药的不活解毒作用加强出是 MDR 的重要原因。其け GST 催化亲电子，琉水化合物联接到 GSH，然怎被MRP转运出胞外。体外实验发现丁硫䂗亚胺（buthionine sulfoximinc。 BSO）可通过消耗细胞内 GSH 减弱了这些酶的作：用，导致 ${ }^{94 m} \mathrm{Tc}$－MIBI 在肿瘤细胞内集聚增加。因此 ${ }^{69 n}$ Tc－MIBI 显像将有助于评价 BSO，异搏定等化疗增敏现象。

（ニ）乳腺䑁

X 线乳腺䯅片沴断乳腺癌灵敏度有 70%～ 90% ，且价格低廉，但特异性く 40% ，阳性预测值仅在 $10 \% \sim 50 \%$ ，不足之处表现在：（1）难于发现和定性年轻女性致密乳房，结构不良以及穿刺或感染后存在疫痕时致房内病灶；（2）不能用于携带乳癌基因，有强烈乳癌家族史，乳腺穿刺曾有过度增生

表现，有乳房大块切除加放疗或因其它肿瘤放疗使乳腺逪到鎘射的高危病人的篣检，随访；（3）不能评价炎性乳癌的化疗反应；（4）不能随访术后残留乳房；（5）与超声，CT 和 MR一样，不能有效探测腋淋巴结转移。

乳腺显像（图 14－3）可有效补充 X 线乳腺摄片和其它检查手段的不足，山对乳腺辐射剂量小，已被公认在提高乳癌诊断特异性，政善灵敏度方面起到极其重要的作用。适应证为：（I）X线乳腺摄片及超声等检查结果不能确定时的肿块定性：（2）高危人群的乳㿋筛检；（3）乳癌辅助分期。目前主要应用 ${ }^{14 \mathrm{~mm}} \mathrm{Tc}$－MIBI，影响其灭敏度，特异性的因素有病人选榉，吅性标准，采集技术，拍片技术及读片经验等的差异。在采集技术方面，俯卧位侧位采集可使乳房深部病灶与胸壁分离，可减少心，肝放射性干扰，前斜位采集有助于近中线病灶的显示，增加断层采集可改善原发灶和腋淋巴结转移的诊断，但计数不足时灵敏度和特异性反不如平面显像。现在公认，MIBI 显像乳癌诊断灵敏度在 $83 \% \sim 95 \%$ ，特异性在 $83 \% \sim 98 \%$ ，准确性约 92% ．PPV $88 \% \sim$ 92% ，最小可测肿块为 7 mm ，能检出 54.2%（ 13 24）术及肿块的早期乳腺癌患者。

图 14－3 Fsm Tc－MIBI 乳腹显像
乳腺显像还可用于疗效观察，国外有人在局部浸润性乳癌患者中测定 P－gp 的同时，对术前肿瘤新辅佐化疗（presurgical neoadjuvant chemothera－ py，PSNC）的评价方法作了比较，以 PSNC 后癌灶完全被纤维组织替代或很少见到癌细胞作为有反应的组织学标准，将放射性摄取转阴作为 ${ }^{1511 " T c-M 1 B I}$

显像有反应，将肿块消失或明显缩小作为临床和钿轭摄片有反府，发现员敏度分别为 65% ， 35% ， 69% ，特异性分别为 $100 \%, ~ 67 \%, ~ 33 \%$ ，指俗 ${ }^{99}{ }^{9} \mathrm{Tc}$－MIBI 显像判断PSNC疗效优于临床评价，在有反应的患者中优于钿靶摄片法。

近年 ${ }^{99 \mathrm{~m}} \mathrm{Tc}-\mathrm{P} 53$ 书于乳腺显像者增多。对原发灶诊断灵敏度，特异性，准确性分别为 93% ， 100% ， 34% ，对腋淋巴结转移检出灵敏度，特异性，准确性分别为 $60 \%, ~ 100 \%, ~ 76 \%$ 。认为因肝，肺放射性清除快而对原发灶显示优于 MIBI，但对腋淋巴结转移捡出比 MIBI 屰。

乳腺㿋是有序，有规律地经淋巴结扩散，第一个有可能被蔓延的淋 巴结即为＂前哨淋巴结＂ （SN）。术中定位取下淋巴结活检可发现微小转移灶，以确定手术范围。Concetta 等报告 382 例乳腺癌患者中 377 例检出 SN ，定位准确率为 98.7% 。 GDP 法与染色法比较 S．V 定位，前者 54,54 （ 100% ），后者 37 ； 54 （ 68.5% ）。Edwin 等报估吅性的＂前哨淋巴结＂中 45% 是直径 $<2 \mathrm{~mm}$ 微小转移灶。底用该技术既可保证手术的彻底性，又照顾到现代人们所要求的生㳭质量。

（三）甲状㟫肿瘤

由于 ${ }^{201} \mathrm{Tl}$ 和 ${ }^{9 " 7} \mathrm{Tc}$－MIBI 被甲状腺摄取的机制不同于 ${ }^{13 i} \mathrm{I}$ 和过嚼酸（ $\left.{ }^{99 \mathrm{~m}} \mathrm{Tc}()_{4}\right)$ ，故被碘饱和或受过量甲状腺素抑制的甲状腺组织，治疗前琙后，摄碘能力低下的分化或未分化癌，都可被良好显示。 ${ }^{201} \mathrm{Tl}$ 和 ${ }^{4 y_{\mathrm{m}}} \mathrm{Tc}-\mathrm{MIBI}$ 能显示囊肿以外的备种甲状腺良恶性肿瘤，因此无特异性，但对同的伴有甲状腺外异常摄取者，可考虑恶性，转移。术后甲状腺以域肿块有放射性而＂的 TcO_{4} 显像为＂冷＂结节者可考虑为复发，若亦摄取 ${ }^{29 m} \mathrm{TcO}_{4}$ 则多为术后增生。甲状腺髓样癌病灶阳性率很臽，可有效补充 ${ }^{(90)} \mathrm{Tc}$ （V）DMSA 检查（图 14－4）。对于 ${ }^{3} \mathrm{Bmm}_{\mathrm{Tc}}^{4}$ 亚像中的＂热＂结节，${ }^{201} \mathrm{TI}$ 或 ${ }^{99 m} \mathrm{Tc} \cdot \mathrm{MIBI}$ 可替代 TSH 兴奋试验，显示出正常组织，除外先天性异常，昭确功能自主性腺瘤。胸骨后甲状腺肿块的摄铸或摄碘功能变异较大。单纯用 ${ }^{19912} \mathrm{TcO}_{4}$ 显像可因肿块不摄取或部分摄取放射性而难以确足来源，${ }^{201} \mathrm{Tl}$ 和 ${ }^{99} 9_{m} \mathrm{Tc}$－MIBI 则不论是否恶变，常可高度完整昆示其形态，当放射性与甲状腺相连时可确认为甲状腺来源。

国外有人存：114例分化型甲状腺癌术后庄旋甲

状腺素抑制治疗期间进行 ${ }^{49 m} \mathrm{Tc}$－ P 53 全身显像随访。发现？例局部复发芥均能明显阳性显小。在 17 例 44 处各种部位转移灶中，碘摄取䦻性者均阳性 （21／21），碘摄取阴性者中 74 名（ $17: 23$ ）为阳性。其中 4 例为弥漫性肺转移磌摄取阴性者。

（四）肺癌

肺癌 ${ }^{49 \mathrm{r}} \mathrm{Tc}_{\mathrm{C}}-\mathrm{MlBI}$ 摄取分数，肿癌，本底（ T B）比值及储留指数在延迟相与良性病变有显著差异。如将延迟相摄取分数与储留指数相结合可提高诊断特异性，与同期胸片，CT，纤维支气管镜检杳比较，灾敏度高达 93% ，有人对 25 例小细胞肺癌的化疗效果与 ${ }^{\circ}{ }^{9} \mathrm{~m} \mathrm{Tc}$－MIBI 摄取程度作了比较。发现有效者古期及延迟相T／NT比值明显宫于无效者。认为摄取高者对化疗敏感，但过有个体差异。 ${ }^{n i m} \mathrm{Tc}$－MIBI 对肺嵒纵隔转移的诊断优 $\mathrm{J}^{\mathrm{ovm}} \mathrm{Tc}(\mathrm{V})$－ DMSA。另据对 152 例做过 ${ }^{2 n 1}$ Tl SPECT 显像的原发性肺癌患者随访结果分析，治疗前耽瘤摄取比值 $\leqslant 2.5$ 者平均生存时问为 8 周，>2. 之者为 33 夙。二者有显苦吽差异。比值与原发肿瘤的分级也显著相关，在众多预后因素巾可作为客观独立分析指标，而间肿瘤分级无独立的预后判断价值，${ }^{99 \mathrm{~mm}} \mathrm{Tc}_{\mathrm{c}}$ P53 在肺癌病例中也有应用，与同期 46 例 ${ }^{2011} \mathrm{Tl}$ 相比，总病灶检出灵般度分別为 $89.1 \%, ~ 95.7^{3} 3$ 。认为摄取比值之差异对区別肺癌组织学类型有参考价值。
（五）其它肿瘤
可辅助定性脑瘤，分级，评估疗效，诊断残留或复发，可定性定位甲状旁腺肿痹和恶吽软组织肿㾗，辅助定位多发性骨笼瘤病灶，详见有关章节。此外，有人尝试用 ${ }^{49 m} \mathrm{Tc}$－MIBI 和 ${ }^{3 \nu 1} \mathrm{~T} 1$ 随访鼻咽癌。

并柇MR相比，治高客 3 个月为沴断残留准确性分别为 89% ， 72% 和 $38 \% / 5 \mathrm{PPV}$ 为 $7.3 \%, ~ 37.5 \%$和 37.5% 。

第4节 ${ }^{67} \mathrm{Ga}$ 肿痹显像

一，显像原理

＂（Ga 䄪生物特性类似 Fc^{31} 。静脉注射后主要 ${ }^{1}$ 可血浆中的输铁蛋向及铁贫由，乳铁蛋I＇结合，经转铁蛋它受体作用进入细胞。 ${ }^{57}$ Ga 在肿瘤部位浓集与病灶血供增加，血管渗透恃增强，由细胞趋化，组织 pH 值降低，细胞增殖快和分化辇有关。位瘤细胞内主要沉积于胞浆淿醇体巾。

二，显 像 剂

静脉注射液．半衰期 78.1 小屿．发射念种 γ 射线。常用坒为 $131 \sim 18: 5 \mathrm{MHSq}(3 \sim 5 \mathrm{mC}$ i $)$ ，有条件者宜达 $370 \mathrm{MBq}(10 \mathrm{mCi})$ 。

三，显像方法

一般于注射后 $48 \sim 72$ 小时进行平面静态显像，大剂照给药后听延迟到第7天显像。准直器选中能或宂能平行孔型，采集 $93, ~ 185$ 和 300 keV －个个能峰，窗宽 $10 \% \sim 20 \%$ 。显像包括患部前位和后位，必安时加侧位或斜位以避免病灶与㿂痕等重叠。对深部病变进行断会采集是当今＂Ga 間用的其础。要求计算机能处理多能峰采集结果，芕虑有感染或炎症可能时，则应在 $6 \sim 8$ 小时提前显像一次。寻找肿瘜涼发或转移灶时，可先作全身显像，然后对可疑部位重点检查。

患者注射前寀停用铁例剂—周，6～8小时后至一洼内的腹部检查前应清沾肠道，有困难时可进食粗纤维食物增加肠嚯动。

四，显像分析

1．正常图像：${ }^{67} \mathrm{Ga}$ 主要经胆汁，對及怺排出，少量经汗液分泌，致相应部位有放射性分有•其中肾脏仅化 24 小时内较明显，肠道放射性在 $6 \sim 8$ 小时厉明駐增加亣随时间句肠末端移动。铁的储存场所朋和脾放射性分布始终较叫显，后期持骼，铁的

利用场所骨骨遀和低龄人的骨骻区放射性形态较清唽。畠窓有较多放射性，睡液腺，泪腺可有轻度摄取。汗腺分泌可导致腋下轻度放射吽分布，女性川贮乳房显影，手术瘏痕利放疗后的局部组织摄取增加。

2．异常图像：肿块或全身其它部位包括骨骼放射性同灶性增强。肠近以域固定的放射性㳖集，脾脏放射性高于肝这，肺部放射性弥漫性增强，单侧或双则肾脏放射吽增强持续 48 小时，双侧乳房过度浓聚等均应视作异常。

五，临 床 应 用

立要用于淋巴瘤病例，对肺癌辅助诊断和分期，恶吽：黑色采瘤辅助分期，术府随汸．恶性胸膜间皮瘤，朋癌辅助诊断，骨䯘病变辅助定抄，肿瘤与结点病辅助鉴別等也有里要价值。

（一）淋巴瘤

适应证为：（1）治将前观察肿液是垈亲和 ${ }^{\circ} \mathrm{Ga}$ 。辅助分期；宁治疗中，早期预测治疗反应，优化个体化店方案；（3）治疗府评价治疗反应，诊断残留： （4）辅助随访，诊断复发。
＂${ }^{\prime}$ Ga 探测 HD 的灵敏度，特异性均达 90% 。在 NHJ ，则变异较大。 ${ }^{6}$ Ga 可为为效监测与随访提供独特的信息，治疗前应常规进行基本显像。以柱
随访，治疗期间放射州接取较前减少时。不论肿决是查缩小，都表明瘤细胞活性减退，治疗正确，预后良好。临床完全缓解底，50 $5 / 3$ 以上䖝部侑有残留肿块。若跕像为阴性，表明为纤维化和坏死组织。确实为灾全缓解，H平均存活期比不转阴者长一倍以上；若仍有摄取，提示含有存活瘤组织（图 14－ 5），预示复发可能，亚改变治疗方案。 ${ }^{3 i}$ Ga显像叮进一步评价第二线化疗，膏髓移植等疗效：

完全缓解后再度出现非特异性的全身䊀状时，全身 ${ }^{67} \mathrm{Ga}$ 显像可了解有无复发，涊敏度 95° 尔，特吕性 89% 。可在无症状情况下早于（T一个月发规 Icm 的病対。转阴者病灶再次浓聚放射性，儿乎叮以肯定是复发，特异性明显高于 CT，

青少年放，化疗对生长发育影响很大，＂Ga显像可作为重要的辅助分期于段协助制定正确的治疗方案；刏放射性高于肝脏的脾脏，不管大小是否正常，应考虑有脾浸润。儿童 Bu：kitt s淋巴瘤的原发及转移灶探测，随汾疗效及诊断复发的准确性
\qquad
\qquad
低肝癌诊断的假阴性率。准确性提高至 $95^{\circ \%}$ ，恶性黑色素瘤（图 14－7）高度亲㕲＂${ }^{\circ} \mathrm{Ga}$ ，诊断特异性可达 98% ，但病灶阳性率与大小，部位有关，$>2 \mathrm{~cm}$者 75% ，＜ 2 cm 者仅 11% ，骨转移灶可达 $100^{\circ} \%$ 。胃肠道，肾及肾上腺等处转移灶则仅 45% ，但大剂量加断层显像阳性率可提高到 $82^{c} \mathrm{c}$ 。 有助于分期和术后随访。多发性骨髓瘤阳性率 $52^{\circ} 0^{\circ} \sim 56^{\circ}$ ，病灶探测率更低，仅 $31 \% \sim 40 \%$ ，但可用于除外骨转移性病变和了解预店。＂${ }^{\circ n} \mathrm{Tc}$－MDP 骨显像中仅见边缘增强的病灶如有填充时多考虑为骨髓瘫，病灶阳性率和摄取程度越高，预后越差。

袮复

posct

图 14－7 $\because G a$ 黑色萦痛显像

第5节 ${ }^{99 m} T c(V)$－DMSA 肿瘤显像

一，显像原理

五价锝［ $\left.{ }^{9 y_{n n}} \mathrm{~T}_{\mathrm{c}}\right]$ 二．巯基 J^{*}－酸（Pentavalent technctium－${ }^{99_{m m}}$ dimercaptosuccinic acid，${ }^{\text {wn }} \mathrm{Tc}$（V）－ DMSA）是一种不同于肾皮质显像剂 ${ }^{\omega_{n}} \mathrm{Tc}$－DMSAA的新型肿瘤显像剂，有三种几何异构体。被肿瘤细胞浓集的确切机制尚不清楚，可能与到达肿瘤细胞后发生水解反应，产生磷酸根 $\left(\mathrm{PO}_{1}{ }^{3-}\right)$ 样的锝酸根 （ Tc()$^{3-}$ ）参与细胞磷酸代谢有关。

二，显 像 剂

${ }^{964 n} \mathrm{Tc}(\mathrm{V}) \mathrm{DMSA}$ 除由商品药盒获得外．将碱化后的 ${ }^{464} \mathrm{TcO}_{2}$ 注人肾皮质显像剂药盒业锡二巯基
J^{-}一酸钠中出也可制备成功。肺量 $710 \sim 925 \mathrm{MB4}$ （20）$\sim 25 \mathrm{~m} \mathrm{C}^{\circ}$ ）次，经肾排泄。

三，显 像 方 法

吋患部（包括对侧正常部位）局部静态显像，必要时断层采集；如有间归摄取高加做远处静态业像或企身前，后俘显像：如有呵静， 24 小时后的部复查，汗射前无管任何准备，检查前排氺：

四，显像分析

1．正常图像：膀腅以外备屿相巾肾腑放的吽：最岁。脑交质，腮檫，甲状腺无放射性抆取，伸昛有泪腺摄取，鼻唡部放射性较虽；胸部有心血池影，年轻人肋软管䍀合部放射性摄收明出，女性双侧乳腺有片状摄取：腹部肝区放射性稍育，有大向管影；四股叮辨大血管及尽管，大关笛附近放射性较强；晚期可排胸尙及肋，泎校等的骼，放疗闪域和手术矪痕部位何见轻度放射性：摄収。

2．异常图像：肿块或全身其它部们放射州分布有高士邻近或对侧相监区域者，骨骼放射吽分布有叶性降低者。

五，临 床 应 用

（一）甲状腺䯕样癌

甲状腺肿瘤叶惟有分化好，能大量释效降现素的币状腺髓样癌（medullary thyroid carcinoma． MTC）能朋报浓集放射性（图14－8）。其诊断灵䑤度

大于 80% 。特异吽叮边 100% 病灶探测率 65
以上，收疗及手术后的病灶放射性可减退。诊断员结合血清降行素。 MTC 患者如见下颈部淋凹结转移表规，者考虑上纵隔探杏，清扫：术后见局部或邻近部位，上纵隔们有局灶吽放射性异常浓聚。可诊断为残留，复发或转移，但如见于锁骨，胸，肋骨手术断端部位，应首先芕虑为创伤所致。

（二）软组织肿瘤

突性纤维瘤也可灾度摄取＂＂＂Ic（V）DMS．1，其阴性摂与血供有一－定的关系。疋敏度 $90^{\circ}, ~-1001$ 。特异性 719 ～ 78% 。准确性约 78% 。其中滑涘纳瘤，血管闪癌，成骨闪瘤等原发及转移灴阴生率凡乎100访（图 14－9）。手术后局部，邻近或近端明显六常浓宝，可沴断残留，复发或转移，腹部肿垬高度拔取放射性可考虑腹膜后恶性软组织肿瘟，个別良性肿瘤如胶泉纤维瘤也可明鼠摄取放射性，对决定下术范围有帮助。对其它恶吽肿溜患考，如见软组织内有异常放射性浓繁。可考虑为软组织内转移或沒湖（相 1110）。

（三）其它
头颈部原发性鳞癌及淋巴结转移性肿㾞灾敏度分別㞴达 8.3% ， 92% ，特异性 $75^{\prime} \mathrm{i}$ ， 1000^{\prime} ，肺部周誠型肺块若有放射性摄取。可考否恶性 对转移
于＂Tc－MDP 骨显像。可达 100 ．．有利于病灶足

图 14－10 ${ }^{20 \mathrm{man}} \mathrm{Tc}$（V）－DMSA 恶性软组织得瘤显像
性。对脑瘤的定性和分级诊断有一定的临床价值，检出率为 93.2% 。延迟摄取比值，滞留比值和指数在2级星形细胞痹，脑膜瘤和神经鞘瘤等良性瘤中较低，在业性胶质瘤， 3 级星形细胞瘤和转移性脑瘤等恶性痛中较高，二者有显著性差异：同㥍 ${ }^{201} \mathrm{~T} 1$ 检出率为 88.1% ，图像㕆量欠佳。

第6节 肿瘤放射免疫显像

一，显 像 原 理

利用抗原抗体特异性结合的原理，将放射性核素标记的肿瘤抗体注人体内，定問地与肿瘤细胞上的抗原结合，从而在肿瘤病灶内形成放射性浓集。由于获得的抗体通常针对肿瘤相关抗原，故标记抗体在体内可有一定的交叉结合。

二，显 像 跍

放免显像剂的优劣主要取决于抗体的性质，核素种类和产物的质量。完整抗体的分子量大，肿痛内渗透力差，短时间浓集少。分布不均，血液内清除慢，本底高，最佳显像时间长。月前常用的单克隆抗体片段（Fab或 $\mathrm{F}\left(\mathrm{ab}^{\prime}\right)_{2}$ ）可减少上述不足，但血中半堿期仍要比让在研究中的分子量更小的单链抗体结合蛋白（single－chain Fv，ScFv）长。ScFv

是由重链可变区与轻链可变区连接起来的多肽链．肿瘤穿透力大于抗体片段。如果将二个 ScFv 经一个连接肽相连，可组成亲和力更高的双价微型抗体。人－巤嵌合抗体已试用于临床，可明显减少人抗鼠抗体（human anti－mouse antibody，HAMA）的产生，但仍为完整的抗体分子，且在血循环中时间更长，可能更适用于需要反复使用的放免治疗。用于标记的放射性核素主要有 ${ }^{: 31} \mathrm{I}, ~{ }^{123} \mathrm{I}, ~{ }^{111} \mathrm{In}$ 和 ${ }^{9 \mathrm{~mm}} \mathrm{Tc}$ ，前二者标记物在体内的脱碘现象降低了肿瘤放射性强度，其中 ${ }^{331}$ I 能量过高，显像质量差。 ${ }^{111} \mathrm{In}$ 和 ${ }^{99 m} \mathrm{Tc}$ 可标记药盒化抗体，适用于普通医院。但 ${ }^{11}$ ． In 价格较贵，${ }^{49 m} \mathrm{Tc}$ 半衰期很短。对血中半减期要求更高。国外已有人用 ${ }^{124} \mathrm{I}, ~{ }^{61} \mathrm{Cu}$ 标记，进行 PET 放免显像。

临床上，${ }^{131} 1, ~{ }^{123} \mathrm{I}$ 或 ${ }^{114} \ln$ 标记物的放射性剂量一般为 $185 \sim 370 \mathrm{MBq}(5 \sim 10 \mathrm{mCi})$ 。 ${ }^{{ }^{44_{\mathrm{m}}} \mathrm{Tc} \text { 标记物 }}$为 $740 \sim 1110 \mathrm{MBq}(20 \sim 30 \mathrm{mCi})$ ，抗体用量 $0.5 \sim$ 40 mg ，可经静脉，体腔内，动脉插管，皮下及内腔镜粘膜下局部给药。

三，显 像 方 法

静脉给药时，${ }^{131}$ I，${ }^{11}$ In 标记完整抗体者 72～ 96 小时显像，标记抗体片段者提前 $1 \sim 2$ 天显像： ${ }^{: 23} \mathrm{I}, ~{ }^{99 \mathrm{~m}} \mathrm{Tc}$ 标记完整抗体或抗体片段时．给药后 $6 \sim 24$ 小时显像。至少应在早期对患部或疑有复发或转移处作一次前，后位显像。常需加做断层显像，然后在晚期复查一次。利用双核素检查技术扣除本底或用生物素－亲和素预定位技术可提高对比度，增加阳性率。

注意事项：（1）有过敏史或皮试阳性者忌做本检查；（2）${ }^{131}$ I标记抗体注射前应口服复方碘液保护甲状腺；（3）${ }^{9995} \mathrm{Tc}$ 标记物可用过氯酸钾封闭甲状腺。

四，显像分析

龸期心血池，大血管放射性较高．${ }^{111}$ In 标记抗体时肝，脾放射性摄取较多，片段应用时肾脏放射性较早出现高峰，${ }^{123}$ I 或 ${ }^{131}$ I 标记物可 计现甲状腺及胃肠道放射性。阳性表现同其它肿瘤显像，主要为病灶放射性异常浓集，扣除正常组织放射性后的异常显示，放射性滞留时间延长等。

五，临床应用

肿瘤放免显像（radioimmunoimaging，RII）对早
\qquad
\qquad
\qquad

期定性一手空位肿瘤原发和转移灶，观测高效，诊断残留或复发以及䛈定放免治疗有很大帮助。 等抗原抗体结合为特异忙，实际分析时应步点肿瘤lill供，生长波位，大小，活性，非特异性结合及技术伪像等影垧因系。

卵巢癌在腑术确诊时多处于广山，晩期，各种常规检查的使用和手术，放化疗的改进及染合应間。仍难根本吽改变其预后，RII吅肝对其作出古期骖断，随访以放善预后：抗刎巢奨 PLAP 的单抗 H17E2，I1317吅相摔可达 95% ，抗 IAG72表面抗原的单抗 B72．3则可显示多数卵巢㿋，自们代间皮细胞发生父叉结合。开（巨A少抗进行盆腔 RII，馿巢癌定性准确率可达 95% 。叮发现 1 cm 以下的卵巢癌或大肠癌转移叶，可鉴別复发与纤维瘢
可用于胃癌，肺癌，甲状腺髓样癌转移灶的正性惩位。用 ${ }^{[\prime \prime} T \mathrm{C}$ 㭂记抗人大细胞肺婂单抗 2 E 3 珍䉼肺

1 混合后可达 87% ，准确性高于同期支气管镜活检，腅细胞学检査（分別为 $81 \%, ~ 7.3^{3}$ 和 47^{c}－ ） ${ }^{13}$ I－SZ39 对脑胶质瘤诊断吕敏度，特异性分別为 95% ， 80% 。 ${ }^{133}$ I－抗胃癌单抗 3 Hll ， 369 及其古段对胃癌敏感性 84.5% ，与术后病理比较，转移叶探测率，侍异性及符合率分别为 81 云， 97.3^{\prime} 。及 91.5% 。 ${ }^{\%} \mathrm{Tc}-3 \mathrm{H} 11$ 切能理想定性，定位，能检出 1 cm 的腹主动脉忞转移淋巴结。椣 $\left[{ }^{\text {¹ }} 1\right]$ 生物素化抗肿瘤细胞核人鼠嵌合单抗 ${ }^{133} \mathrm{I}$ IhTNT bio （in）能与肿痛变性，妼死细胞核抗弶年固络合，可显示各种伴有坏死的肿瘤病灶（图11．11）。

第7节 放射性核素标记抗肿瘤药物显像

一，显 像 原 理

抗肿瘤药物的作用机制有多种，用进入肿瘤细胞核，主要影响 IDNA 分子的复制或力能的约物标以放射吽核素，就而以定位肿瘤。抗肿熘约物行细胞周期特异性和非特异性两大类。肿瘤细胞群有增殖细胞（处于（ B$], ~ \mathrm{~S}, ~ \mathrm{G}$－或 M期），非增殖细胞（ $G 0$ 期）和不增殖能力沺胞－种。选用细胞周期非特异性类药物讨．它不仅作用于增殖细胞样的备期，还可作用于非增殖细胞群，可提宫显像吅性率。

二，显 像 剂

效成分 F 阴敏素（pingyangrmycin．PYM．国外制剂称 peplomycin，PPM）。均属细胞周期非特异性类药物。 4 药盒化的 ${ }^{4 \pi}$ TcPPM 用步为 740 $1: 10 \mathrm{MBq}(20 \sim 30 \mathrm{mCi}): 0.5 \sim 2 \mathrm{mg}$ ．次．静脉注射 2小时后经肾排泄＞－50\％。

三，显像方法

以 ${ }^{4 \mathrm{~mm}} \mathrm{Tc}$－PYM 或 PPM 为例：患者在注射前 30分钟官空腹服用过氯酸钾 100 mg 以封闭甲状腺。注射后 30 分钟和 3 小时各进行一次患部前，后位平而静态显像，必要时加侧位，断层或延迟观察。能峰，窗宽，准直器可常规 ${ }^{\text {品 }} \mathrm{Tc}$ 点像。然后同前

所述计算肿瘤储留指数。

四，显 像 分 析

${ }^{99 m} T c-P Y M$ 或 PPM 主要经肾脏排泄；头面部见鼻系放射性较高，脑实质不摄取；肺部本底高于腹部，心影不清：肝，脾高度显影；脊杜微弱显示；四肢长骨几乎不摄取放射性，肌肉则较强。肺部等恶性占位性病变呈局灶性放射性浓集并随时间延长而加强。

五，临 床 应 用

国内最早将 ${ }^{9}{ }^{9 m} \mathrm{Tc}$－PYM 试用于肺部肿块诊断，据报道，在 96 例 106 次显像中无一副反应发生。肺癌病灶储留指数平均可达 12.0 ± 8.5 ，而良性病变为 -17.8 ± 5.9 。若以晚期摄取比值 1.21 或储留指数 3.48 为良恶性病变判断标准。灵敏度，特异性和准确性分别为 92% ， 80% ， 90% 或 92% ， 100% ， 93.3% ，临床符合率优于同期纤维支气管镜，CT 和 MR 检查。放射性摄取程度与组织学类型无阴显相关性，但在非小细胞性肺癌中与分化程度有关，对预后分析有一定的帮助。放化疗后，肿瘤部位放射性强度与疗效有关。助据报道，如以储留指数 2.21为良恶性病变判断标准，${ }^{99_{m} T c-P P M}$ 对肺癌诊断（图14－12）的灵敏度，特异性和正确性分别有 88% ， 100% 和 90% 。

图 14－12 ${ }^{99 m}$ Tc－PPM 肺癌显像

第8节 放射性核素肿瘤显像进展

一，肿瘤受体显像

（一）显像原理

＂受体＂的本质是细胞膜或细胞中的一类特殊的生物活性分子，其中绝大多数为蛋白质，具有识别和信息传递两个功能，其特征是高特异性，可饱和性，可逆性，量效反应及竞争性拮抗剂维持正常生理反应，其作用机制是受体与配体问的反应及受体与效应器之间的相互作用，受体的数月，亲和力和免疫性变化都可导致疾病。

肿瘤受体显像是利用放射性核素标记的受体配体与存在于肿瘤的特异性受体相结合．以显像的方法研究细胞间的信息传递，是当前高灵敏高特异的新技术之一。

（二）方法与临床应用

1．生长抑素受体显像 生长抑素（somatosta－ tin，SMS 或 SST）是一种脑肠肽，由于它在体内易被酶迅速降解以及不易被标记，目前应用的是经结构改造的 8 肽衍生物奥曲肽（octreotide，OCT）${ }^{111} \mathrm{In}^{-}$ OCT，及将其分子中的苯丙氨酸用酪氨酸取代的 ${ }^{129} \mathrm{I}-\mathrm{Tyr}-3-\mathrm{OCT}$ 。欧洲首先报道，荷兰 Krenning等报道了 1000 余例临床应用结果，认为是胃泌素瘤，胰岛素瘤，胰高糖素瘤术前首选的定位方法，可定位多种神经内分泌肿瘤，亦是副神经节瘤及类癌全身病灶的筛选检㝸方法。

男一特点是（OCT 有抑制肿瘤增长的治疗作用，有可能发展成为新型的核素标记小分于肽受体显像与受体治疗以及放疗，化疗双效药物。

2．血管活性肠肽受体显像 血管活性肠肽 （vasoactive intestinal peptide，VIP）为 28 个氨基酸组成的多肽，对胃肠腺癌，胰岛细胞瘤，垂体瘤，类癌等有较高的检出率，国内已报道用 ${ }^{123} \mathrm{I}$ 标记 VIP，证实 SGC 7901 人胃肠癌细胞株能表达高活性的 VIP 受体，为进一步显像打下基础。

3．其他 国内王世真等已合成制备了层粘连蛋白（laminin）的活性区层粘连九肽，何人乳腺癌小鼠 $4 \sim 5$ 小时 T / NT 可达 4.62 ，有望用于乳腺癌的诊断。此外尚有雌，孕激素受体及雄性激素受体显像，肾上腺显像等。

核医学先志．1998，18（3）：173
中的显像和分在。中华核医学杂志，1998．18（2）：了7

12．李前伟，潭天秩，${ }^{122} \mathrm{I}-\mathrm{VlP}$ 的制备及其与 SGCr901 人署腺蹦讯胞受体体外结合特肝研究。中华核区学杂击。 1998．18（2）：73
：3．李世军，等．目制 octreond 的鉴运，枟记和初步动物实验。中华核医学杂步，1996．16（3）：188
备和初步础物实验。中华核医学杂志，1998，18（2）： 122
15．Hoh CK，et al．PET in oncology：will a replace the other modaluter？Semi Nucl Med，1997． $27(2): 94$
2b．Rigo P．et al ．Oncological applications of postrone massion tonography with flemerin－18 flwore deoxygh cosc．Ear 3 Nuce＇Med， $1996.23(2): 1641$
17．Lind P．et al．Techocium－99m totroformitu whole－body scintigraply in the follow up differentiatec thyrode cares noma．1 Nuci Med ．1997： $38(3): 348$
18．Takekawa H ，et al．Thallium－201 aingle photon emis sion computed tomography as an indicator of prognosis for pathents with lung carcinoma．（ancer．2997．811 （2）： 198
19．Takekawa H ．et al．Vtsuabization of lung vanerer wath ？${ }^{n}$ Tetetroformin imaging：a comparison with ${ }^{\circ} \mathrm{Tl}$ ． Nucl Med Comtmun．1997，18：341
20．Hom R．K．Katzenellenbogen I．A．Techativm 99 m iabeled receptor－specific small moleculc radiopharmaceu－ ticals ：recent developments atad encouraging results．

Nucl Med Biot． 1997 ．24：485
21．Waxman AD．The role of ${ }^{\circ} \mathrm{Tc} \mathrm{T}$－MIBI in maging breast rancer．Semi ．Vuct Med．1997．27（J）：4c
22．Ciceo CD．Cheno M．Paganelli G．Intraop rative ienali Lathen of the sentifel node in breast cancer：tochncal as－ pects of lymphoneintigraphe meihods．Semi Surg（trool． 1998， $15(3): 268$
23．Gucalo R ，at al．Overview by an oncologist：what are the imaging needs of the oncologest and oneologial sur－ geon？Sem Nuel Med，1997，27（1）：93
21．Front D．© al，The continuing elinatal role of gathuns 6： somugraphy in the age of receptor maging．Sema Nincl Med ．1997．27（1）：68

25．Kreming E，et al．Somatestalli．recophor scmugraphy with \i＂In DTPA D－Phe ．and ！＂＂I thy－octrestide： the Rotterdam expersence wath nore then lion patent． Eur J Nucl Med．1993 ，2：1（8）：：76
25．（roldsmith SJ．Receptor imaging：competitive or curnple－ mentary to antiborly amaging？Serm Nucl Med ，past 7. 2З（2）： 8.5

22．Hielstuen OK．ct al． 3 ．on Tre－fabeling and bodisiribu tion of a CAPL antisense oligodeoxymulertide．Nucl Med Biol，1958，25（7）：651
28．Cook（iJR．Fogelman I．Tumor hypoxia：the role of nu－ clear medirine．Eur 3 Nucl Med，1998．25（4）： 335
24．Cook（iJR，of al．Tachnctum 95 m labeled Hi．91 to Identify tumor hypoxia；comrelation with flourne－18－ FDG．I Nuel Med ，5998．39（1）： 99

第 15 章

第1节 炎症的病理生理

炎拝（inflammation）是种种致炎拝因个损伤机体所引枹的以防御炎主的病理过程，致炎拝因 f 可以是感染（infection）性的如细菌，病毒，笴生虫笭；亦可以是非感染性的如物理性，化学性，机械外伤性等。在致炎正因子的作用下使器官和组织内被损伤的细胞和自细胞释放出一系列炎症化学介质如 组 胺（histamine）， 5 羟 色 胺（ hydroxytryptamine），前列腺素（prostaglandins）等，同时又听激活血浆中的凝血，纤溶，激肽和补体四个系统，使其形成种种活化产物。这些炎症介质使炎症病灶部住的小血管舒张，引起师部充血，发热与红射：血管通透性增加，形成漏出液与渗出液，外移至细胞外间质，导致水肿：化学介质 （chemical mediator）和水肿夙力对神经末梢的刺激，引起疼痛与功能障碍：介质中的趋化物质 （chemotactic materials）如细莉或病毒的产物，能吸引＇细胞穿过血管内皮纽胞迁移到桊症部位，在大多数细菌感洮，化学物质或某些免疫损竹的发病初期，多为多核白细胞进人炎症病叶；亚急性及修复阶段时，继以单核细胞，淋巴细胞及浆细胞进入该部位；而病毒，立克次体，寄生出，真菌以及分支杆菌感染时，则以单核细胞祸淋巴细胞为主，只何在早期有短暂的多核细胞浸润，白细胞进人炎症病灶部位瓜，即进行㕣噬并水解各和有害物质如病原菌，抗原抗体复合物，死亡细胞和毒索等，太除损伤细胞及炎症产物。在炎症发展过程巾修复亦同时开始，如炎症因了能被消灭，坏死组织叮被清除，细胞及器官出现增牛，则正常组织结构逐渐恢复：如由于细胞或器官不能再牛，以及局部其弛因素如缺血菹养等影响，原来的细织不能恢复，则所遗留的空间可出基质或增生的纤维细胞所填充，形成胶原及肉芽．最后被疮痕组织所替代；如机体不能清除炎症因子则局部呈破抔与修复相间持续仔在，在纤维间质中浸润有大皆的淋也细胞，单核纽

炎 症

胞及浆细胞等慢性炎症细胞，表现为慢性炎症的过程：急性炎症发病时，若组织破坏严重。又有大量的细胞浸润，最后听形成胘肿，朓肿可化：器官内形成，如肝，脑，师，肾等，亦可存在于胸腔和腹腔太。小脓肿经以科积极治疗叮能会被吸收而疹愈，低对于较大的脓肿往往需要加用引流处理，才有㞴能清除感染因子，因此炎症病灶的定位沴断就起羞关键的作用。

任何炎症囚于所引杞的炎症均可引起局部的病理改变，导致红，肿，热，悀和功能障碍等五大㞋部炎症病灶的行象，同时义可张起相应的全身性反应，表现为发热，白细胞增加，血沉加快和血清急性期反应物形成，如 C－反应蛋向（C－reactlve pro－ tein）的开高等，绝大多数病例的全身性反应与j炎症病灶所在的部位和严重性相关。但亦有相当一部分病例无明显炎症病灶的局部症状 -j 体征，即所谓隐匿性炎症病变，给临床诊断及治疗带来相当大的困难。

正确定位诊断隐匿性炎症或感染病灶，不仅有助于吗确病因和了解病变的部位及范国。还有助于确定有效的治疗措施，估测疗效，从而提高治愈率，减少并发症和改善预后。临東上可用作炎症病灶定位诊断的显像方法很多。如 X 线检合，（T （computed tomography），MRI（magnetic reso－ nance imaging），超声检查（ultra sonography）及核素显像（radionuclide imaging）。放射性核素应用于炎正病灶的定位诊断已有多年，近年来由于新的放射性药物的相继吥制成㘦，核素炎玨定位显像有了较大发展，已成为临床诊疗工作中的主要诊断方法之。。

第2节 ${ }^{67} \mathrm{Ga}$ 显像

一，显像原理

[^3]（ferritin）及乳铁蛋白（lactoferrin）等结合，白细胞内含有丰富的乳铁蛋向，${ }^{67} \mathrm{Ga}$ 与之结合后随白细胞迁移到炎症部位，浓集于病灶处，又由于炎症部位的血管通透性增加，${ }^{67} \mathrm{Ga}$ 亦以离子形式或转铁蛋白结合形式漏出血管而进入病灶。此外尚可能由于 ${ }^{67} \mathrm{Ga}$ 被感染的微生物所摄取，生成含铁蛋白的 ${ }^{07} \mathrm{Ga}$ 复合物而滞留于局部，使病灶部位形成异常的放射性浓集区。

二，显 像 跍

${ }^{67} \mathrm{Ga}$ 系回旋加速器（cyclotron）生产，临床上均用无载体 ${ }^{67} \mathrm{Ga}$－构彞酸镓，为无色澄明液体。

三，显 像 方 法

静脉注射 ${ }^{67} \mathrm{Ga} 74 \sim 185 \mathrm{MBq}(2 \sim 5 \mathrm{mCi})$ 后 $6 \sim 8$小时及 24 小时进行显像，如无法确定病变时要加作 48 小时图像。为减少肠道内的放射性干扰，对于䧗部病变宜先清洁肠道，注射 ${ }^{67} \mathrm{Ga}$ 后每天给予通便药，直至检查结束。图像采集时，选用中能准直器（medium energy collimator），常规采集前位及后位的全身显像及病灶部位的局部平面显像，对于胸部或腹部病变，必要时可进行断耺显像，以提高诊断灵敏度，采集结束应存胸骨切迹，肋缘，脐及耻骨上缘作好解剖标志。

四，正常显像表现

${ }^{67} \mathrm{Ga}$ 在体内主要被肝，脾及骨髓所摄取，以肝脏浓集最为显著，其次是中轴骨髓系统包括头
部位，两侧呈对称性分布，在软组织中的鼻咽部，泊腺，唾液腺及乳腺均有不同程度浓集，由于其有 $10 \% \sim 25 \%$ 经汹尿系统排泄，故在注射后 $12 \sim 24$小时内肾及膀脱内有放射性出现。此外，约有 10% 的注射量经肠道排泄而积聚在结肠内，并随时间沿着肠道向前移动，随后排出体外，因此进行腹部显像前需作肠道准备以免干扰图像质量（图15－ 1）。

五，异常显像表现

病灶部位有异常放射性浓集，持续存在」随时间逐渐增强，在单侧或双侧肾区有放射性浓集时要加作 48 小时显像，若故射性持续存在，则要考虑

图［5－1 ${ }^{65}$ Ga 24 小时全身显像（1F常图形） d．后位：h．剪位

肾脏炎症病变的可能。

第3节 核素标记人非特异性丙种球蛋白显像

一，显像原理

核素标记入非特异性丙种球蛋白（nonspecific immunoglobulin G，IgG）能浓集于炎症与感染病灶，凡具有较高的灵敏度（ 90% 左右），其机制尚不完全清楚。实验显示 ${ }^{[11} \mathrm{In}-\mathrm{IgG}\left({ }^{[11]} \operatorname{In}\right.$－labeled IgG ）在炎症病灶内主要定位于细胞间隙，而不是与炎症有关细胞如向细胞相结合。因此 IgG任炎症病灶的定位非常可能是由于炎症使病灶部位的微血管的通透性增加，使血浆中的蛋白如 IgG，白蛋白等漏出血管，进入细胞外间隙，继而 $\lg G$ 引起聚合而沉淀在病灶部位所致。虽然核素标记IgG 在感染灶

的浓集是非特吕性的，但其靶与本底的比值较高，足以进行消晰显像，由 J•核素标记 IgG 的制备 \boldsymbol{j}法简便，价格低廉。可以制成药盆，经反复监为无
用目趋广泛。

二，显 像 剂

日前标记非特异性人血丙种球公H（IgG）的核素主要有 ${ }^{4}{ }^{4 m} \mathrm{Tc}_{\mathrm{C}}$ 及 ${ }^{111} \mathrm{In}$ 二利。 ${ }^{4 \mathrm{~m}} \mathrm{~T}_{\mathrm{C}}$ 标记 Ig （；
克隆抗体相同，可参考该法进行 ${ }^{[1: 1} \ln$ 标汇 IgG均用预制的 D IPA－IgG，取 DTPA－IgG 0.5 ml ，
育 30 分钟，然有用 Sephadex G25 分离蛋H部分。并经 $0.22 \mu \mathrm{~m}$ 徵孔憈膜过滤后备用。由于 ${ }^{4}{ }^{4 \prime \prime} \mathrm{~T} \cdot$ 具有良好的物理特性。能量合适，叮用较大剂量，价格又较便宜，非：靶器官清除较快，故其图像较 ${ }^{11}$ In $\lg G$ 清晰。

三，显 像 方 法

静脉注射核素标记 ${ }^{\text {atm }} \mathrm{Tc}$－ $\operatorname{lgG} 370 \sim 7+0 \mathrm{MBq}$ （ $10 \sim 20 \mathrm{mCi}$ ） 1 mg IgG；或 ${ }^{11} \operatorname{In}-\mathrm{IgG} ~ 71 \mathrm{MBG}$ （2mCi） $1 \mathrm{mg} \lg (\mathrm{A}$ 偪 4 小时及 $18 \sim 24$ 小时进行显像。如用 ${ }^{111} \mathrm{In}-\lg G$ ，必要肘还可加作 48 小时显像，常规采用前位及后位企身显像，可疑病灶部位加作局部平面复像或断层显像。

四，正常显像表现

静脉注射核素标记 IgC 后，最初与核索心血池显像相似，除鼠示心岳池与大血管外。休内血容量半富的器官如肺，朋，牌，临，肖䯏及鼻㖞部等均有不同程度的放射性浓集。在延迟显像时，心血池及肺脏队的放射性逐渐淡退。面肝，脾及肾耻仍有较高的放射性滞留，但估肠道内则无明显放射性可见，骨髓内的放射性往往接近于本底水平（图 15－2）。

五，异常显像表现

花在非正常生理性放射性积聚部位出现放射性浓集，且随时间逐渐增强，往叱提示系炎症吽病变的部位。 ${ }^{111} \mathrm{In}-\mathrm{IgG}$ 与 ${ }^{\text {㫙＂II }} \mathrm{I} \mathrm{C}-\mathrm{IgG}$ 的体内分布基本相似。在炎性病灶的浓集亦相接近。但是出于＂＂me

a．前位：b．后伴
物理特性较仹，价格较便完，叮用较大剂量，故图像质量较好，不过由于 ${ }^{11}$ In 的半衰期较长，可反复检查至 72 小时。虽然绝大多数病例在： 24 小时图像上能清晰显示病灶部位，甚至 12 小时图像即能诊断．但有的病例 72 小时图像较早期图像具有更高的阳性率。

第4节 核素标记白细胞显像

一，显 像 原 理

门细胞是人体内主要的防卫系统，当细菌等病原体侵人人体内，由于巾性粒细胞的趋化性，可被细菌和受损细胞所释放的多肽和小分于化合物等具趋化作用（chemotaxis）的炎症介质所吸引，穿H毛细血管臂。迁移到细菌人侵的部位。态噬和消化细菌及机体白身的坏死组织，循环的向细胞一旦进入组织就不再返回血循环及骨髓。如用核素标记的白细胞静脉注射后，这些标记的H细胞也在心血管内循环。如体内有炎症时可随之进入病灶部位。体外显像即可显示其在体内的分布与位置。由于核素标

记白细胞进行炎症定位显像的灵敏度高，特异性强，H前是炎症定位显像的金标准，但是制备复杂而费时，临止推广应用有一定困难。

二，显 像 効

核素标记白细胞必须先分离的细胞，常用的分离方法是红细胞重力沉降法（erythrocyte gravity sedimentation），所得的自细胞系粒细胞，淋凹细胞，单核细胞以及少量红细胞的漉合细胞群，适用于作炎症及感染病灶的诊断与定位之用。甘前常用
 Tc－HMPAO）${ }^{\text {I }}$ In－Oxine 标记的古组胞（ ${ }^{12}$ In－Ia－ beied leukocyte）无论在体内或体外均相当稳定。此外，近年还在试用酚酮（tropolone）及 2 －硫基吪啶－ N －氧化物（2－Mercapto－pyridine N －Oxinc，Merc）等化合物，以期有效地标记血浆巾的白细胞，因血浆对白细胞的生理功能有一定保护作用。用＂${ }^{\prime \prime}$ Tc HMPAO 标记向细胞（ ${ }^{50 \mathrm{~m}}$ Technetium－HMPAO leukocyte）进行显像．其体内的药物动力学与 ${ }^{11}{ }^{11} \mathrm{ln}$－ Oxine 守细胞显像相仿，但图像质量较后者为佳，缺吕是肠内可有非特异性浓集。采用上述方法分离与标记的白细胞，其存活力（viability），还移性 （migration），杀菌能力（bactericidal capacity）和超微结构（ultra structure）均无朋泉改变。如作脓肺定位之朋．白细胞总数在 1×10^{i} 左在已足够进行体内显像，由于幼细胞摄取 ${ }^{111}$ In－Oxine 明显低于粒细胞，若红细胞总数少于 10% 总细胞数，则其标记的放射性可忽略不计。

三，显 像 方 法

病人无须作特殊准备，静脉注射 ${ }^{[11} \mathrm{In}$ 门细胞 $18.5 \sim 37 \mathrm{MBq}(0.5 \sim 1 \mathrm{mCi})$ 后 4 小时及 2.1 小时进行显像， 24 小时图像最为清唽．有时于 48 小时增加采集一次，以期排除非疾病引起的非特昇性浓集。由于 $4 \sim 6$ 小时图像的阳性率较低，该时图像阴性时必须进一步作 24 小时及 48 小时显像。常规采用中能（ 280 ke V）平行孔准直器。若采用 ${ }^{\circ \times \mathrm{sm}} \mathrm{Tc}$－ H^{\prime}细胞显像，在青脉注射 $370 \mathrm{MBq}(10 \mathrm{mCi})^{n-\mathrm{mc}} \mathrm{Tc}$－自细胞量液后 $1, ~ 4$ 及 24 小时进行显像，采用低能平行孔通用型准直器（low energy all purpose paralle） hole collimator），常规采集前位及后位全身显像。可疑病灶，部位加作局部平面显像或断罢恶像。

四，正常显像表现

静脉注射 ${ }^{112} \mathrm{In}$ 白细胞或 ${ }^{9 \times 15}$ Tc 白细胞后，肺，肝，腺，骨髈及血池内有放射性浓集，伿最初 1 小时肺及血池内的放射性逐渐减少，而肧脏及脾脏内的放射性遂渐增加，注射后 18 小时肺及的池内已无放射性，此时脾内的放射性浓集最高，其次是旰耻及骨䯣，骨髓内的放射性两侧应足对称性分布。主要分布任中轴骨睢。正常 ${ }^{11}$ In 白细胞显像中，男肠道及肾内无明显放射性可见，在正常急合倣山亦无明显放射性浓集，因此较 ${ }^{[7} \mathrm{Ga}$ 显像更存利于检测腹内炎症性病变。

五，异常显像表现

骨髓内的放射性两侧如呈不对称性分布或老除盰，脾及骨髓外其他部位亦以㓚异常放射性浓集。即使较本底有轻微增加•就可能有临少意义。需仔组检依加以鉴别。由于＂Tc－FMMPAO的水溶性化合物会浓集于肠道，特别是小肠壁，肠道非特异性
症性病变的诊断，但肠道内放射性多数在静脉注射后 2 小时什现，如能早期泉像则可减少其干扰。此外，解离的 ${ }^{\text {simm }} \mathrm{Tc}$ 通常经泌尿系统排泄。泌尿系统内的放射性积聚有时使相应蔀位的炎症性病变难以确定，在采用 ${ }^{14} \mathrm{~m}_{\mathrm{m}} \mathrm{T} \mathrm{C}$ 白细胞显像时要特别加以䜤意。

第 5 节 抗人粒细胞单克隆抗体显像

核素标记白细胞显像是炎症病灶定位沴断的主要方法。但向纽胞的纯化与处理需要熟练的技术与设备，方法繁琐费的，为此种种体内标记粒细胞的方法证引起重视，以期能替代体外标汇粒细胞，核素标记抗粒细胞单克隆抗体（antigranu，ocytc mon oclonal antibodies．AGNB）显像是其中之一。核素标让抗粒绋胞单克隆抗体的札䏀可能是由于粒细胞所具存的趋化作用，抗体随所标记的粒细胞何炎症病灶迁移，以及炎症部位的血管通透性增加，游离的扰体漏出血管进人病灶区，随后即与病灶内的粉
人粒细胞单克隆抗体（ ${ }^{(\pi n) T e c h n e t i u m-a n t i g r a n u l o ~}$
cyte monoclonal antibody）或单抗的片段（Lab）？进行亚像。静脉缓慢滴注．${ }^{\text {gran }} \mathrm{Tc} A G A B 555 \sim 740 \mathrm{MBq}$ （ $15 \sim 20 \mathrm{~m}(\mathrm{i}, 0.5 \mathrm{mg} \mathrm{AGAB}$ ）。滴注过程中及滴注后密切观察患者的症状与体征，如发热，呼吸困难及荨麻疹等副作用，静脉注射后 1 公时， $3 \sim 1$ 小时及 21 小时后进行湿像。正常图形与核素标记向细胞显像相同。感染灶部位龺异常放射性浓集•从 4 小时到 24 小时放射性随时间而增高，通常情况下 4 小时图像已能清楚地显示病灶部位。这种 广法无须分离白细胞，操作简便，可制成药盆，易于临床上推广使用，目其有与核素标记F细胞显像相仿的灾敏度与特异性，有很高的叮用性。

第6节 发热待查及软组织感染

一，临 床 概 述

发热待查是临床上经常遇到的有时朋确诊断相当困难的问题。在原因不朋的发热的病因中，感染性疾病约占 40% ，绝大多数系局灶性病变，奉中以腹腔内脏器或腹膜受到感染吽或化学刺激 1 ij产生的急性或慢性炎症为最常见的原因。这些局灶性炎症或感染病人在发病初期可无局部症状与体征。采用（．T，MR 或超声检查有时难于发现隐展性病灶。而核素炎症检杳叮进行全身显像，往往可央敏地䟠示活动性感染或炎症病叶。对于发热病程为二周的患者，其软组织感染多数为急性炎症，核素标记白细胞显像，抗白细胞单克隆抗体或非特异岿 IgG显像均能清晰地显示急性软组织炎症或感染病变。具有较高的灵敏度与正确性：对于病程超过一，周者，则用 ${ }^{{ }^{6} 7} \mathrm{G}^{\mathrm{G}}$ a 显像更为适宜。腹腔内炎症病财的定位与治疗效果休或相关，对蜂窝组织炎（cellulı－ tis）及腹膜炎（peritonitis），内科治疗即能犹得满意结果；如已形成䁃肺（abdominal abscess），则必须尽快于术引流，木经引流的腹内脓肿其死亡率可高达 35% 。

二，显 像 表 现

静脉注射核素标记非特吕枚 IgG，${ }^{11} \ln$ 标记白细胞或抗白细胞单克隆抗体后进行显像．放射性 主要浓集在肝，脾与解髓内，在正常肠道和正常愈合伤山队无明业放射性浓集，故可清晰显示体内的炎

症病变。如肝，脾或骨髓外有其他部位的异常放射性浓集。且随时间逐渐增强。即使较本底有轻微增高亦可能有临床意义，需仔细检查加以鉴别，在定期随访过程中还有助于了解疗效及估测预后：核素呩记户细胞显像中，如无异常发现往往能排除体内的局灶性感染性病灶（图 15－3）。

图15－3 急性盆腔炎病人 ${ }^{9 n m} \mathrm{~T}_{\mathrm{c}}-\mathrm{HlgG}$ 显像示盆腔内局灶性昇常放射性浓聚

三，诊断与鉴别诊断

核索炎症定位诊断的主要问题是核素显像剂在。肝，脾内的正常摄取，往往使肝，脾及其郕围炎症性病变的诊断发生困难，为此可采用 1 小时， 4 小时及 $2 \div$ 小时显像，软组织感染病灶或脓肿如膈下脓肿等，其放射性往往持续上升，而正常肝，脾组织的放射性有下降趋势。此外若能结合核素胶体显像进行分析，则有助于鉴別诊断．如在肝胶体显像中显示放射性缺损区，而在核素炎症显像时。即使该部位的放射性浓集正常，亦可提示炎症病灶的存在。由于肠道内有非特异性浓集的 ${ }^{99 \mathrm{~m}} \mathrm{Tc}$ HMPAO，在检测腹部炎症时，应于静脉注射 ${ }^{0 \omega_{m}} \mathrm{~T}_{\mathrm{c}}$－白细胞后 2 小时内完成图像采集。

四，比较影像学

对于体内脓肿，由于超声检查，CT 及 MR 能提供即刻的正确诊断，故已成为临床上诊断脓肿的主要方法。但对于无局部病状或体征的隐匿性炎症

病灶，或由于手术，外伨或疾病而使正常解剖结构已被破坏或改变的病例，诊断在一定因难。由于核素炎序显像可以进行全身检测，往往可以发现隐匿性炎症病灶，故很有价值。此外，超声，CT 等解剖结构性成像技术对发现液性病灶的灵敏度很高，但有时难于同非感染性液性病变如囊肿，血肿，血清肿等鉴别，而㤥素炎症显像却能浓集于活动性感染病灶，是一种较特异的活动性炎性病灶的诊断方法，有助于明确诊断，如多发性肾嚢肿病例是出有嚢肿感染。

第7节 炎症性肠道病变

一，临 床 概 述

炎症性肠道病（inflammatory bowel disease）一般指特发性慢性肠道炎症病变，即溃疡性结肠炎 （ulcerative colitis）和节段性回肠炎（Crohn＇s 病）。以区别于感染或物理化学因素所致的肠道炎症。溃疡性结肠炎和 Crohn＇s 病的病因至今尚不太清楚。可能与遗传或免疫因素有关，部分病人有家族史。溃疡性结肠炎在病理上呈弥漫性连续的浅表炎症性病变，严重时可侵及粘膜下层和肌层，导致绡肠袋消化，肠道呈管状，主要累及直肠与结肠，很少波及小肠。与溃疡性结肠炎不同，Crohn s s 病形案及胃肠道的任何部位。但以回肠末端最为多见（ 80% $\sim 90 \%$ ），一般不波及直肠，涔理上旺不连续的节段性分布，表现为口疮样或裂沟样溃疡，有息肉样肉芽肿性炎症病变，病灶间存在有正常粘膜．病变侵人整严肠壁，严重时可引起穿孔，㷧成瘘管及脓肿，或者反复发作致肠壁纤维化，粘膜鲏譬消失，肠腔变狭。临床症状取决于肠道炎症病变的部位，范围及严重程度，腹泻，腹痛及便血是最常见的症状，病变严重时可出现全身性症状，如发热，盗汗以及营养与代谢异常等表现。

二，显像表现

采用核素标记入非特异性 JgG，抗人粒细胞单克隆抗体或 ${ }^{[111} \mathrm{In}$－标记白细胞进行显像时，正常肠道内应无明显放射性浓集，若腹部出现异常放射性浓集，呈肠形分布，部位与范围在随访中无明显改变时．往往提示有活动性肠道炎症存在．所显示的

位置与范围和铞剂雚肠或内镜检査的结果基本—致。此外，病变肠道浓集的放射性强度在一定程度上反映了该部位炎症的活动程度或严重性。

三，诊断与鉴别诊断

活动性肠道炎症病变，在静脉注射核素显像剂后数小时即小异常放射性浓集。在延迟显像中放射沚浓集区的部位不变，强度增加，（rohn＇s 病主要累及小肠，直肠部位道常无异常发现（图15－4）：溃疡性结肠炎往往同时累及直肠，一般不波及小肠 （图15－5）。核素炎症定位显像的灵敏度虽高，但其阳性图像不是炎症性肠道病变所特有的表现。任何肠道炎症如感染性（假膜性肠炎）或缺血性（肠系膜血管栓塞形成）均可至阴性图像，故定性诊断需结合临床，X 线钡剂造影及内镜检查考虑。此外，上呼吸道感染，肺炎或鼻窝炎等患者泝咽下脄性分泌物或者由于胃肠道内溃疡，慗室，肿瘤等所致出血亦可导致假阳性，但其放射性浓集区往往随时间和前移位，1！其放射性强度较低，一般要低于肝内的放射性，可加以鉴別。

图154 Crohn＇s 病人 ${ }^{3 \mathrm{~mm}} \mathrm{~T}_{\mathrm{c}} \mathrm{HIgG}$ 显像 ぶ小杨部位型常放射性㳖聚

四，比较影像学

检测炎症性肠道病变的位置，范闱和活动程度，对于正确处埋病变与评估预尼非常重要，当前内镜检査仍是检测结肠炎症性病变最正确的方法。但操作比较复杂，重病人往往无法耐受，且对小肠

图15－5 溃狢性结肠炎病人 ${ }^{1 m}$ Tc HIgG品像召回昏部及升结肠部位异常放射吽浓聚

病变亦难达到。（T 与超声检菒只能提供肠壁增厚等间接征象，仅在脓肿形成时可确全其位置。X线检查包括平片与空气对比钡剂造影，是日前常规的检查方法，能提供肠道炎症的部位和范闱，偶是对炎症活动程度的估测比较困难。核素炎症定位显像不仅能正确提供㷋吽肠道的部位上范闱。还能叮靠地区分活动与非活动性炎正病变，不论是新发还是复发病变。由于其是无创性，无并发症，一－般检查可同时规察小肠及结肠．又无须肠道准备（除 ${ }^{\text {iT }} \mathrm{Ca}$业像），故对丁严重的病人，常规钆剂 X 线检查或内镜检查有困难时，仍是安全的。但不能取代内镜和 X 线常规检查，血是补充其不足，起相辅相成的作用。

第8节 骨关节炎症性病变

一，临 床 概 述

核素炎症病灶定位显像目前在肖关打疾病中主要用于骨髓炎（osteomyclitis）的诊断及定位，髉或膝关节假肢（joint prosthese）顶端感染灶的确定以及活动性炎症性关节炎（arthritis）的佔测。骨髓炎是由化脓性细菌侵及骨与骨膜引起的感染性病变。其病原蒇绝大多数为金黄色葡萄球菌（slaphylococci aureus），其次为链球菌
（streptococci），户色葡萄梂菌（staphylococci al bus）及革兰氏阴性杆菌（gram negative bacilli）等。感染的途径叮以是血源性的，其累及部位与午柃和关，儿童期多见于长骨干䯘端（me－ taphysis），成人则以脊柱为多见。经由开放性和复坡性骨折与手术污染等外伤性感染的病人常伴有持续或再发高热，局部疼痛加刷，骨折及伤口愈合延迟，甚至伤口破裂形成窦道等表现。由邻近组织感染直接传播所致的骨髓炎，多数系长期糖尿病或血管性疾病患者，仔在有皮肤溃疡，蜂窝组织炎及组织坏死等，主要累及下肢骨及趾骨近端。急性骨髓炎给予早期及时有效的治皮可以获得痊愈，但如治疗小及时或者治疗不当，可以转变为慢性骨髓炎，因此早期诊断，朋确定位是有效治疗的先决条件。

人上关节置换术后常会发生疼痛性的假肢松动，其病肉可以是机械性的，亦可因感染所引起：如有感染，即使是轻度的。处理也相当困难，在进行假肢修复时必须彻底清除感染，才能保证人工关卢的重建，故早期诊断假肢周围感染是非常必要的。

慢生关节炎如类风湿性关节炎（rheumatoid ar－ thritis）等在疾病初发时是一种由自身免疫所致的关节滑膜炎，表现为滑膜充血和水肿，大量单核细胞，浆细胞和淋巴细胞浸润及滑膜腔积液，往往从四肢近端小关节开始，表现为发红，梭形肿大，晨起时关节偪硬，活动后可适当减轻，近端指间关节最常发病，以局逐渐波及腕，时，踝，膝，肩，镓天节，呈游走性，多发性，对称性分布，随着病情的进展，关节发生粘连，以致纤维强直，关节功能严重障碍。白于软骨下骨质的㳟露与破坏，最后使关少融合而强直与畸形，给病人 T．作与生：活带来极大困难与疼痛，故里期诊断并给予积极的治疗非常重要，以期控制关节炎症，缓解症状，保持功能，防止畸形的发生。

二，显 像 表 现

核索标记 IgG 在全身骨髓内无明显浓集，因此对骨关节系统炎症或感染性病变的诊断相当灵敌。在骨骼或关节部位只要有放射性浓集前随的间逐渐增强，往往提示有炎症病变的存在（图15－6），由于核素标记白姃胞和抗人户细胞单克隆抗体以及

小在腔莦上 1＇3异常放射性洮聚
${ }^{6 \circ}$ Ga 浓集在正常骨髓，因此对于中轴骨骨骼炎的诊断应结合胶体骨髓显像进行，若胶体骨髓㫫像中呈放射性缺损的部位有核素标记炎症显像剂浓集即可诊断。人工关节假肢顶端若无感染病灶时，应无异常放射性浓集，并发感染时则感染病灶部位往往表现为局灶性放射性浓集区。类风湿性关节炎等关节滑膜炎的活动期，在关节周围关节嚢软组织呈带状或环状的放射性浓集区，浓集程度与局部炎症病灶的活动程度相关（图 15－7，15－8）。

三，诊断与鉴别诊断

三相骨显像对骨髓炎早期沴断的灵敏度很高。但特异性欠佳，因其仅反映骨矿物质转换率而不是炎症病变。若配合核素炎症定位显像进行检杏，可提高其特异性。如核素炎症显像与骨显像一样均显示局灶性异常浓集，其浓集程度等于或高于骨显像或者二者浓集部位不同时，往往提示存在有骨髓炎病变；如核素炎症，显像无明显异常，则不论骨显像是否异常，该部位存在有骨髓炎的可能性就较小，例如人丁，关节假肢松动时，骨显像可以阳性，若无感染存在时，炎症显像则应无异常浓集。骨显像与核素炎症显像前后联合检查，不仅有勛于骨䯝炎的診断与定位，还可用其确定异常放射性浓

图 15－7 ${ }^{2} \mathrm{men} \mathrm{C}-\mathrm{HlgG}$ 显像
a．财于正常图形；b．类风湿性关荇淡各形：双腕和左第了指远踹指间关节异常放射件浓乑 （北京协和矢院核败学科锭供）

图 15－8 ${ }^{* 9 \mathrm{~mm}} \mathrm{Tr}-\mathrm{HIgG}$ 显像
异常放射性浓聚（北京协和医院核医学科提供）
集区是在骨骼部位，软组织或者两者同时存在。

从而鉴别㛔窝组织炎与骨髓炎，常用于糖屁病或ド肢血管疮岤患者下肢坏疽或溃疡部位是否亣发骨链炎的鉴別胗断•亦常出干骨科或手术忠者排除病灶部位存在感染的可能性。由下核素炎症鼠像剂在炎正病灶浓集的多少化一一定程度上反映了该部位炎挂㐻不同状况，故对于急性活动性与慢性非活动性骨髓炎的区分亦有一实帮助，对于类风湿性关节炎的诊断与佔测亦是如此，采用 ${ }^{\text {anr }}$ Tc－HIG进行显像扵。若关书周围滑膜部位有异常故射性浓集即可诊断存在活
往可排除活动性滑膜炎。故可用其古期诊断活动性关节滑膜炎，检测累及的关节部位，偶是这种改变是非特异性的，任何病因所致的活动性关节滑膜炎均可显京异常，如风湿性关䦽炎 （rheumatic arthritis），系统性红斑狼疮（systemic lupus ery：hematosus）及牛皮痽（psoriasis）等，

四，比较影像学

诊断骨汇节疾病X线检查当为首选的影像学：检查方法，但是对于急性：骨髓炎的诊断一般需要骨骼脱钙 $30 \% \sim 50$ 品才能显小゙，往炓在发病届 $2 \sim 4$河才能出现，表现为骨质减少或溶骨性表观，故对于早期诊断意性骨艂炎的灵敏度火仹，核素炎症显像能古期发现炎症病灶，若与肖浔像联合分析，还可鉴别软组织感染是否间吋并发有骨髂炎。故核素炎症定位出像对于有软组织感染，外伤或手术史者特別有价值，随䒴病情的进展，X 线，（ C 等可清晰显示骨膜下的质增厚，死肯形战，新骨与死骨相间等悩性骬髓炎的特征，而核素炎症显像可进 ．沙提示是否们活动性炎症的存在，这对早期诊断急性骬髓炎并给予及时与彻底治疗是非常重要的。感染是人工关㘧最严重的并发症，由于金属植人圽的存在，核磁共振显像难于检查，常规X线检查只能诊断假肢松动，往往难于确定问时存隹的感染，而核䒺炎嫁泉像则有助于哖确沴断。

第 9 节 免疫缺陷者感染

免投缺陷有原发性和获得性两类。前者汗豊指原因不明約病人，发病率很低，后者系扵约物，肿

痹以及感染所引起，国内常见的有由于肿瘤化疗后戨血液系统疾病所致的粒细胞减少或缺を和为能障碍：珎尤于肾，骨䯕或其他器官移植者应用免疫抑制剂所致的细胞免疫缺陷；以及正在全堞界范围内曼延的艾滋病（acquied immunodeficiency syn drome．AIDS）。后者系由于人类免疫缺陷病毒（hu－ man immuncdeficiency virus，HIV）感染所致．病毒传犯了 CD^{-}T 淋巴细胞，使 CD4 T「淋巴细胞喊少和功能受损，导致患者免疫功能特別是细胞免疫功能重缺陷，以致易忠各种机会性：感染（op－ portunistic infection）和恶性肿瘤。

这些免疫受损患者（immunocompromised pa－ tients）不仅易于感染各种致病微生物如链梂菌，萳萄球䦭，结核杆荿等，很多对正常人不致病或很少致病的微生物床可引起感染，如卡欧肺囊虫病 （pneumocyctic carinin pncumonia．PCP），子形虫病（toxoplasmosis），分枝杆菌（mycobater．i Ai im ）等，H常发生数种r病原体的混合感染。特别是这些病人由干免疫反应低下，不管其感染程度如何严重，其恰床症状往往不典制，打部感染病灶的反高叮以不明显，又可累及多系统引起地能紊乱。使诊断发生困难，如此对免疫受损患者进行企身炎症定位业像就讲常有价值，核素炎症显像不仅能早期发现伅会性感染的病灶，还可用其估测病变的范围和治疗效果。核索炎症显像叶，如两肺呈弥漫吽：放射性浓集，其放射性榣度等于或高于肝内的放射性强度，呈不均匀分布，X 线胸片义无开常发圲（X线胸片订以是妳漫性间质浸润，但在发病守期，胸片可以完全正常），则特吕性更强，最常见的病因是卡氏肺憲虫病，如放射性仅轻度增高则要注意与间质性：肺炎或分枝杆菌所致的感染进行鉴别：肺实质单个或多个浔灶性异常浓集。可见于肺细莯性感染如链球菌（streptococei），流感嗜血杆菌（hemoph：lı influence），放线菌（actinomycocetcs）感染：品眠门，纵隔或主动脉旁淋巳结早常液集，常见丁结核杆菌，分枝杆菌，隐球菌（cryptoccoci）感染或者淋巴瘤；花炎症显像时胸部闪异常发现，X线胸片亦正常．伡往可以排除肺部存在有严重感染。

约在 90% 的 AII）S 病病人在其患病过程中可发生原虫，真菌，细荣或病毒所致的胃肠道感染。很行叫导致死 \dot{H}^{\prime} 。核素炎佂䧗部显像图中，若放射性古肠㜆分布 II随时间增强．则要考步肠道炎症性

病变：若放射性呈局灶性异常浓集，位置固定，放射吽强度 24 小时较 4 小时的浓集增强，则盋进一步推测系腹内脏器或腹腔内的炎症和脓肿以及分枝杆菌等所致的淋巴结病变等。核素炎症显像若无明显异常，一般认为腹内感染病灶存在的机会较少。 （蒋茂松）

参 考 文 献

1．枌心华．发热．见：陈濒和主编，实用大科学。第1白版．北京；人民 已生出版社，1997，653～662
2．缪䒬冰，周前．物 Tc 标记人免疻球蛋打肉节泉像在类风湿关节炎中的佥用．中华核医学杂志，1997，17 （3）： 137

3．Hovi I，et al．Technetiurn－99m－HMPAO labelled leuko－ cytes and Technetium－99m labeled human polyconal im munoglobulin C_{r} in diagnosis of focal purulent diseases．J Nucl Med，1993． $34: 1428$

4．Serafini AN．et al．Clinical evaluation of a scintigraphic method for diagnosing inflammation infections using In－ 111 labeled nonspecific human IgG．J Nucl Med． 1991. $32: 2227$
5．Becker W，el al，Detection of soft rissue infections and osteomyolitis using a Techneturn 99 m labeled antigranu locyte monoclonal antibody fragment．I Nuel Med，1991， $35: 1436$

6．Thakur Ml．at \％l．Imaging inflammatory diseases with
neutrophil specific Tcchnctium－ 99 m labeled monoclonal an：ıbodyanti－SSEA 1．J Nuel Med．1996．37： 1789.
7．Oyen WJG．Van Horn JR，Claessens RAMJ el al．Diag－ nosis of bonc．joint and prosthesis infections with $\ln 111$ labeled nonspecific human immunoglobulin（3 semntigra phy．Raciology，1992，182： 195
8．Arndt JW，Van der Shuys，veer A．el al．Prospective comparative study of Technetium－ 99 m WBC and Indium－ 111 granulocyles for the exammation of patients with in－ flammatory bowel discases，J Nucl Med．1993． 34 ：1050
9．Srgarra J．et al．granulocyte speciiic monuclonal antibudy Technet1um－99m－BW250／183 and indium－111 oxine la－ belled leukocyte sciny．graphy in inflammatory bowel dis－ eases．Eur J Sucl Med．1991，18：718719．

10．Buscombe JK，et al．Indıum－111 labeled human immu noglobulin in the detection acute infertion in human im－ munodeficiency virus（HIV）positive patients．J Vucl Med，1992． 33 ： 903.

11．Hotze A，et al．Technenmm－99m labeled antigranuls－ cytes antibodies in suspected bone infections．J Nur． 1 Med，1992， $33: 526$
12．Selarreta G．it al．Techretium 99 m hexamethylprop－ ylene amine oxine granulocyte scintigraphy in Crohn＇s disease．Diagnosis and clinical relevance．Grut． 1993. 34：1364

中英文索引

A

艾滋病
阿尔茨海默病
奥州肽
acquired itumanodeficiency syndrome 119
Alzheimer＇s disease 117
Octreotide 252
B

比特	bil	2.4
1－血病	leukemia	226
标准摄取值	standard uptake value．SIJV／ differential uptake ratio．DUR	241
部分容积效睬	partial volume effecls	25

C

成骨性	osteoblastic	160
串珠样	beading	152
层粘连蛋庄	laminin	252
陈旧性心肌梗死	previous myocardial infarclion	74
彩点物	stippling ribs	159
超级影像	superscan	161
磁共拱成像	magnet cresonance imaging	132
磁场	magnet c field	28

D

terhnet um［［39n．Tc］pentelate，${ }^{94 m} T c$ DTPA 42
J 硫堸亚胺
大颗粒聚合人血消白蛋白
电了東（＂「
电子难直
动脉昆像
多世胺受体
多约酎药性
多药酎约相关蛋内
多素肾
单光子发射计算机断层仪
单链坑原结合蛋它
胆系品像
氮 ${ }^{[\cdot j} \mathrm{N}$ 」氨
矩暂性脑缺血发作
碘［ ${ }^{13}$ I］生物素化抗瞆瘤细
buthiome sulfoxim．ne．BSO 245
macroaggregated alltumin，MAA 84
electric beam computerized tomography，EBCT 77
electrical collimation． 29
artcrial imaging $\quad 76$
dopamine receptor 108
multidruy resistance．MDR 243
multidrug revistance－assoc＇ated protein，MRP 244
polycystic kidncy 218
single photon emission computed tomography．SPECT 4，23．55，149， 157
single－chain Fv，ScFv 250
hepatubiliary amaging 152
${ }^{13} \mathrm{~N}^{\mathrm{N}} \mathrm{VH}_{i} \quad 55$
transiem ischemic attack 111
${ }^{13 .}$ l－chTNT＇biotin 251

胞硋人鼠嵌合单抗

氨先酸钠盐
佨 $\mathrm{L}^{n 9 \mathrm{~m}} \mathrm{Tc}_{\mathrm{c}}$ ，双二乙氧基膦基乙烷

钊［990 Tc］标记人 $\mathrm{Ig} G$
锼［ ${ }^{39 \pi} \mathrm{Tc}$ ］标 I^{2} 抗人检细胞单
克隆抗体

蹲位。
痛凚
E
二次探査术
儿童特发性股胃头坏死

F

分子核医学
分子符合探测
之氧
发射计算机断层
负何心肌灌注是像
敦射化学纯度
放射免疫显像
放射性比度
放射性活度
放射性浓度
放射性药物
放射性药品
放射性核纯度
放射性核素发生器
放射性核素鉴别
肥大性肺性骨关节病
肺动脙先天性发育异常
肺动脉高压
肺栓塞
肺通气显像
肺梗死
肺移植

－I－metaioduberizylguanidine，MIBG	20，
${ }^{989} 7 \mathrm{Tr}-\mathrm{HL}$ ， 91	25.3
${ }^{\text {am }}$ Tc $\mathrm{C}-\mathrm{V}$－VOET	55
	55． $2+3$
${ }^{19 n}$ Technetium gencrator	36
	54
${ }^{\sim} \mathrm{m}^{\text {T }}$ Te RBC	62
${ }^{-s_{9}}$ Terhnetium HMPAO I Icukocyte	258
${ }^{3} \mathrm{~mm}$ Technetiuni IgG	257
${ }^{3}$ Technetium－antigranulocyte monoclonal antibody	258
20．Te PYP	69
	101
¢¢นus	137
epulepsy	128

－melaiodubenzylguandine，MIBG25.3559m－Technelium gencrator36${ }^{\prime 2}$ Th TBBC258
Than IgG 2.2Yu．Te PYP69งquยィ
epulepsy 128
second or second look laparotomy 212
Legg Perthes disease 180
molecular muciear medicine 5
mosecular comcidence delection．MCD 29
hypoxia 25：3
emission computer tomography， ECT 6， $2 \hat{3}$
stress myocardial perfusion imagıng 55
radiochemicel purity 39
radioimmunoimaging．RII 119， 250
specific activity 38
radioactivity 4
radioconcentratton 38
radropharmacruticals 33
radiopharmaceutica！s preparation 33
radıonuclıde purity 38
radionuchde generaior 33
radiontelide identification 38
hypertrophic pulmo：ary osteoarthropathy 163
pulmonary ariery congemtal anomaly 100
puimonary hypertension 08
pulmonary embolism 11
pulmonary ventulation innaging $8 \hat{8}$
pulmonary infarction 95
lung transplantation 132

से

肺痛
肺灌注亚像
氟［ $\left.{ }^{18} \mathrm{~F}\right]$ 脱氧蒲萄榑
䌅 $\mathrm{L}^{-13} \mathrm{~F}^{1 / 1}$ 脱氧尿酰淀

符令响应线
腹腔脓肿
䧗膜炎
蜼窝组缜炎
镉射白分解

G

功能性显像
光电倍增管
关节次
假肢关 $1 j$
㸩血流眊池显像
耻出管疾
旰显像
旰断层品像
肝癌
評痻阳㖄显像
行胱甘胝
分脱尔肽转硫酧
蔺状动脉疾病
骨 E 细胞疾
骨肉瘤
骨性艾节类
骨质疏松病
骨转移
骨软化症
骨软骨痽
骨髓扩张
骨显像
骨髓抑制
骨䯣资
骨髓告像
骨髓㿇
高能准白城像
高铸－${ }^{-097} \mathrm{Tc}_{\mathrm{C}}^{-}$－酸钠活射液
盖革计数器
感兴趣区
感染
幖九琭转

H

化学纯度
functional imaging 3
photomultiplier tube 20
arthriti： 261
prostheue joint 261
liver blood flow－blood pool imaging 146
Jiver hacmangioriaa 147
liver imaging 145
liver temographic imaging $\quad 150$
hepatuma $1+8$
hepatocellular carcinoma positive imaging 148
glutathone．GSH 24.5
glutithiote \＆transerasc，GST 245
coronary artery disease－is
giante ecll tumor of bone 170
osteosarcoma 166
nsteoarthritis 181
ostcoporosis 172
bone melastases 160
usleomalacia 1,3
usteochondroma 169
myeloprolifetative disease 226
bone seintigraphy 15,5
marrow suppression 224
usteomyclitis 261
bone marrow scan 223
nyeloma 225
high energy collimetor umaging 29
sodium pertechnctate 99 m injection 41
Geiger Mialler Counter 4
region of interest， ROI
infection
torsion of the testis 221
chemical purity
\qquad
\qquad
 \qquad
\qquad

亨廷顿病	Huntington＇s discase	131
活度计	radiometer	38
核电子学	nuclear electronir	3
核素显像	nuclear imaging	3
核药学	muclear pharmary	4
混合性	nixed	160

I

J

甲状狝先天异常
甲状腺髓样癌
节度唑回肠炎
机会性感染
局部葟壁运动
弱部脑向流
金叶电子镜
急性心肌梗死
急性排灰反应
结肠通过时间
结构㭔声
假体松动
假体感染
球少计数
基因显像
畸形性骨炎
铬 ${ }^{[07} \mathrm{Ga}$ ］构様酸镓

K

卡氏师囊虫病
扩张型心肌病
块状结构探测器
抗人粒细胞单克隆坑体
库欣综合征
pneumocystic Carinii pneunonia 263
dilated cardiomyopathy 62
block detrctor system 30
antigranulocyte monoclonal antibody 238
Cushing＇s syridrome $\quad .98$
L

六甲基两二胺肪
临床核医学
类风湿性关节炎
淋巴水肿
淋巴动态显像
淋巴显像
淋巴显像体表标志
淋巴显像剂注射技术
淋巴静态泉像
hexamethyl propylcneamine oxime Il2
clinical nuclear medicine 3
rheumatold arthritis 201
lymphoedema 236
dynamic lymphatic study 230
$\begin{array}{ll}\text { lymphatir norie scintigraphy } & 238\end{array}$
marker for lymphatic imaging 230
injection techniques for lymphatic inaging 229
static lymphatic maging 230

濑巴瘤	lymphoma	228
领带征	tie sigt	172
化		

氯化亚花
：u1 TCl， $2 \cdots \mathrm{Tl}$54

M

梅克尔缐室
门控心肌灌汪显像
门控心血池断层亚像
万睟性
免疻缺陆病人
漫性阻塞性肺部疾患
惯性排斥反应
Merkel＇s diverticulum 143
gared myocardial periusion imaging \quad is
gated tomographir ventricu．ography 6i
horseshere kidney 217
immunodeficiency patient 263
chronic obstructive pulmonary disease，COPD 89
chronic rejection 221

N

$\begin{array}{lll}\text { 脑血流 rerchral blood flow } & 112\end{array}$
脑卒巾 stroke 114
脑肿瘤 brain tumour 119
$\begin{array}{lll}\text { 脑脊液 } & \text { cerebrosphnal fluid } & 1016\end{array}$
脑断萄糖代谢
cerebral glucose metaholism 125

0

P

p^{H} 值
P 梼蛋白
鸟型分枝杆斎
冰路桉阻
䗉金森病
普通药物
脾功能六进
脾肿大
脾显像剂
腺缩小
膀朕输尿管返流
pH valur 38
P－glycoprotcin 243
Mycobacterium Avium 26.3
thbstruction of urinary tract 213
Parkinson＇s diseasc 130
genetral drug 3.3
hyperspienisra 228
splenomegaly 228
splenetic scan agent 227
atrophy of spleen 228
vesicoureteral reflux 219

Q

5－羟色胺
Q12
亲心肌梗死品像
前哨淋巴结
缺血吽，心肌病
缺血性坏死
㧧甲内脯酸试验
5 hydroxytryp tamine 255
१\％1．Tc－furifosmin 55
myocardial infarct－avid imaging 68
sentinel node 235
ischemic cardiumyopathy 62
vascular necrosis 179
Captopril test 212

R

人血清白莢䖝譈球	human albumin macroaphete（HAW）	81
人抗歇扮体	hit tran ant－mouse antibody，HAMA	250
软骨肉摛	chondrosarcoma	168
坞原检柏	pyragen test	40
如［＂ Rb j 氯化铭	＊ $\mathrm{Rb}-\mathrm{RbCl}$ ，${ }^{=2} \mathrm{Rb}$	55
溶背性	osteolyut	150

S

双半胱く酯
ethyl cy－teltale dimer 11,3
双时杜法
double phase study
双条征
双核素喊影法
4长抑素
止物分布
内光镜
实验核医学
情工腺皮质显像
怿上腺皮质脂噢
肾上腺显像
肾上腺解质亚像
骨小球情资
肾小球滤过率
学现能显像
恬衰竭
㥪外伤
䦽先天琦形
将动脉狭窄
惟血流灌注显像
少血管性高血圧
肾图
double－stripe 1 if3
dud radumuclide samrigraphy 2013
somatohtatin İ？
bicharnbunion to
spintharmsope +
experimental ulurlear nedicme is
adrenocortual imagng 14 ：
adrenorortceal adenona 148
adrenal imagng 200
adrerial meedullary imaging $\quad 2(1)^{\prime}$
glorncrulonephrtis 21,3
glomerulse filitation rate $\quad 2(8$
renal functional irnaging 209
renal fanlure 211
renal traurna 219
renal congenual anomalise $\quad 21 \%$
renal artery stenous 212
renal flow perfustonl itnaging 208
tenuvacular hyperterision 212
renography 21 ，
 ＂는）＂少

4 \qquad
\qquad
散射符令
模数转换

T

同，位素效应
体内
体外
体积符合采集重建
图像融合断层显像
统计噪声
咞液腺品像
碳：：1 C］—蛋氨酸

U

V

W

九菌检查

威眑康星卡片分类试验
胃食管返流
胃肠道出血昆像
岗排空咐间

X

卜腰背痛

小肠递过时问
新辅佐化疗
心肌冬眠
心肌存活
心肌向流灌汗
心肌顿抑
心肌灌注显像
先天性心脏病
血运重建术
血－脑漛液屏障
血管活性肠肽
线源仲展函数
细菌内毒素检榃
显像
isotope effect
in vivo 3
in vitro 3
volume coincudence acquistion reconstruction 29
fusion image tornegraphy 216
statistical nase $\quad 25$
saliaary gland itraging 153
${ }^{11}(-$－methionine \quad l 11
scattering coincidence $\quad 29$
dialog io digital－onnversion 22
pentavalent technetium 99 m dimercaptosuecinic 248 acid．${ }^{9 i T} \mathrm{Tc}(\mathrm{V})$－DMSA
$\begin{array}{ll}\text { iterile trat } & 39\end{array}$
Wisronsin card sorting test，WCST 112
gastrue wophageal reflux．GER 138
gastrountestinal tract bleeding imaging 144
gastric cmptying tume．GET 138
low back pain 178
small bowe transit time． $\mathrm{SB}^{\circ} \mathrm{T}^{\circ} \mathrm{J} \quad 140$
presurgical neoadjuvant chemotherapy．PSNC 245
myocardial hibernation 72
myorardial viability 72
myocardial blood flow 54
myocardial stunning 72
myyocardial perfusion umaging 54
congental heart disease 99
revasrularization 72
blood－brain barrier 106
vasoactive intestinal pertide 252
line spread funct on 32
bacteria endotoxin lest 40
irnaging 8

Y

乙酰胆碱受体

右心功能	right remtricular function	64
右心射血分数	right ejectior：fraction	54
延迟时间完	rime delayed window	31
异们甲状腺	ectopic thyrold gland	197
异位钙化	cetopuc calcification	172
先掌淋巴显像	abnormal lymphatic imaging	233
医用回旋加速器	medical cycletron	28
应力骨折	stress fracture	176
炎症	inflammation	255
炎症性肠道病	inflammatory bowe．disease	260
原发性甲状旁腺功能几进	primary hyperparathyroid smi	172
塬发性骨加瘤	primary bone tumor	166
烟［ ${ }^{[11} \mathrm{In}$ 」 抗肌凝蛋追i单克隆抗体	＂In－antitnyosin menoclonal antibody	70
	$1: 1 \mathrm{In}$ labeled igG	256
	${ }^{12}$ In－labeled leukocyte	258
钢［ $\left.{ }^{[1]} \mathrm{In}\right]$ 标记抗粒细狍单克隆抗体	体 ${ }^{111} \mathrm{In}$－labeled antigranulocyle antibody	258
	${ }^{11}$ In octreotide	9
隐性骨折	cocult fracture	$1 \overline{7}$
渾没鎘射	antribilation radiation	31
喏淋巴显像	axillary lymphatic sean	$23 / 3$
腋淋巴结切除	axillary lymph node dissection	242
影像硋医学	nuclear medic．ne imaging	$2+2$
Z		
正常骨䝵显像	normal sean of bone marrow	224
再生谭碍性贫血	aplastic anemia	225
真符合	tue coincidence	29
造血组织	hematopoietic tissue	29
壋加计数	count acding	223
國电于゙	positron	23
生电が发射计算机断层仪		28
自辐射分解	positron emission computed tomography．PET	$3.23 .54,16.5 .190,240$
且接符合	fadation．decompostion	3.4
质量检验	direst coincidence	30
质量控制	ality alssay	38
	quality control	38
作核医学号	Society of Chinese Nuclear Medicine	7
棕色㺂	Journal of Chinese $\mathrm{N}^{\text {aclear Medic．rne }}$	？
棕色瘤	brown tumor	
左心功能	Isfi ventricular function	172
左心射血分数	left ejertion fraction	64

英中文索引

A

abdominal abscess
ace－ylcholine receptor
acquired immunodeficiency syndrome
acute inyocardial infarction
acule rejection
adrenal medultary inaging
adrenocortical imaging
adrenocortical adenoma
Alaheimer＇s disease
analog ro－digital conversion
annuhilation radiation
antigramulocyte monoclonal antibody
aplastic anemia
arterial imaging
arthritis，
atrophy of splee：
attenuation correcion
axillary lymphaue soan
axillary lymph noce dissection
嗳腟脓炚 25.9
乙酷胆碱受体 ：08
艾滋病 $\therefore 19$
急性心肌㳏死 67
急性排斥反㽚 221
兴卜腺髓质显像 200
肾上腺皮质品像 197
肾上腺皮质腺㨨 198
Bu［夵茨海默病 11.
模数转换 22
温浚辐射 31
抗人粒细胞单克降抗体 258
轨牛㜔碍悱怯血 225
动䏡显像 76
关节炎 251
脾維小 228
衰誠校 $1 F$ 。 31
腋裉巴昆像 2．31）
腋淋巴结切除 $2 \cdot 12$

B

bacteria endotox：n test
beading
biocistribution
bit
block detector system
blocd brain barti－r
bone marrow scan
bone metastases
bone srint graphy
brain tumour
brown tumor
buthionine sulfoximine．BSO

C

${ }^{1} 6$ methiomne．${ }^{1} \therefore$ MET
Captopril test
cellulitus
纽菌内毒素检李 40
我珠样 $1: 2$
牛物分布 40
比特 24
块状结构探测器 3（1
迫 脏脊襍屏障 106
它艏品像 223
骨转移 160
骨显像 155
脑肿瘤 119
栋色瑔 172
丁硫研亚胺 245245

碳 ${ }^{1} \cdot \mathrm{C}_{-}$蛋氨酸 $\quad 101$
疏甲内脯酸试验 212
蜂窝组织炎 259

cerebral blood flow	脑しİ儿流	112
cerebral glucose metabolism	脑匍蚫糖代谢	125
rorebrospinal fluid	脑眷液	106
chemical purity	化学纯度	39
chondrosarcoma	软骨次箅	168
chrome obstructive pulmonary discase，C（）PI）	慢性阻塞性肺部疾患	89
chroni：rejection		221
clinical nuclear medicine	临床核矢㻃	3
colon transit time，CTT	结肠通过时间	142
congenital aromaly of thyroid gland	甲状腺先天并常	188
congental heart disease	先天性心䌶病	99
coronary artery disease	冠状动脉疾病	73
counı adding	增加引数	23
count skimming	减少计数	23
abnormal lymphatic imaging	异常淋出显像	233
Crohn＇s disease	节段吽回物炎	260
Cushing＇s syndrome	库欣综合征。	198
D		
decay	衰变	31
decp venous imaging	深静脉显像	76
dilated cardiomyopathy	扩张型心肌病	62
direct coincidence	㚗接符合	30
diuresis renography with furosemide	速尿利尿试妙	213
dopamine receptor	考巴胺受体	1138
double phase study	双时相汒	203
double－stripe	双条征	163
dual radionuc．ide se ntugraphy	双核素减影法	203
dynami：lymphatic study	淋巴动态显像	230

E

ectopic calcification 异位钙化 172
atopic thyroid gland
e．cctric beam computerized tomography．EBC：－
electricel collimation
amission computed tumography，FCT
epilepsy
esophageal transil time，ETT
ethylcysteinate dimer
experimental nuclear medicme

F

脑任流 112
脑葡萄椎代谢 125
脑眷液 106
化学纯度 39
软常次溜 168
慢性阻塞性肺部疾患 89
慢怍排斥反应 221
临床核逄学 3
结肠通过时间 142
甲状腺先天异常 188
先天性心肌病 99
冠状动脉疾病 i3
增加引数 23
减少计数 23
异常淋山显倳 233
节段怍回肠炎 260
库欣综合征 198

衰变 治
深竫脉显像 76
扩张型心肌病 62
㚗接符合 30
速尿利尿试骚 21：3
多巴胺受体 1138
双时相汰 203
双条征 163
双核素减影法 203
淋巴移态显像 230

172
昇位甲状腺 197
电子束しT i7
出子准直 29
发射计算机断层 5． 23
痃佩 128
食管递过时间 137
双半腅乙秥 113
实验核医学 3
${ }^{14}$ F－deoxyglucose．${ }^{16} F-F I M(3$
${ }^{18} \mathrm{~F}$－fluoro－2＇deoxyuridine
${ }^{15} \mathrm{~F}$－gancelovir．GCV
氟－$-\& F_{-}$脱氧葡萄糖 101，240 241 253
\qquad ．． \qquad
firs：patss itmaging
fantional imaging
fus：on image 1．mosgraphy

G

＂${ }^{-}$as citate．${ }^{\text {＂Ga }}$
gastrice emptying time，GFT
gas－rocsophagoal reflux，GER
gastrountestinal iract bleeding imaging
gated myocardial perfusion amaging
gated tomographic ventr culography
Geiger－Muller Counter
gene imagitig
general drug
ganl cell tumor of bore
g．omcrular filtration râtc
g omerulonephritis
glutathione，GTSH
gluathione Stranscrase，GST
gold lea：electroscope

H

「．－hodroxytryptamine
hematopoicric lissue
hepatobiliary jmaging
hepatocellular carrinoma positive imaging hepatoma
hexamethylpropylene amme oxime
high emergy collimator inaging
horseshoe kidney
humarn albumen micrespbere（IJA．M）
human anti－mouse antıbody， $\mathrm{H} \wedge \mathrm{MA}$
human immunodeficient．y virus（HIV）
human imnnunoglobulin（ Hlg_{r} ）
Hurtingion＇s disease
hyperparathyrecidism
hypersplenistn
hypertrophic pulmonery usteoarthropathy hyperxia

1

[^4]首次通让丠像 63
㘮能性亚像 3
庝像楇合合断広咞像 210

镓｜Ca 构椽䣼镓 247
等排空时间 138
罢含管返流 138
用肳道出血亚象 11 i

门控心向1池断忩品像 67
盖革计数器筑
基因业像 253
普通药物 33
骨巨细胞痖 170
阶小球泌过率 208
情小球肾炎 213
分胱第脂 245
公胱茾胍转硫醇 245
金旪出子镜 4

5羟色版 $25 \overline{0}$
造血组织 223
胆系出像 1.52
讣癌阴啭显像 148
肝㿋 148

高能准壬成像 29
马蹄肾 217
人血清｜＇1蛋白微球 84
人抗気抗体 250
人类免疫缺陷病毒 263

亨廷顿疳 131
用状旁腺功能儿进症 202
腂功能尤泩 228
肥大性肺㤽骨关节病 16.3
ミ氧 253

钢 $L^{-1} \cdot \mathbf{l n}{ }^{-1}$ 抗肌凝䠂市单克降抗体	74
钢！ $\mathrm{L}^{1.1} \mathrm{In}$ ，興曲烠	9
${ }^{11}$ In 标记抗校细胞单克隆抗体	258
＂In 标比人 $\mathrm{Ig}^{(0)}$	

钢 $1^{1.1} \mathrm{In}$＿奥曲肠 9
${ }^{11}$ In 标讣抗粒细胞单克隆抗体 258
＂In标汇人 IgCr_{r} 2ご
${ }^{13}$ In labeled leukocyte
${ }^{-s}$ I－chTNT／biotin
${ }^{13}$ ．1－1odocholesterol imaging agent
${ }^{3}$ I－metaiodobenzylguanidine，MIBG
imaging
immunodeficiency patient
in vitro
in vivo
infection
inflammation
inflammatory bowel discase
injection techniques for lymphatic imaging
ischemic cardiomyopathy
isotope effect
J
Journal of Chinese Naclear Medic ne

K

L
laminin
lefr ejection fraction
left ventricular function
Legg－Perthes disease
leukemia
line spread function
line－of－response
liver blood flow－blood pool imaging
liver haemangiona
liver imaging
liver tomographe imaging
low back pain
lung transplantation
Iymphatic scintigraphy
lymphoedema
lymphoma
M
macroaggregated albumin（MAA）
magnetic field
magnetic resonance imaging
marker for lymphatic imagug
marrow suppression
Meckel＇s diverticulum
＂In 标记白细胞 258
${ }^{13}$ 碘生物素化抗肺㨨细胞核人鼠嵌合单抗 251
碘＿${ }^{[131}$ 〕］代服固醇 197
䃆 ${ }^{1331} \mathrm{I}$ I－1间位磺卡胍 200
步像 8
免疫缺觕病人 263
体外 3
体内 3
感染 255
炎症 255
炎症性䏲道病 260
淋巴亚像剂注射技术 229
缺血性心肌病 62
同位素效应 37
中华核医学杂志 －
层粘连蛍的 252
在心射血行数 64
左心功能 64
儿竜特发性股骨头坏死 180
白血病 226
线潦伸展函数 32
符合响应线 31
肝的流血池显像 146
肝血管瘤 147
肝显像 145
肝断层显像 150
下腰背痛 178
肺移植 102
淋巴显像 228
淋巴水肿 236
淋巴矅 228
大颗粒聚合人同清白蛋向 84
磁场 28
磁共振成像 25.5
淋巴显像体表标志 230
骨髓抑制 224
梅克尔想室 143

medical cyclotron	医用回旋加速器	28
medullary thyroid carcinoma，MTC	甲状腺䯝样曒	249
mixed	混合性	160
molecular coincidence cetection，MCD）	分子符合採测	29
molecular nuclear medicinc．	分子核医学	5
multidrug resistance－assoriated protein．MRP	多药耐药相关糔白	244
multidrug resistance．MJR	多约耐药性	243
Mycobacterium Avium	鸟型分枝付菌	263
mytioma	骨䯞塯	226
myeloproliferative disease	背䯝扩张	225
myocardial blood flow	心肌血流灌注	54
myorardial hibernation	心眀冬眠	72
myocardial infarct axid ımaging	亲心肌梗死显像	68
magnetic resonance imaging	磁共振成像	132
myocardial perfusion imaging	心肌灌泣显像	\％4
myocardial stunning	心肌顿抑	72
myocardial viability	心肌仔活	72

N
${ }^{14} \mathrm{~N}-\mathrm{NH}_{3}$
nephroatrophy
neuroreceptor imaging
normal scan of bone marrow
nudear electronics
nuclear imaging
nuclear medicine imaging
nuclear pharmacy
宛 $\left.{ }^{13} \mathrm{~N}\right]$ 氨 55
尙萎缩 213
神经受体显像 70
正常骨髓显像 224
核电子学 3
核索显像 3
影像核医萦 3
核药学 4
0

obstruction of urinary tract	旅路梗阻	213
occult frasture	隐性骨折	176
Octreotide	奥肋脉	252
old myocardial infarction	陈旧性心肌梗死	74
opportunistic infertion	机会性感染	263
osteitis deformans	畸形性骨炎	174
ostevarthritis	骨性关书炎	181
osteoblastic	成骨性	160
osteochondroma	骨软骨瘤	169
ostrolytic	溶骨性	160
osteomalacia	骨较化症	173
osteomyelitis	骨髓炎	261
osteoporosis	骨质疏松病	172
ostcosarcoma	骨肉窗	166

P

parathyroid adenuma
parathyroid imaging
parathyroid hyperolasia
Parkinson＇s disease
partial volume cffects
pentavatent technetiunn－ 94 m
dimer：aptos ccc inic acid，${ }^{\text {asm }} \mathrm{Fe}$ V）DMSA peritonitis
pH value
phrochromorytome
photomultiplier tube
pituitary adenoma
piluitary imaging
pneumocystic Carmio pneumonia
polycystic kidney
positron
positron emission computed tomography，PET
presurgica！neoadjuvant chemotherapy，PSVC．
primary aldosteronism
primary bone tumor
primary hyperparathyroidism
prognosis of coronary artery disease
prosthesis infection
prosthesis loosening
prosthetic joint
pulmonary carcinoma
pulmonary embolism
pulmonary artery congenital anomaly
pulmonary hypertension
pilmonary unfarction
puimonary perfusion imaging
pulmonary ventilation m maging
pyelonephritis
pyrogen test

Q

quality assay
quality control

R

γ－amenobutyric acid
${ }^{3} \mathrm{Rb}-\mathrm{RbCl},{ }^{\mathrm{k}} \mathrm{Rb}^{2}$
radiation deromposition
radio frequency
radioactivity
radioautolysts

甲状旁腺腺瘤 203
世状旁楾显像 202
甲状原腺增生 203
帕金森㨅 13：
部分容积效㗐 25
五价 ${ }^{\circ n}$＂锝－．流基 J 二酸 248

腹膜炎 25．4
pH 值 38
䃈緕细胞渵 201
光电倍增管 20
垂体腺瘤 205
青体品像 205
卡氏肺囊虫病 26.3
多整肾 218

正电な发射汭算机断层仪 3．23．51．16ラ．19n．2ぽ
新辅佐化㘧
原发性醀柕酮增多病 199
原发性膏肿瘤 166
原发性虭状䆖腺功能尤进 1／2
冠心病顾佥 61
假体感染 176
假体松动 176
假肢关节 261
伂癌 100
肺检塞 G1
肺动脉先天性发育异常 100
肺动脉高原 的
肺枅死 4．45
肺擎㳆显像 84
肺通气品像 87
肾㙉肾炎 213
热原检查 40
质量检验 38
质量控制 38
Y氨基 J 酸 129

自辐射分解 34
射频场 28
放射性活度 E
辑射自分解 37
radworhemical purity
radiocon entration
radisimmunoimaging．RIl
radiotiodine
radiometer
raduonuclide ademification
radionurlide purity
radionuchde gencrator
radiopharmaceuticals
radiophermate aticals preparation
random coincidenct
regional cerebral blood flow， rCBF
region of interest．ROI
regional wall motion
rencl artery stenosis
renal congenital anomalies
renal cysts
te＇nal failure
renal flow perfusion imaging
renal functional imaging
renal usicodysirophy
renal static imaging
fenal irensplantation
renal trisuma
renal tumor
retugraphy
renovascular hyperteesion
revascularization
rheumatoid arthritis
right ejection fraction
right ventricular function

放射化学純度 39
放射性淕度 38
放射免疫显像 749,250
放射性碘 185
活度计 38
放射性核素鉴別 38
放射性核纯度 38
放射性核素发生器 3.3
放射性约物 33
放射性药品 33
随机筸合 29
䂈部脑係流 110
感兴趣风
屜部室壁迅列
䄍动脉狭宗
22．137．219
（1） 7
212
肾先天蛤形 217
峰霊屾 214
肾农噰 214
肾血流潦注显像 208
能功能显像 209
情性筑营美不段 172
肾静态显像 211
肾移植 220
肾外侈 219
肾肿嬸 214
怜图 210
情血管恀：离血乐 212
血运重建术 2
类风漝性关节炎 261
厷心射血分数 54
右心功能 64

S
salivary gland imaging
scattering comeidener
second or scond look aparotomy sentinel node

唓液腺显像 153
敬射符合 29
次探相术 242
前哨淋巨趾 235
4．23．55．149． 157
250
小肠通过㻚间 140
中华核医学会 广
高锝 ${ }^{9 \% m} \mathrm{Tr}_{\mathrm{C}}$ 「酸钠㳗射液
生に抑索 122
放射性比度 38
闪光镜 +
胉显像剂

splenotnegaly	何耽大	228
squat	蹲位	157
slandard uptase value．SLV／	标准摄取值	241
differential uptake ratio，DUR		
static lymphatic imaging	㳊已静态显像	230
statistical noise	统计噪声	25
sterile trat	无菌检查	39
stippling ribs	彩点肋	159
siress fracture	应） $\begin{aligned} & \text { 骨析 }\end{aligned}$	176
stress myocardial perfusion ımaging	负荷心肌灌注显像	55
stroke	脑卒巾	114
siructural noise	结构噪南	25
superscan	超级影像	161

T

${ }^{201} \mathrm{TiCl},{ }^{201} \mathrm{TL}$
${ }^{\text {9n m }}$ Tc－furifosmin
${ }^{34, m} \mathrm{Te}$ glucoheptonate $\left.{ }^{(30 \mathrm{~mm}} \mathrm{Te}-\mathrm{GH}\right)$
${ }^{95 \pi} \mathrm{Tr}$ HL91
${ }^{93 m} T \mathrm{Tc}$ N－NOEL
${ }^{49 \mathrm{~m}}$ Te－pingyangmycin，PYM $\cdot{ }^{9 e_{n}}$ Te
peplomycin．PPM
${ }^{1} \mathrm{Ft} \mathrm{T}$ c PYP
${ }^{99}$ se $\mathrm{T}_{\mathrm{c}}-\mathrm{RBC}$

methoxyisobutylisonitrile．${ }^{997} \mathrm{Tc} \mathrm{T}_{\mathrm{NI}} \mathrm{MBI}$
${ }^{99 \mathrm{~m}}$ Tc－tetrofosmin．${ }^{\text {J9m }}$－ CC P53
${ }^{33 m}$＂Technetlum generator
${ }^{30 m}$ Technetium -Ig C
99n Technetium－antıgramlocyte monoclonal antibody
39m＇「echnetium－HMPAO－Icukocyte
technetium ${ }^{-99 r u}$ Te］pentetate（ ${ }^{\text {ssm }}$ Tr－DTPA）
Takayasu＇s arteritis
thyrond angrography
thyrivid cancer
thyroid hormone
thyroid imaging
thyroid nodule
tie sign
time delayed window
torsion of the testis
transient ischemic attack
true coincidence

氯化亚笓 34
Q12 35
铣［49＂ Tc_{C}－凖庆糖酸盐 101

10－四甲基十二完2，11－二䣱脬

铕［ ${ }^{193 .} \mathrm{Tc}$ 」平阳霎素 251

镍 $\left[{ }^{-9 \mathrm{~mm}} \mathrm{Tc}_{\mathrm{c}}{ }^{-}\right.$焦磷酸盐 69
锠 $\mathrm{L}^{-3 \mathrm{vm} T \mathrm{c} \text { ］红细胞 } 62 ~}$

锝［ ${ }^{9 m} \mathrm{Tc}_{\mathrm{c}}^{-1}$ 发生器 35

钹［ ${ }^{〔 9 m}$ Ic ］抗人䊉细胞单克隆抗体 258
镍 L $^{05 \mathrm{~m} T \mathrm{C}] \text { HMPAO－向细胞 } 258 ~}$

多发性大动脉炎 9：
甲枤腺血流显像 18；
計状腺癌 193
用状腺激素 184
甲状腺显像 184
行状腺结节 188
领带征 172
延迟时间窗 31
䍗乣护转 221
短暂性腋缺血发作 111
真符合 29

U

V

va．cular necrosis	楽血性坏死	179
，averacuse in erstinal peptide．VIP	血管活性䀛胜	252
－esicourcteral reflux	侤胱输尿管返流	219
voluthe coincidence acquisitorn reconstruction	体积符合采集車建	29
W		
Wisconsin card sortug lest．WCST	威斯康星下片分类试验	112

X

Y

Z

[^0]: （三）尿事 $\left[{ }^{14} \mathrm{C}\right]$ 胶妻（urea ${ }^{14} \mathrm{C}$ capsules，${ }^{14} \mathrm{C}-\mathrm{u}-$ rea）

[^1]:

[^2]: 注：${ }^{13}$ ：I－6－IC ${ }^{151} \mathrm{I}-6$－砋代胆圆宕
 ${ }^{131} \mathrm{I}-6 \beta \mathrm{IC} \quad{ }^{131} \mathrm{~J}-6 \beta$ 砏代胆固醇
 ${ }^{5} \mathrm{Se}-6 \beta$－IC ${ }^{\text {E }} \mathrm{Se}-6 \beta$－磺代睅固醇

[^3]: ${ }^{67} \mathrm{Ga}$ 的生：物侍性与一价铁离了㕲似，静脉注射后 90% 与体内的转铁蛋白（transferrin），铁蛋白

[^4]: ＇In－antimyosin monorlenal antibody
 －＂In octreotide
 ＂In labeled anigrantle cọte antibody
 ＇In labeled $\operatorname{Ig}(\dot{T}$

