总 主 编 吴恩惠
总主编助理 贺能树
张云亭
白人驹
顾
问 刘玉清
李果珍
朱大成

人民卫生出版社

中华影像医学总论卷

主 编 陈炽贤 高元桂

人民卫生出版社

中华影像医学总论卷

主 编 陈炽贤 高元桂

人民卫生出版社

总 主 编 吴恩惠
总主编助理 贺能树
张云亭
白人驹
顾
问 刘玉清
李果珍
朱大成

人民卫生出版社

目 录

（按篇顺序排列）

MEOICAL IMAGINGCHINESE
第1篇 X 线成像第 1 章 X 线成像的基础物理（3）
第1节 基本校子 （3）
 （3）
 （4）
第 4 节 能唇 （5）
第2章 X 线的产生 （6）
 （6）
第 2 㛚 X 线管及傌点 （8）
第3节 X譏管空峦 （9）
第 3 章 X 线波谱 （10）
 （10）
 （10）
第 4 章 X 线的特性 （12）
第1节 物括特性 （12）
 （12）
 （12）
第5章 X 线成像的原理 （14）

作獄形式 （14）

技术風素 （14）
第2篇 计算机体忩成像（35）
第1章 CT 机的基本结构和 成像原理 （37）
第 1 苛 CT 机约基本结均 （37）
第 2 寺 CT 権像原理 （38）
第 3 号 C＇「的发展 （41）
第2章 评价CT机主要技术
性能的指标 （46）
 与阔期枵＂间 （46）
第3节物肯密度与影您密度 （16）
第 4 节 自然对比与人工对比 （16）
第6章 X 线检查方法 （18）
第 1 方 普通检查 （18）
第 2 节 持殊检查 （19）
第3芳 浩影检查 （21）
第4节 X 线捡否万法的选择 和综合搗治 （21）
第7章 对比剂 （23）
笨1节浬想欢比刹的要求 （23）
第 2 斿 阼性对比剂 （23）
第 3 节 䧕性对比刘 （ 23
 （26）
第 5 节 対比剂的反应和幏治 （27）
第8章 X线诊断的原则和步骤 （30）
第 1 膤 诊㴥原则 （30）
第 2 节 诊粼步㨡 （30）
第9章 影像医学的安全防护 （32）
第1节 X 戗防护的意义 （32）
第2捅 防护原则和措施 （32）
第 10 章 X 线成像新技术 （34）
第2节 CT 机虳特殊功能（46）
第3章 CT 扫描技术 （53）
第1节 CT 扫药前准备工作 （53）
第 2 号 早科 （53）
第 3 苛 增强扫描 （54）
第 4 节 栲影 Cl 扫渵 （57）
第 5 节 特殊打渵 （58）
第4章 CT图像分析 （59）
第 1 节 像元和本元 （59）

目 录

（按篇顺序排列）

MEOICAL IMAGINGCHINESE
第1篇 X 线成像第 1 章 X 线成像的基础物理（3）
第1节 基本校子 （3）
 （3）
 （4）
第 4 节 能唇 （5）
第2章 X 线的产生 （6）
 （6）
第 2 㛚 X 线管及傌点 （8）
第3节 X譏管空峦 （9）
第 3 章 X 线波谱 （10）
 （10）
 （10）
第 4 章 X 线的特性 （12）
第1节 物括特性 （12）
 （12）
 （12）
第5章 X 线成像的原理 （14）

作獄形式 （14）

技术風素 （14）
第2篇 计算机体忩成像（35）
第1章 CT 机的基本结构和 成像原理 （37）
第 1 苛 CT 机约基本结均 （37）
第 2 寺 CT 権像原理 （38）
第 3 号 C＇「的发展 （41）
第2章 评价CT机主要技术
性能的指标 （46）
 与阔期枵＂间 （46）
第3节物肯密度与影您密度 （16）
第 4 节 自然对比与人工对比 （16）
第6章 X 线检查方法 （18）
第 1 方 普通检查 （18）
第 2 节 持殊检查 （19）
第3芳 浩影检查 （21）
第4节 X 线捡否万法的选择 和综合搗治 （21）
第7章 对比剂 （23）
笨1节浬想欢比刹的要求 （23）
第 2 斿 阼性对比剂 （23）
第 3 节 䧕性对比刘 （ 23
 （26）
第 5 节 対比剂的反应和幏治 （27）
第8章 X线诊断的原则和步骤 （30）
第 1 膤 诊㴥原则 （30）
第 2 节 诊粼步㨡 （30）
第9章 影像医学的安全防护 （32）
第1节 X 戗防护的意义 （32）
第2捅 防护原则和措施 （32）
第 10 章 X 线成像新技术 （34）
第2节 CT 机虳特殊功能（46）
第3章 CT 扫描技术 （53）
第1节 CT 扫药前准备工作 （53）
第 2 号 早科 （53）
第 3 苛 增强扫描 （54）
第 4 节 栲影 Cl 扫渵 （57）
第 5 节 特殊打渵 （58）
第4章 CT图像分析 （59）
第 1 节 像元和本元 （59）
\qquad
\qquad
\qquad
\qquad
 59；
 （60）
 （61）
第3篇 数字减影血管造影（69）
第1章 数字减影血管造影发展

\qquad （71）
 发暴的定细 71）
第2岁 楄影 （71）
 減影出等浩影 72.
 （72，
第2章 数字减影血管造影设备 的基本结构 ． $74 ;$
第 1 节 DSA 的成像珵 ．74）
第 2 岸 DSA 视揭管皆 （76）
第 3 苦 ISSA的陸声 （77）
第4节 DSA影集斿处理和烈示 ：77
 at）
第 5 章 CI的诊断价值与限度 60）
\qquad ．－

第7章 磁共振波谱分析（MR心）……（137）

第 8 章 MR 信号异常的分析与诊断 （150）
生理基现 （150）

策 2 节 MRI检亘和放新的货点……（155）

第 4 节 MRI梨查坿笑忌证……… 1157）

第9章 MR 成像设备…．．．．．．．．．．．．．．．．．．（158）

筫1芳 磁体 ……．．．．．．．．．．．．．．．．．．．．．．．．．（158）
篤2持 梯度系统………．．．．．．．．．．．．．．．．（159）
笨 3 号 勆频系统……………………（159）
第 4 节 计筫机系统………．．．．．．．．．．．．．．（160）
第 5 篇 计算机 X 线摄影和图像仔梢与传输系统（165）
第1章 计算机 X 线摄影 （167）
管1甬 CK系汗注发共守 基本結榕 （167）
第2芦 CR 系统的掂㳅管解 179）
第2章 图像存档和传输系统 （182）
第1苛 建江PACS 的站切性 （182）
第2蕾 PACS的貝理和方法 （182）
第了节 PACS 欵结构 （186）
策 4 节 PACS 的涪宋应来 （188）
簤 5背 远梨放射学 （188）

第1篇

，HINESE MEDICAL IMAG！NG

主编 陈炽贤 高元桂

1895年伦琴在进行阴极射线管试验时，发现了 X 线，因而莫定了现代影像医学的基础。

X 线 是一种电磁辐射（clectromagnetic radiation），就像紫外线，可见光，红外线，微波和无线电波一样，同属电磁辐射。各种形式的电磁辐射频率不同，其能量也不同，频率越高，能量越大。

当高能量的电子作周于物质时，将其动能（kinetic energy）转化为电磁辐射，它包括韧致和标识两个过程（bremsstrahlung and characteristic process），前者产生连续的 X 线波谱，后者则产生特定的䧆窄波谱带。很多参数对所产生的 X 线波谱的形状和波长有影响。所产生的 X 线的量与管电压的平方，管电流，曝射时间，阳极物质的原子序数成正比，而与距离的平方成反比。 X 线的量廵受电压的波形（wave form）及球管滤过 （filtration）的影响。X 线波谱的形态扡受阳极物质的原子序数，管电压，滤过和电压波形的影响。

第1章 X 线成像的基础物理

第1节 基 本 粒 子

在放射物理中，有几种基本粒子（fundamental particles），包括质子（proton）。中子（neutron），电子（electron）和正电子（positron）。然而，在核物理和高能物理（high－energy physics）的研究表明：它们是由一些更小的基本粒子，如夸克（quarks）所组成，但是，在放射物理的概念里，我们仍将卜述四种核子称为基本粒子。原子核是由质子和币子所组成，它们的质量（mass）相近似，质子带正电荷，中子则不带电徛。电子和正电子则分别带负电何和正电荷，而且它子的质量要比质子和中子小得多。电子和正电子又称为 β－或 $\beta+$粒子，α 粒子有两个正电荷，实际上，就是氦的原子核（含有两个质子和两个中子）。这些基本粒子的特性见表1－1－1。

表1－1－1 基本粒子

楤	6\％	等效		64 4 \％
质子	P	＋1（e）	1.008	938
中子	n	0	1.009	940
电子（ β ）	e^{-}	－1（e）	0.0005	0.511
正电子 β^{+}）	e^{+}	$+1(\mathrm{e})$	0.0005	0.511
a 粒子	${ }^{*}$	＋ 2 （e）	4.003	3.727

注： $\mathrm{e}=$ 一个九子的电荷 $=1.6 \times 10^{-19} \mathrm{C}$（轪仑）
$a m u=$（atomic mass unit 原子质量单位）$=\frac{1}{12}$碳－12 原子的质量 $=1.6 \times 10^{-24} \mathrm{~g}$

第2节 原子和原子核的结构

物体是由无数个原子所组成，例如一很铜就含有 6×10^{23} 个铜原子。原子的 Bohr 模型说明所有原子含有一个原子核和数个沿轨道运行电子（orbiting electrons）的外壳（见图 1－1－1）。原子核由带正电的

质子和术带电荷的中子所组成。原子核中的质子的数目即为此原子的原子序数（atomic number，以 Z表示之），它决定原子的许多特性。很多元素（ele－ ment）有几种同位素（isotopes），这些原子的质子数相同，但中子数不同。有一些同位素具有放射性 （radioactivity），它们以高能量的状态存在，而且自然地蜕变（naturally decay）至较低的能量形式。氢原子无中子（原子序数和原子量均为 1 ），但其同位素，如気（ 1 个质子， 1 个中子）和妞（ 1 个质子和 2个中子），两者均为放射性同位素。

图1－1－1 原子的 Bohr 模型图
原子核用质子 (p) 及中子 (n) 所组成，沿轧道运行的电子分在子不同能量级轨道
原子核之外存在着明确表示不同能量级的电子。围绕着原子核，电子沿特定壳（即能量级别）的轨迹运行。只要电子仍然存留在其特定的壳的轨迹上，则能量既不会增加，也不会损失。最内层的壳为 K 壳（见图 1－1－1），然后向外，依次为 L ， M ， $N, ~ O, ~ P, ~ Q$ 等：K 层的量子数（quantum number）为 1 ，L层为 2 ，余类推。每层电子数不能超过其最大值（即为 $2 \times$ 量子数的平方）。因此， K 层只能

有 2 个电子， L 考为 $8, ~ \mathrm{M}$ 展为 18 ，余类推。因此，原子序数高的元素具有较多的怉子贾㤩数。这些它子的安排对该元紫的特性有很大的影响：，个中性原子，即其外先庄子数与核内质子数相等。具有下成对的电子（unpaired electrons）或具备未完全充满的壳（incompletely filled shells）的元素，在化学上更具有反应性（ractive），而活显示磁性，而那
质稳定，并称之为情性气体。

因为带负电荷的生子为带正电何的原了核所吸引，所以最内圏（或 K 层）的能量级最低，图1－1－2示铇的原子能量级图解，内圈电子比外倦电子的能量级低而且与原子更紧密结合，最外圈电子则与原子核的纭合不那么紧密，而月易于移动，称为价电子（valence electron），不与原子结合的电子称为日由电子（irce electrons），它不受怕子核影响，从原子处移动时不需能量，

图 1－1．2 钨原子（原子序数 $\%=74$ ）的电子壳穴能量图
电子在原子各昙壳之间可以移动，这种移动或需要能量或释放能量，从内啳上移加电子需要能量，而此时外橉电子则自然跃让至内层，米填补被排店引去的电子所遗留的空应，此时则释放能量。X 线的产生即这种能量释放的一种形式，如果 M 壳层的电子跃字至K 公，那么就发射 K 层的 X 线。

当外圏电子向原于核方向移动并且释放能量，这种释放是以 X 线的形式出现，则此种 X 线辐射

称为标识 X 线（characteristic x－ray），根据阳极制原子形成的电子空位的位置不可，产生的标识 X 线分别称为 K 系，L系等标识 X 线 X 线的能㕵等于原来壳层的结合能量与跃过所至的层它的结合能量之美，如图1－1－2所小，K层的结合能量为 $69.5 \mathrm{KeV}, \mathrm{M}$ 层的结合能为 -2.5 KeV 。两者之差为 $-2.5-(69.5)=+67 \mathrm{KeV}$ ，此标识 X 线的 67 KeV 能基是铇原了所独具的，

第 3 少 电 磁 辐 射

电磁锚射，例如叮见光，其何波的性质，是一种横波（1ransverse wave），其扎场和磁场垂高于波的传播方们：

声波则休同，声波的镭荡与波的传播力问平行（为纵波），只外的不同点是：电磁波可在真空中穿过，无需介质来传导或输送：的声波则相反，必须有物理介质来传导，它足不能在真茎中通过的。

通常，波的㻋度（u）足其频率（f）等波长（ λ ）的乘积。

$$
\begin{equation*}
v=\mathrm{f} \cdot \lambda \tag{1}
\end{equation*}
$$

电磁轵射的一种特殊性是其速度是栵定的。在真空ゆ，光的速度等于 $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ ，所有电磁辎射，不论共频率和披长是多少，在真空小均以此速度运行，因为速度是固定的，所以频率和波に成反比，因此，波长长者则频率低，间见光和 X 线的波长很短。通常使用单们为纳米（ nm ），出就兒 $10^{7} \mathrm{~m}$ 。

电磁辐射色括一个波长和频率范围较1＂的波谱，波长长则频率低，光波长减少时，则频率增加 （ 见图1．1－3）。出来运载无线心，电视及雷达信毞的属了一波长较长的范围。也就是在波谱的这－小域的电磁波，被用来产生和接收磁共振成像倍宂 （ magnetic resonance imaging sighals），电磁波谱的可见光区域较狭窄，属波长 $400 \sim 750 \mathrm{~nm}$ 范围：波长进一步减少，波的能晕就增加到足以从原子驱走电豆。由此空生的光子（photon）。称为心窝辐射 （innizatjon radiation）。具有柌样能䍗的 X 线和 γ 射线是难以区分的，它们的名称不同，只是其来源代河面已。X线的育生来自惊子核之外，而 γ 财线则来源于原子核之内。

第4节 能 量

能量在一个个系统内必须守恒，既不会产生，也不会被破坏，只是改变其形式而已，能是的最常见的形式印动能（kinetic encrgy）和势能（potential en－ crgy）。将一带负电何的物体吸引至带仆电荷的物体时，产年势能，要想将两者分开，就必须一定能显，电池中储存的势能蚛为例证。光阳极与阴极连接时，释放能量－其量 一般称之内电左（voltage），安际上即两点间的电势（electric potential），例如一个 9 V 的电池，其正，负极之间的电势为 9 V 。当连接两个接点时，就有电子从负极流间正极。道过 1 V 电势而移动的电子获取 $1 \in V$（电子伏特，electron vol：）的能量，因为能量等丁电何与电势（ volt ）的乘积。因此一个电了伏特为能量的单优，它等三 1.6 $\times 10^{-19} \mathrm{~J}$（joule，焦杆）

如前所述，在一封闭的系统内，能量必须宁

恒，不会丢失，只是敌变其形式，这种形式的一种即为质量（mass）s 爱因斯坦（Einstein）发现能量与质量之间的关系，并以公式表小之：

$$
\begin{equation*}
\mathrm{E}=\mathrm{mc}^{2} \tag{2}
\end{equation*}
$$

E 为能量 m 为质量 c 为光速
电磁辐射显小波的特性，以波长和其频率为特性，又称之为粒子辐射（particulate radiation）。单光子（single photon）的能是其频率与波长的乘积，因此，光子的能量可分別以频率或波长来表小。

$$
\begin{equation*}
\text { 或 } \quad E=12.4 / \AA \tag{3}
\end{equation*}
$$

在公式（4）中，E 以 KeV 表示，入以 \AA 表示。此两公式表示看似不同。实则相等，因为所应用的物理常数和单位不同：公式（3）中，能（焦耳）－hf， h 是 Planck 常数（ $6.63 \times 10^{-34} \mathrm{~J} / \mathrm{scc}$ ）：公式（4）则更便于在放射物理中应用， E （千电子伏特）$=12.4 /$ 破长 （ \AA ）＝要将一个电子从一原子移动约需 15 eV 的能
（陈培青 王小宜 肖剑秋）

第2章 X 线的产生

1895年伦琴发现 X 线以后。X 线管是应用加热的铇灯丝，这一加热过程称之为热离子发射 （thermioinic emission）c奵丝为阴极，靶为阳极，两极之间加以高电压，（见图1－2－1）。这样，阴极

的比子群即被驱向阳极钨靶，因为两极之间存在着
到 KeV 至 MeV 级）。当拥有能量的电子撞击铇靶时，大去动能。

图1－2－I 单相全波整流 X 线机线路及其主要部件配置

第1节 标识辐射和韧致辐射

动能的丢失是通过以下三种机制：（1）激）施（ex－ citation）；（2）电离（ionization）和（3）辐射（radiation）。激䣅是带电荷的粒子的能量用来使兄子跃迁至更高能级（即跃迁至更外层一些的核壳），电离是指带电荷的粒子的能量大到足以使电子从原子处移走。标识 X 线就是通过激励或电离，使带电荷的粒子失去能量，当电子跃迁所遗留的空位得到填允，随后发躬：光子而产生的。辐射是指带电荷的粒子的能量用来直接产生光子，由辐射而产生的 X 线称之为韧致过程。由此可知， X 线的产生包括两种机制，即韧致辐射过程和标识过程。

当拥有能量的细子撞击阳极靶时所产生的 X线大部都是韧致 X 线（见图 1－2－2），韧致 X 线的能量取决于人射的电子（incident electrons）离原子核的远近而定。人射的扎子直接撞去原子核，释放其所有能量给光子：因此，最大韧致 X 线能量等于人射的电子的能量，此能量又是由管电压所决定的：未撞击到原子核的电子，在原子核附近通过，围绕原子核偏转而保存一些动能，则所产生的韧致 X 线量较小，若人射电子在相对距离原于核较远处通赾时，则所产生的韧致 X 线的能量最小，在此情况下，人射电了保存的动能则较茤。

在产生标识 X 线的过程中，则人射电子的能量必须大于或等于某壳层电子的结合能，才足以能使该壳层的电于移动，其他层电子跃过以填补其空

图 1－2－2 韧銠 X 线船产生示意图
人勆电广 1 。撞す原戸核而产生最大能量䛌致 X 线，
人射电子2，木㧧志原子核，但距原子核较近，从而产生1 1 等能量韧致 X 线。

图1－2－3 标识X线的产生示意图
人射电 $f(1)$ 的厸能大于 K 党电 \bar{f} 的结合能（2），掩击应，K轨上他现空位，
以标识 X 线（4）发射

位（见图1－2－3）
在大多数的 X 线摄影中，韧致鎘射起主要作用：然而，在乳腺摄影术中，就要求 X 线束尽可能为单能量的（monoenergetic）。因此，乳腺摄影的 X 线管应尽量优化枟识锚射成分而减少波谱较宽的炐致辐射。钿（molybderum）是最好的乳腺摄影球管的阳极靶材料，而且使用肑管电压较低 （25－30kVp）。图1－2－4 バー般诊断用球管在

90 kVp 时产生的 X 线波谱，图1－2－5 示钅靶球管所产生的韧致和标识 X 线波谱。如入射电子将镇原子 K 壳层上的电子驱走，则遗留下的空伦必为 L 层或 M 层 上的电子来充填，M层的结合能 $(-0.5 \mathrm{KeV})$ 与 K 层 $(-20 \mathrm{KeV})$ 之能量差为 + 19.5 KeV ， L 层 $(-3 \mathrm{KeV})$ 七 K 层 $(-20 \mathrm{KeV})$ 乙差为 +17 KeV c 这样，就会从镇靶上产生 17 －和 $19.5-$ KeV 的标识 X 线，这一狭窄的能量波谱带对乳腺

图1．2－4 普通 X 线掫影的波谱，管电床为 90 kVp ，连续韧致 X

图1．2．5 官用下乳腺摄影的钿整产生的韧致和标识 X 线示意图

摄影最为有用。
在诊断范围内所需的电了能量约为 50 － 200 KeV ，靶材料为铇，仅有 1% 的吅子流能量转变为 X 线，这就意味 99% 的能量转变为热能，使阳极发热，因此，在影像医学的沴断工作中，X线管必须承受和散发大军热能。铇貝有耍熔点 $\left(3,370^{\circ} \mathrm{C}\right)$ 和高原子序数（ $Z=74$ ）的特性，是较为理想的靶材料。随着电子流的能量增加，牣致 X 线也增加，至 4 MeV 时，则约 40% 的能量转换城 X线，

出干产生 X 线的效率低，而在附极所 ${ }^{\text {B }}$ 生的热量又高，所以现代 X 线管庙用㖁转阴极，这样

可以使产生的热量敞布在广泛的面积上。
因为 X 线管套要吸收一部分所产生的 X 线，真正的 X 线输出量大为减少。

第2节 X 线管及焦点

X 线管和变压器是 X 线机的主要部件（见图1－ 2－1），箃初是使用阴没射线管改装的，含有少量气体，没存靶，以静电发生器供高电压源，效能很低。1904午始用钨靶，但管电压不高，管电流很低，靹的焦点大，摄片时间长，影像模

糊。1913年制成Cooldige 热阴极 X 线管，为

 1929 行旋转阳枚 X 线得的制成，解决了僬点和功率的可看，焦点減小到 $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ ，功率度
为大，以唇制成的微焦点（ $0.3 \mathrm{~mm} \times 0.3 \mathrm{~mm}$ ） X 线
之一是X线管的性能，其性能通过其焦点和容厧反映出来。

第3节 X 线管容量

如的所述，在 X 线管謝极之间要承受极高的电尤，并通过一定的儿流，性此，当大量速度极高的电子墇击阳极靶吅，㟋生很大的热革。若此热量超出 X 线管所允诈的限度，阴极靶就要熔化，遗成 X 线管损坏，因泊 X 射线管的使用条作不能无限制地堦加，它有一个最大允计负何量，此即 X 线管的蒠量。
（陈培青 王小宜 肖剑秋）

第3章 X 线 波 谱

X 线的波谱（spectrum）是在一定条件下，X 线强度（相对输出量）的图形，图 1－2－4 即表示一般摄影时 X 线的波谱。

第1节 X 线的量和质

X 线的量（quantity）慁指所有休同能量的 X 线强度的总和，量就是光子的数目。在 X 线诊断底用中，作为 X 线强度的－利近似表示方法是：在管电压一定情况下，用 X 线管的管电流 $上$ 曝射时间的乘积来间接反映 X 线的量，通常以毫安秒（ mA 。 s）为单位。

X 线的质（quality）是指 X 线波谱的形态（即能量分布），它表示 X 线的硬度（hardness of x －ray）。即穿透物质的能力，只与光子的能量有关。晶质量的 X 线束就是单能量的线束，即质量相同的光子组成的 X 线束。这种高质量的 X 线所产生的图像较仹且病人接受照射量较少。

第2节 影响 X 线量和质的因素

X 线的量和质受许多参数的影响，有些是固定的，而另一些则可供㩭作者来选择。这些参数包括管电压，管电流，曝射时间，距离，阳极材料，X线滤过和 X 线发生器的类型，

一，管 电 压

X 线管阴极和阳极间所施加的电压可影响 X
的平方成正比。光子的最大能量取决于管电压，标识 X 线的有无也取决于管电压 C 一个 60 kVp 的电子流所产生的最大电子能量为 60 KeV ，它不足以从铇原子的 K 壳层上排斥电子，因为 K 壳电子的结合能（binding energy）为 $69.5 \mathrm{KeV}_{\varepsilon}$

二，管电流和懪射时间

X 线的量与 X 线管䄪管电流（tube current）和

儤射时间或二者之乘积 $(m A \cdot s)$ 成正比，然而，改变 X 线管的管电流和曝射时间，对 X 线波谱的形态（X 线的质）乍无影响。

三，阳极耙材料

X 线的量与婥材料（targe material）的原子序数成正比，对大部分 X 线管来说，阳极的靶材料是周定的，均为合金，含在 90% 的钧（ $Z=74$ ）和 10%的铼（rhenium，$Z=75$ ），一些乳腇 X 线摄影管具备有可供使用者选择的靶材料，如钿（molybdenum，Z $=42$ ）或者铑（rhodium $Z=45$ ）。阳极靶材料只影响韧致 X 线的量而非质，靶材料会决定标识 X 线的能（即标识 X 线的位置）也会影响质。

四，喓射束的硬化

辐射束硬化（beam hardening）是指 X 线波谱 （见图 1－3－1）通过一种衰减材料后改变其形态。起始时，X 线波谱含有高能和低能的光子，当通过一些衰减材料后，低能 X 线（即软线）被吸收，这就是线束硬化。使原X线能量阶中半数低能量束部分被滤除，其所用材料的檿度称为半价层（half－val－ we layer，HVL）。线束硬化后，产牛单能X线束，但是光子的绝对数则減少了。线束硬化或滤过（fil－ tration）的结果是辐射量的减少，但是波谱的能量移至高能级。

乳腺摄影 X 线管就是这种利用线束滤过的最好例证。原来的末经滤过的线束包含较宽的韧致 X线波谱和狭窄的标识X线波谱，在通过一薄层（约 0.03 mm ）钅滤过后，韧致 X 线大为堿少，所剩余波谱更适合于乳腺摄影的目的。

五，X 线发生器

X 线发生器（x－ray generator）的一个特点是具有一定量的电庄波形脉动（ripple in voltage wave－ form）c 单相（single－phase）发生器的脉动是 100% ，也就是电压从 0 到峰值是代断变化的，因而施加子 X 线管阳极与阴极之间的电压有时低，存时义达到
\qquad －－－＿ \qquad

图1－3－1 线束硉化示意图
线束䛻化贞指 X 线更通过更多的衰减村籼后，低能里级 X 线选择地从线束中被吸收掉，HVL－半价层

峰值：这种发生器所产生的 X 线多数为软线（低能量），最理想的发生器应该产生等于峰值的但定电压，三相或高频发生器的电压脉动只有 5% ，因此较为理思，它所产生的 X 线波谱大部分为高能 X线。由于X线的量是 L_{j} 管电压的平厅成正比，所以发生器的类型（所产生的电压波形）摡影响 X 线的量，又影响它的质。

六，距 离

X 线是从一点状源发射出来并均勺分布于各个方向，所以对 X 线量的测定取决于测定点与 X 线

源之间的距离。它们之间的关系是距离平方反比定律（inverse square law），即曝射量与距离豆方成反比 $\left(1 / \mathrm{d}^{2}\right)$ 。增加距离可以減少 X 线的曝射量，但不会影响 X 线的质。

综卜所述，我们懂得，了解这些能够影响 X线质和量的因素和意义。在诊断性成像时，适当地选择这些参数叮以达到优选的目的，这样既可以获取高质量图像，又可减少病人所受的照射量，还可以減少不必要的重复检查。了解这些还可以帮助我们如何选购设备。
（陈培青 王小宜 肖剑秋）

第4章 X 线的特性

X 线是一种波长较䂒的电磁波，其波长范围为 $0.6 \times 10^{3} \sim 50 \mathrm{~nm}$ ，目前，影像诊断设备常用的波长范围约为 $0.008-0.031 \mathrm{~nm}$ 。作为…䐺电磁波，除其有比磁波所有的共同属性外，尚庄于其能量大，波长短而具有其他特性，䠷括起来，可分为以 トに方間。

第1节 物 理 特 性

1． X 线是肉眼不可见的，以光速依肖线传播的电磁波。

2．X 线本质是不带电的，因此它不受外界磁场和电场的影响。

3． X 线具有穿透作用， X 线对各种不同物质都具有程度不同的贯穿能力，这是由于 X 线具有较高能显，物质对其吸收较弱的原故。

如前所述，从公式（4）， $\mathrm{E}=12.4$ 入可以看出， X 线的能量是与波长成反比，即波长越短，能量越大，穿透力越强，反之则弱：然而，X线对物质的穿透吽不仅与其能量有关，而性还和被其穿透的物质本身的结构及原子性质有关，同一能量的 X 线，对原子序数低的元素所组成的物质，如空气，纸，木材，水，肌肉等，则其穿透力强。而对原子序数高的元素组成的物质，如铅，铜，钙，骨骼等，则穿迨力弱。此外，X线的穿透力还 j 被照射物体的密度和挥度有关，密度人，㝵度大的物体吸收 X线的量多，反之则少。 X 线的穿透性是 X 线成像的一种基础。

4．X 线具有荻光效应，当 X 线照射某些物质时，能产生苂光，这些物质称为荧光物质，如铇酸钙，锅氯化钡，硫化锌铻等。它们可使肉眼所不能见的，波长短的 X 线转换成波长较长，肉眼可见的荧光。这种特性是透视检查的基础。
$5 . \mathrm{X}$ 线有电离作用，思有足够能量的 X 光子可以击脱物质原子轨道上的电子，而产生比离。在固体和流体中，电离后的止，负离子能很快复合，不易收集。但使空气中的电离，电荷却很容易收集

起来，我们叮以利用这种电离作用的强弱来测定 X线的童，如电离室（ionization chamber！，盖格－妳勒计数器（Geiger－müler counter）就是利用这－特性制成的。

第2节 化学和生物效应

X 线除真有上述物㛗特性外，还其有化学和生物效应。

1．化学效应
X线能使葉些物质起光化学作用，如涂有澳化银的胶片经 X 线照射后，㞴以感光，产生潜影，经显，定影处理，感光的浣化银离子（ $\mathrm{Ag} T$ ），被还原成全属银（ Ag ），沉淀于胶片的胶膜以，此金属银的微粒，在胶片上古黑色。而本感光的浣化银在足影及冲洗过程中，从 X 线挍片上被冲洗掉，因而显出胶片片基的透明本色，依此金属银沉淀的多少，产牛黑白对比程度不同的影像。这一特吽也是X线摄影术的基础。

2．着出或脱水作用

某些物质经 X 线长期照射后。其结唱体脱水面渐渐改变颜色，如铂氰化钡，铅玻璃，水留等经 X 线照射层㙂水着色。

3．生物效应

X 线对机体细胞的牛物效应主要是损害作用。所造成的损害程度依接受 X 线量的多少何定（微量或少量的 X 线对机体不会产生明显影响，但超过一定量则将引起明吡改变，然而们可恢复。大量或过量的 X 线照射则会导致严重的，不可恢复的损害。X线对机休的生物效 1 立是用作放射治疗的基本原理，也是指导我们在日常影像诊断工作中，应该进行X线防护的道理。

第3节 辐射剂量的物理量度

在放射物理中，使用了一些另外的数晕和单位来表示电离辎射（X 线和 γ 射线）的特性 e 从物理学
\qquad ．－

米讲，很难在 束 X 线中，测定单位时间内，单位面积光子的绝对值，因此，测定曝射芭比较实际 即经过 X 线及 γ 辎射，单位量的空气所产生的电何量 剂量（dowe）是拕物体或人体受照射栃，单位质哩所吸收的能量，是指某物休或人休经辎射虎的效果，是以单位质量所吸收的能量米表示：

测定 X 线强度的物理计量单位是伦琴或伦 （R）。指在标准状态下（ $00^{\circ}, 101.08 \mathrm{kPa}$ ）， 1 ml 空告 （ 0.00129 g ）中产生 1 个静电单位电荷的照射量为
$1 \mathrm{R}, \mathrm{X}$ 线住人体内吸牧的剂量为吉物效应的基础，弟位是戈瑞（Gray，Gy），它等于每下克物，贡吸收一个焦昌（joule）的能哩（即 J／kg），它相当于过去习惯 F通用的单位拉德（ rad ）的 10^{2} 。 R 利 rad 现已不用。

嚗射（exposure）量，即鎘射野内的能量与剂量 （物体吸收的能量）之间的炎系，取决于吸收锚射物体的性质（密度及原子序数）利锚射能量的大小，
（陈培青 王小宜 肖剑秋）

第5章 X 线成像的原理

第1节 X 线与物质的主要作用形式

X 线穿过物质时，比构成物质的原子，电子或原子核相互作用而被吸收减弱，减弱的过程中，与 X 线成像有关的有：

一，光 电 效 应

光电效应，是指内光电效应（internal photo－ electric effect），如前所述，在 X 线光子与构成原子的轨道电子撞击时，将其全部能量都给予电子。一个光子的能量被原子完全吸收，从原子壳层中发射一个电子，即发射一个光电子。光电子的动能等于人射光子的能量减去该出射电子在原子中的结合能：因此，人射光子的能量必须大子电子的结合能。否则，光子就不可能从该壳层山发出。

表1－5－1 中的数据是不同原子的轨道电子的结合能。

表 1－5－1 原子与轨道电子的结合能

Wivivix	x^{2}		WNUU		
			絲	M	30
1	H	0.0136			
6	C	0.283			
8	0	0.531			
13	Al	1.559	0.087	0.073	0.072
19	K	3.607	0.341	0.297	0.294
20	Ca	4.038	0.399	0.352	0.349
26	Fe	7.111	0.849	0.721	0.708
29	Cu	8.980	1.100	0.953	0.933
35	Br	13.475	1.794	1.599	1.552
47	Ag	25.517	3.810	3.528	3.352
53	I	33.164	5.190	4.856	4.559
56	Ba	37.410	5.995	5.623	5.247
74	w	69.508	12.090	11.535	10.198
82	Pb	88.001	15.870	15.207	13.044

从表中可以看出 ${ }_{1} \mathrm{H}, ~ \mathrm{C}_{6}{ }_{8} \mathrm{O}$ ，是构成人体软组织的元素，${ }_{20} \mathrm{Ca}$ 含于骨中，而 ${ }_{53} \mathrm{I}, ~{ }_{56} \mathrm{Ba}$ 是作为对比剂，用于影像医学， 82 Pb 则作为辐射防护材料。这些都

是与 X 线成像关系较大的元素。对光电效应产生的吸收来说，当 X 线光子能量比轨道电子结合能梢大时，则吸收多，当光子能量增加时，此吸收就减少。光电吸收，在 X 线摄影中与波长的二次方成反比；与原子序数的四次方成正比。

二，康普顿散射

康普顿散射（Compton scattering），如果人射光子的能量比电子在原子中的结合能大很多，这些被束缚很弱的电子就可以看成为自由电子，光子与其碰撞后，光子将其能量的一部分给电子，使电子成为反跳电子，这就是所谓的散射现象，即典型的康普顿散射，我国著名物理学家吴有训，在1926年也独立地研究这种散射，故在物理学上，也称为康普顿－吴有训散射。由此而产生的散射 X 线，向四方传播，在 X 线摄影时，可是挍片产生灰勡，对工作人员的辐射防护也带来问题。

第2节 X 线成像的一些技术因素

如前所述， X 线特性中的穿透力，荧光效应及化学作用是 X 线成像的基础，但是 X 线影像的形成必定受一些技术因素所左右。

一，管 电 压

在 X 线的质和量的讨论中，我们知道，管电压（即通过 X 线管的 kV 数）决定撞击靶上电子所具有的能量， kV 值越高， X 线的波长越短，穿透力也越强。人体各部组织厚度和密度有差别，如果相同能量的 X 线透过时，它被吸收的程度会有差别，所以达到苂光屏或 X 线胶片的量就会有差异。这样就是在荧光屏或 X 线片上产生黑白对比不同的影像。这就是说，如果 X 线的能量相同，被通过的各种物体厚度相同， X 线的吸收率受该物体的密度所影响。即通过密度高的组织时，被吸收的 X线多，反之则少。因而，所形成的影像会随物体的密度的高低不同而不同（见图 1－5－1）。

则格相新

若 X 线能暈相同，被穿透的物体密度地相同，那么，物体的首度不同。白会产生哭向不同的对比

影像。厚的物体吸收 X 线多，薄的物体吸收的 X线少（见图1－5－2）。

图15－2 不同原度组织（密废枯何）乌 X 线或像的关系
A \backslash 线透対梯形体时，屌的部分 X 线吸收多，透过的少。照片下咎它
恰好相反，

（ X 线透过管状体时，其外同部分，X 线收収多，遠过少，呈白影，
只利䀒部分红黑影，山影皮黑影间分界较为消楚一荻光并厉见相反。

这种因被穿透物体的密度，厚度不同所造成的对 X 线的吸收程度 $)_{\mathrm{L}}$ 舁，称之为 y_{E} 异性：吸收（dif－ ferential absorption），它是 X 线成像吕所形成黑白对比差异的基础，对密度低而且薄的物体，用能書低

的 X 线即可，反之则需用高能量的 X 线（高 $k V$ 值）c
X 线对不同组织的分辨能力，称之为密度分辨从（density resolution），它取决于差异性吸收和戎像 T．貝的敏感性。

二，管 电 流

管电流是指在加热 X 线管阴极灯丝的电流，以 mA （毫安）来表示， mA 的大小决定擅击阳极靶的电子数， mA 越大，产生的游离电子越多， X 线管发射的光子（ X 线）越多。如前所述，mA 可用以调节所产生的 X 线量。 X 线的量大，则可缩短成像时 X 线曝射时间。单纯依靠 X 线的穿透力，而没有一定数量的光子达到胶片或荧光屏上，也不会产生清晰的图像。

三，骤射时间

要想获得一张理想的 X 线图像，X 线的嚗射必须达到一定时间，称之为曝射时间（exposure time），以便使达到胶片上的 X 线量足以形成理想的图像。这只是一个方面，另外，感光材料的敏感性的高或低，也是一个条件。敏感的感光材料所需的 X 线量少，曝射时间可以缩短，否则，需时较长。曝射时间以秒或毫秒计，曝射时间过长，病人就可能移动，病人体内的器官也会有生理性运动，这些都可导致影像模糊。

四，影像接受器

如前所述，由 X 线管发射的 X 线束，通过物体后，由于被吸收的程度不同，通过后出来的线束是不均匀的，它们带着信息（即它们所通过物体的影像）。然而，这一影像非肉眼所能见到，欲使其成为肉眼可见，必须通过以下常用方法：即感光胶片（photosensitive film），荧光屏（fluorescent screen）和电子探测器（electronic detectors）来接收，因而称之为影像接受器（image receptor）。

第3节 物质密度与影像密度

物质密度即单位体积中原子的数目，与组成该物质的原子种类有关。物质密度高，吸收 X 线也多，在照片上形成的影像较白，在苂光屏上则较暗。反之，物质密度低，吸收 X 线少，照片上的影像较黑，在苂光屏上则较亮。由此可知，照片上的䓡影与白影或荧光屏上的暗与亮，都直接反映物质密度的高低。在放射学术语中，对 X 线影像的黑与白以阴影的密度低与高来表达。例如用高密

度，中等密度和低密度或不透明，透明等术语来表示。人体组织发生改变吋，则用密度增高或密度减低来形容和表达阴尉的变化。由此可见，物质密度和其阴影密度是一致的。

第4节 自然对比与人工对比

一，自然对比

人体内的器官是否能在 X 线片上显示出来，取决于其与周围器官之间是否具有密度与的兴异。差异性密度明显者，如肺与心脏，骨与肌肉，肝与含气的结肠肝曲之间的对比等，则能在 X 线片 1－区别开来，显影清晰，这种对比称为自然对比。

在人体组织中，密度最大的是骨，它含有大量钙质，钙的原子序数较高 $(Z=20)$ ，吸收 X 线多，属于不透过组织；各种软组织，包括肌肉，结缔组织，液体等都是由氢 $\left({ }_{1} \mathrm{H}^{1}\right)$ ，氧 $\left({ }_{8} \mathrm{O}^{16}\right)$ ，氮 $\left({ }_{7} \mathrm{~N}^{-16}\right)$ ，碳 $\left({ }_{6} \mathrm{C}^{12}\right)$ 等原子序数低的原子所组成，其阴影密度与水相近，属于中等透过性组织；脂肪组织与软组织成分相近似，但密度较软组织低，X 线易透过。人体的肺部，胃肠道，副鼻窦及乳突内均含有气体，气体是由原子序数低的儿种原子组成，而且排列稀疏，所以密度最低，属于 X 线最易于透过的组织。人体不同组织的比重和其对 X 线吸收率（见表 1－5－2）。

表1－5－2 人体组织比畐和X线吸收比例

Y4．．		3.14 .4
骨觡	1.9	5.0
各种软组织（包括液体）	$1.01 \sim 1.06$	$1.01 \sim 1.10$
脂肪	0.92	0.5
气体	0.0013	0.001

＊以水的比重为 1.0 计算
＊＊应用电压 60 kV 所产生的 X 戗计算

二，人工对比

一个器官与周围器官的密度近似时，则不能在 X 线片上区别开来，如肾与肾上腺，胆嚢与肝脏。因而单靠自然对比显然是不够的。要使这些器官或组织分别显影，必须借助对比物质来予以显现。所以用人工方法来显影称为造影，而所用的对比物质

则称为对比剂或造影剂（contrast media）
人工对比造影的应几，足几人工的方法将一种对比剂（比重轻的厄体或比重必的软剂或碘剂）导人需要检合的器官，软组织㖪其㓮围，使之一周國的

结构产生对比捬显影。造影检查的应用，可以使人体多数器官得以显示，从而大大地了展了 X 线检查的范围。

第 6 章 X 线检查方法

X 线检查方法包据普通检查，特殊检查秘造影检查三类。

第1节 普通检查

普通检查包括透视和摄影，是最常用和基本的检査办法，广泛应用丁自然对比好的部位：

一，透 视

可分为荧光屏透视和影像增强透视，

（一）荧光屏透枧

如前所述，X 线只有荧光效应（见本篇第 4章），这是荧光透视的原理，然而，荻光亮度非常低，不到一烛光，因此，透视操作必须在暗室内进行，而且检亘者必须对视力行腤适应达 $10 \sim 15$ 外钟。婴光屏透视（以下简称透视）时，必须将检查部位置于 X 线管与荧光屏之间，尽量靠近荧光屏。透视的优点是：可观察器官的运劫，如心脏与大血管的搏动，膈的运动及胃肠道的蝡动等；可以转动病人体位，多方位观察；透视的设备简单，操作 f便，费用较低，可立即得州结果。它最常用于胸部以观察肺，心脏和大血管。在骨骼系统，可用于骨折和关节脱位手法复位时的观察。急腹症时，叮观察肠梗阻及膈下游离气侉。在消化道造影检查时则必不叮少。透视的缺点是：影像的空间分辨力和密度分辨う较差，图像欠清晰，难以观察密度或厚度差异较小的器官和组织，也难以观察密度与宸度较大的部位，如头顾，腹部，脊柱及骨盆等；透视缺乏永久记录，不利于追踪对比；透视由于在暗室内进行，不利于某些较复杂的造影检查，介人性操作，病灶定位及昇物摘除等；再者，由于辎射量较多，对病人，对下作人员均不利，在发达地区，此种透视已为其他方法，如影像增强透视和摄影所取代。

（二）影像增强透机

所谓影像增强透视是借助于一种特殊的也子東装置，称之为影像增强器，将苂光屏图像的亮度极

大地提高。影像增强器是一个大的真空管，面向 X线管 端较大，称为输人笲，它有两个面，外侧是苂光面。内侧是光电阴报渞。当 X 线照射到输入屏的外侧面时，形成苂光影像，此荧光影像使内侧光电阴极上产生光电发射，变换为电子影像。经过聚焦电极所肜成的静し透镜后，电子影像衼聚焦缩小，在阳极的加速电场作用ト，吅速的电于打寺在输出屏的荧光面上，电子影像转换为荧光影像，肉腿可见，这个影像虽然缤小，但亮度印可增强到儿下倍（见图 1－6－1），其空间分辨ノ和密度分㒕力较苂光屏图像提离得很多，其优点是：有利于观察，特别是厚实而对比彦的部位如腹部；透视操作可在亮窒内汼行，有利于造影检查和介入性技术的操作；影像增强透视所用管电压高，白管电流则低，病人和工作人员所受X线照射少，有利于防护；此外，图像通过电视摄像机，形成闭路电视系统，可在多个监视器上显小，即所谓比视透视，隔室透视，还可传输至迈处，对教学利会诊有益；明宽清晰的图像还可用磁带或光船氶像，电影胶卷，缩影胶片记录下米，供复查和念诊之用。影像增强透视也有不足之处是：设齐较茚安，有一定㢂命，且体积较大，所规察范围小于荧光屏透视。当今影像增强器主要规格为输人屏大小，其有效直径以厘米束表示，通过调整聚焦电极的电位，可以改变输人屏

图1－6－1 影像增强器结构示意图 A．榆人屏（光田阴极）B，登焦电仙 （．输山舁（陆极）

的有效八小：所以一个影像普强器叮以具有两个有效古径的输人屏，称为奴野增强器：总的说米，其优点远远超过不足，现已被厂泛应用到日常影像区重 1 作中，途渐取代苂光并透视。

二，普通摄影

普迸摄影（radiography）所得照片妳为平片 （plain film）－应用最为 $\boldsymbol{l}^{\prime \prime}$ 泛。摄片时，物体䁅于 X线管与胶片之间，今童贴紧胶片，周定不动。胸部上腹部摄片的瞬间需停止呼收，以避免图像㷬糊：摄脂前，需将饰物，政料，金属品，组扣等除掉相对于透视而只，普通刬影的主雬优点有：空间分辨力和客度分辨力均较問，图像较清唽；不难使密度或擪度较大以及密度，隚度差异较小部们的病变吡影：号外，可作为客观记录，使十复查对比和会诊；病人所变X线剂量较透视少，缺点足舟一照片仅是 个 个 $;$ 位的影像，为建 $\%$ 体慨念，需作 L㥵垂直的两个方位摄影：䑧一照片仅是一橓间的影像，不能了㑚器官的动态变化。

H常1：作中，显通撖影能解决的问题较少采井透视，透视主要胡于动忩器宿的观察利介人操作等的留视，恨据匡内现实，在部分堅疗单位透视仍作为肺部出心脏的筛选检查，透视和普通摄影的优缺点具自互补吽。根据尽体恃况选用或配合运用，可充分发挥各自的优势，

第2节 特殊检查

特疑榆查足运井不同于普通摄影的方法，以达到㷊种特殊诊断要求的摄影技术。这些检查仍然是利用体内的自然对比而戊像。

一，X 线体层摄影

人体是 维结构，在平片 1 ：，一维结构的影像重登，影响诊断，对位于人体深部的病变的观察影响是大：1932年 Grossmann 根据移动使影像模糊，䦎定则影像清哳，加卜几何学和机做学理论，设计出体层摄影（tomography）装界。

X 线体）秐摄影常用社几利类刑如下：

（一）线型体层摄影

这是最普遍常用的体县摄影万法 图 1－6－2 即说朋共成像尛理：体层的原度与体层摄影时摆角有

关，若 $>10^{\circ}$ ，则摆角両增大，体层煿度的变化较小，抎角越大，对体层外阴影的模糊效果越品著。摆角 $<10^{\circ}$ 者称为小角度体）云接影（约 $5 \sim 6^{\circ}$ ）。则取去厚，也称区域体运摄晾，可用于胆囊，胆总管，学脏及胸肾的检查，也能显示早期矽肺结节及其他微小柄灶。

图 1－6－2 体层摄影原理小意图
嚗光则，X线简与胶片做相反な向移动，移动的轴心在
影分较片 $1:$ 如四定位置，如 A 技影 A 。故耑显影清楚；
面成模糊影像

（二）曲面体屈摄影

」：下颌骨为一曲面物体，若将胶片穹成相仿的曲面．一者之问构成两个上面对应的等圆，X 线照射扐病人不动。 X 线球管一 j 胶片堷皿以颌面圆为轴同步反方向旋转，X 线束进过 狭分裂隙投照在胶片上，从而可将整个领骨投照在一张实际是平面的胶片1：见终1－6－3。位于颌骨后分的结构，由于弧度不同，因此模糊不清：此利体层摄影片，称全景体会摄影（pantomography），虽略付放大和失真，对全口不，领骨和副鼻突的检查较为理想，

（三）自身体层摄影

此种检査方法与前两者不沟，尤需特殊设备，可用于拍摄政椎前后位片。即在 X 线㬗射时，嘱病人头部不动，下颌做诗速较快的开闭口运动，这样就可使下゙领骨影像模糊而尒颈椎清盺，此种 j_{j} 法

亦可用于拍摄胸椎侧位片，在拍片时，㾰人居时轻微呼吸，这样就使重叠的肳誉模糊不消，而椎休则

显影清楚。合理地选用上述方法，可以使重叠较多和处于深部的病变得以显示清唽。

图1－6－3 曲面体层摄影分意图

CT 及 MRI 的应用在很大程度上逐步取代了体层摄影，但无CT，MRI的医院及诊所，体层摄影仍是必要的，对平片的补充检查。

二，高仟伏摄影

应用常规管电压（ 90 kV 以下）作 X 线摄影，如前所述（见本篇第 5 章第 1 茲），人体 $\underline{1}_{\mathrm{j}} \mathrm{X}$ 线的主要作用形式以光电效应为主。各部结构影像的密度高低受组织的原子序数大小和厚度的影响较人，骨，软组织，脂肪，气体有明显对比。后三者的影像可能为骨影遮蔽。但随着电压升宂至 120 kV 以上时，则 X 线的吸收以散射效应为主。影像受骨影遮蔽的影响不大，密度养别较大約组织，如空气与软组织，软组织与骨䯏之间的对比逐渐降低，骨骼的影像变淡，在一定的管电流下，与骨骼重叠的软组织叮清晰显示。为了去掉散射而致胶片产生的庆䨐，除在 X 线球管窗口加过滤板（一般为 4 mm Al 或 $0.1 \mathrm{~mm} \mathrm{Cu}+1 \mathrm{~mm} \mathrm{Al}$ ）外，尚需使用滤线器「常用者为 $16: 1$ 比值的滤线器，此比值 $\mathrm{K}=$ 铅条的高度 (h) ，钥条的间隔（b）］。

高什伏摄影常用于胸部，能较好地亚示气管，主支气管及肺门区支气管，肺纹理较常规胸片明显，显示被枈䯗及纵隔重叠的组织㕲病灶，检查肺门及纵隔肿块，肺部弥漫性病变有一定优越性，常用于尘肺检查及肺咝检查。它的另—优点是所用 $\mathrm{m} \Lambda$ 量少，拍片等射时间短，病人接受照射量少。

三，软 X 线摄影

软 X 线摄影的 X 线管采用钿靶（其应用原理已于本篇第 2 章第 1 节叙述），常用于密度差别小的软组织及脂肪组织结构的检查，特别是乳滕疾病的诊断，具有独特的优越性。亦可用于鼠示软组织内密度厔别小的异物，如玻璃等。

四，荧 光 缩 影

用照楳机将荧光屏上的图像撴成缩影占称为炎光缩影（fluororadiography）。常用的规格有 35，70 － 100 mm 三种。过去主要用于胸部普查，现已基本不用。

五，放大摄影

放大摄影（magnification radiography）分为直接祸间接放大抆影两种。后者是利用特制的微粘 X线胶片，代用增感屏，以低子伏技术摄阱，只适用于小部位，如 F指等。然后用光学放映机放大后阅片，此种方法现已基本不用。直接放大摄影是利用 X 线几何投照原埋，在普通 X 线摄影的基础上，政变 X 线管焦点。被摄部位（物体）和胶片三者间的距离，而获得放大的影像。其放大率一靶片距／靶物距。进行直接放大摄影的必筒条件是其有微焦点的 X 线管，共焦点通常小至 0.3 mm 或 0.1 mm 。杏则，影像模糊 。此利方法常

用丁观察骨小梁的结构

六，X 线电影及录像

如前所述。将影像增虽器与电枵摄影机配态，作采用高速脉冲 X 线摄影的问时，用电影授影机将影像增强器输出屏上泉小的图像，以每杪 15 － 60 帧或更多帧频的速度拍摄下米，此种配套的检本方法称为 X 线： 1 影摄影术（cineradiography），主要用丁心怔血管造影或共他哭官的动态过程的研究，可留卜良久记录，以满足会诊，教黄和䂺研的要求和目的。

将影像增强器与水像设备配套，就吅用磁带战光盘录像，水居可吂即回放，阅读，了解检查结果，极为 $j ;$ 便。月前应用点为＂泛。

七，记 波 摄 影

这到方法曾用束记录心胩和大血管的捕动：记波掊影（kymugraphy）是在病人 I_{y} 片盒之间放䍗——个多条铅制格棚，铅条㭝 12 mm ，其问隔以 0.4 mm裚腙，如片盒固定，格棚在X线照射时自 1：而下均准移动，称为连续式记波摄影，波形所记冰并为心脏大血管边缘不同时相不同点的博泇，㞴看到心肝大血管的尒貌。如 X 线照射时格姗固定，片盒移动，则称为阶段式记波摄影，波形记表者为心脏边傢相隔一定距窝的那些点在不同时相的运动。随差新的影像设备及成像方法的应用，记波摄影现已少用。

八，干 板 摄 影

于板摄影（xeroradiography）是利用半导体硒的光电导特性进行摄影，用静电充电的特创硒板代替胶片。丙操作复杂，结果不稳定，暴射线量大，今已不用。

第3节 造影检查

如前所述（见本篇第 5 章第 4 管），对人体内 -些缺乏手然对比的器官和组织，必须引人对比剂，进行造影检杳，这种力法称为造影检丛（contrast examination），以扩大了 X 线检查的范围，

对比剂引人入体的途径一方法有直接引人和生理积聚法两种：

一，直接引入法

即将对比剂直接引人被检查的组织，器官，包括卜列各种か法。

（一）口服法

如食管及胃肠道的钡㭡检查，借助生理蠕动，使对比剂达到需要检査的部位，形成人丁，对比，达到诊断自的。

（二）灌注法

有管道 L_{j} 外界相通的器官，可以直接以灌注法引人对比剂，如钡剂灌肠，支气管造影，逆行胰琏管造影，屰行尿路造影，子宫输卵管造影及瘘管造影等

（三）穿刺注入法

无管道与外界相进的器官，经穿刺引人对比剂，如心血管造影，关节徙影，椎管造影和脓腔造影等。

二，生理积聚法

对比剂通过山服或注人血管后，经生理吸收与排泄，选怪性地从一个器官排出，暂时存于其实质或其管道内的显影，称之为牛理积聚。如口服胆㐮造影，静脉胆㐮造影，静脉肾盂造影等即属此类。

有关对比剂及其副反应和防治方法将于本篇第 7 章介绍。

第4节 X 线检查方法的选择和综合运用

在选择 X 线检查方法时，应在充分了解各种 X 线检査方法的适应证，禁忌证和优缺点的基础 F：，根据临床初步沴断和要求，拟定 X 线检查方案，称为诊断流程（flow－chart）。一般应当选择诊断可啡，副作用少，简单又经济的方案。原则上先选择简便物行，无创伤性的方法，再考虑复杂或有创伤性的方法。如悩床疑为泌尿系结石，度先摄腹部平怗，劣末发现阳性结石，或发现了结石尚须了解冰路梗阻情况和背功能状况时，再作静脉尿路造影，静脉尿路造影未达到月的时，再考虑逆行氶路造影。然而，有些病变，用普通检查达不到诊断目的，则应直接选用特殊检查或造影检查，如喉部病变寀直接选用体层摄影，乳腺病变应直接选用软 X

线摄影，胃肠道和血管病变应古接采用造影检查等：另外，有些病变确定诊断或全面了解病变情况时，仅靠一种检查方法难以解决问题，则同的应用几种检查方法，也是必要的，如对复杂性先天性心脏病的诊断就是这样，对于有创性，有可能发生副反应和危险的检查方法，应严格掌握㖵适应证，不可作为常规检查而滥用：

在选择 X 线检查方法时，还庐考聋与其他影像检查应法的配合运用。很多疾病枋影像诊断，需

要多种影像检查，与求达到确诊无误，伞面了解病变的月的。近 20 余年束，超声，（TT，核素，MRI等诊断T．具迅速发展，条具特长。在选择时必须熟知各科影像检查的指征，优点和限度，只有恰当地加以运用，存效地配合，方可达到最佳诊断。必须从实际出发，既要解决问题，又要减轻病人作担，诊断－旦确定，就无须再作多种检查。
（王小寘 陈培青 肖剑秋）

第7章 对 比 剂

第1节 理想对比剂的要求

理想的对比剂应该旺：理化性质稳定，过性，没有別作用，对比强，显影洁楚，易丁排除体外，价格低廉，使用分便

X 线应用于临床不久，即存人试成对比剂能小消化道，以后又打展到血管及其他管詝，开发的对比剂多达数十利，但迄今木找到完全满足厂：迟要求的对比剂，且条个器宫和不同检查月的所需霉的对比剂的种类，浓度和数具不，样，故对比剂的的制仍在不断进行中。

第2节 阴吽对比剂

将比重较软组织小的っ休引人所需捡查的器＂今内或其周围，使其密度诚低们显影，此类物质称为阴怍对比剂，空气，氧气及二氧化啖都属此众，在体内，一気化碳吸收快，空宁则缓慢，空气暞氧っ均不能洁人止在出血的唯成或组织。以免发生气体栓寒，气体以往多用丁蛛网膜下腔，关芦囊，珠缕，腹腔，腹膜后腟等处，以增呮对比，协助沴断，日前已很少使用，向在澵化笽纣今大仍广泛使用，往仆的时引入比重人㢷钡剂，以达到世好的对比效果，即所谓双对比。

第3节 阳性对比剂

队限对比剂为原子序数岀，比重人的物质，常用者存含镇及碘的两种，其原厂店数分別为 56 从 53，远远大于软组织及个体。

一，钡 剂

硫酸饮（barium sulfate）为问色粉术，代溶于水，原子店数高，代易为 X 线穿透，用丁胃肠道内可以形成鲜明对比。 亻为粘膜收收，容易排出体外，医用硫酸狈必须纯净，绝不可含有可溶件钡

盐，如氯化钡，氧氧化铁等，㫘则山引退钡中毒硫酸镇吴颗粒状，加适量的水及阿搵倠胶调配
根据受检器㝎及检查口的㞶不同，使用们同浓妄及
灶，采用特殊加工．，优泥怘液具有高浓萋（叮达 $180 \% \mathrm{~W}$ 八或甚至更高），低椆度，在胃肳苦粘膜上＋1．薄层涂布，显影这好，同时引人气体，形成强
 H肳道常规检查方法
呮剂可以孔起粘连；疑有结肠梗阻病人亦禁忛以报沙剂，因钡剂在梗阴比方水分吸收后硬结，部分性阻可能转为完全梗阴：

硫酸钊系口前召肠道检查较埋想的对に剂，对比良好，性质稳定，反毒性及副区应，51价格低廉，使用う便，至今已应用达 70 余什。

二，碘 剂

睓虽非金属。但淙了序数较高，能有效地吸收 X 线，为人体管控（岸肠道除外）最常使用的对比剂，特别是心脏，大血管，必尿道及胆道的造影碘剂种类繁多，习新月界，但一直术找到一种埋想的化合物：数十年米不断研究和故进，日的不外两方面：「增加䃆含量以求得到更好的对比：氠喊少毒吽及副作用，以使病人能够耐受：以下分冰排渐型有机碘对比剂，胆排㴁刑有机倎对比剂，无机碘剂及油能类碘剂逐一介绍，

（一）尿排泄型有机碘对比剂

1 概说 尿排泔型有机碘对比剤为水溶性。㳯人血管原经肾脏排泄，故可用以显小゙水路；注人静脉，动脉或心脏可使夫的管及心脏显影，头臂血管，冠状动脉，肾动脉，肳系膜幼脉和四肢血管等鼠影。此外，还广泛用丁CT增强扵描，瘘管及窦悾造影，许多疾病的确诊有赖丁此项造影检查，本头对比剂会用最为厂＂泛：

有机碘化合物作为最古的对比剂是碘砒酮乙酸
（urroselectan，1930）其分子结构是杂环中有一个喚原子，不久又开发两个䃁原子的杂坏对比剂磳吡啷啥（diodrast）。然而，此两者的造影密度不够高，日毒副反应较多。

20 世纪 50 年代后开发的尿排泄型有机磺对比剂均为含三个碘原子的一碘苯环衍生物，经 40 余载的应用，不断改进，品种繁多，形成一大家族。 50 至 70 年代间研制的产品在溶液中离解成阴阳离子，称为离子型（ionic）对比剂，性质稳定，对比良好，能满足诊断要求，惟溶液属高渗性，应用中毒副反应不时

出现。70年代后研制出非离子型（nonionic）对比剂，克服了前者的许多缺点，其渗透压降低，甚至接近血浆，毒副反应小，生物安全性大，对神经系统毒性低，部分产品可作为脊髓造影。

在分子结构」，一个分子对比剂只含一个三僙苯环者，称为单体（munomer）存机磺对比剂，含两个三碘苯环者，则称为二聚体（dimer）有机礛对比剂。

尿排泄型有机碘对比剂，按其电离属性及分子结构．可分为四型，见表1－7－1

表 1－7－1 尿排泄型有机嫃对比剂分型

30，4	Wrs！	U1 1		
对	泛影钠	碘卡明莆胺	甲泛噌胺	㖵曲伦
比	法影蒲咹		磳苯六醇	磳狄醇
名	复方泛影䇝胺		䃆异酸醇	
称	异泛影莆胺		磌普罗胺	

理想的有机碘对比剂 除满足对比剂的一般要求外，还要符合以下条件：（1）含碘量高，被体内血液及其他分泌液稀释后，仍有足够的对比；（2）亲水性强，易配成溶液；（3）溶液不带电

荷，机体容易耐受；（4）低渗透性，副作用因而减少；（5）粘度低，注射时阻力小。（3）（4）两项是最重要的。表 1－7－2 列出几种代表性的对比剂的有关参数。

表1－7－2 几种代表性有机犊对比剂的绐数。

$4+2 \times 3$	1， 4 级	Krysivik		譥致 $445 \% 3 \%$ 4564	線的 Yy絃	4． 403 4 数 $L D$. 14／4
离子型单体	复方泛影葡胺	290	1532	0.50	1.5	$5 \sim 10$
	（urogrofin）					
离子型二聚体	磺卡明葡胺	320	580	0.75	3.0	$10 \sim 15$
	（myeotast，					
	biscontay）					
非离子型	碘葡罗胺	300	610	0.46	3.0	$15 \sim 25$
单体	（iopromide）					
非离子型	碘曲伦	300	320	0.81	6.0	$25 \sim 30$
二聚体	（iotrolan）					
	碘狄醇	270	300	0.61	6：0	
	（iodixanol，					－
	visipaque）					

有机碽对比剂的毒副反应与溶液的渗透匤关系密切，从表 1－7－2 中，可以看出四类有机碘对比剂的毒副反应自上而下逐渐减少，小鼠 LD_{50} 值依次增大，其渗透性与之平䘕，离子型单体对比剂的渗透性最高，非离子型二聚体最低，只有前者的 $1 / 5$ ，接近血浆之渗透压 $300 \mathrm{~mol} / \mathrm{kg}$ 。溶液的渗透压取决

于溶液中所含的离子数，液态离子型对比剂会离解成阳离子和阴离子，带有电荷，因此，其渗透压高于非离子型。二聚体对比剂的每一分子含两个三碘苯环，相当子两个分子单体对比剂的含碘量，所以单体对比剂的渗透压高于二聚体。

对比剂每分子所含碘原子数目以可在溶液中每分

子所含离子数之比俱 R．问用以颃测其毒副及崔的高低。離了型单体对比剂 R 值均为 1.5 ，其每副成少发生率较高：非离子型二藂体对比剂 R 值为 6．0），歨副及㖞发生率低：离子型．．．聚体及非离子型单体对比剂 R 值均为 3.0 ，证副反应发生㬎介两其中：

含有三个碘原子的 碘杂环对比剂，均可以满足对比清晰的要求。离子䦙对比剂多以每 100 ml 溶液含有佔体对比剂多少的表示其浓湾。非离子犁对比剂则以母毫忆溶滩中含有多少毫克碘。而不是整个碘化合物来表示其所菩喚量，如 240,300 ， 370 ，即表小含碩浓度为 $240, ~ 300, ~ 370 \mathrm{mg} / \mathrm{ml}$ 。临床启用时，即根据受检器官及检古目的进行选拃。

对比剂的粘度与对比剂分子大小，浓度及温度有关，从分子人，浓度高，温度低时，粘度增大一聚体分子大干单体，战粘度亦大 粘度大时注射速度慢，使用时，要求赞速注射和加温的机械装疽。

2．离于型有机碘对比剂 包括洰易酸热及早泛影酸盐：泛影酸悲有泛影钠（sodium diatrizoate， hypague sodium）及泛影括胺（meglumine diatrizoate， hypaguc meglumine），钢离子对恤管内皮有损你，泣射处静脉疼捅，黄胺则没有此副作用，单纯泛影匍胺可能引起心空纤维震颤，H溜液䉼度高，宜将两者混合，以泛影葡胺火主，加入少量泛影钠，成为复方泛影葡胺（urografin，renogralin），临后」：使用广泛，其不何浓度的溶液分別用于心脏，大血管造影，豩路造影，胆管直接引入造影，搂管造影及 （TT扫渭等。某些情况下，可用作口服胃肠道造影。称为胃影蒱胺（gastrografir），异泛影酸是泛影酸的同分年沟体，可制备成异泛影㶧（conray 400）及异泛影葡胺（conray）。其适用范围与泛影酸盐大致枟同，对心脏大血管有优越性，其亲水性好，可制成更浓溶液，而粘度小，注射时速度可以肌快：惟弁泛影钠不宜作脑血管造影，

磍卡明酸盐：碘卡明酸是并泛影酸的二聚体。其葡胺盐称碘卡明葡胺（iocarmate meghtuine），济液电窝屈只产生两个四离子和一个阴离子，R 值为 3，仁相似的碘浓度时，溶液的渗透去较低，神经毒性较泛影酸盐小，曾用作脑室及腰段脊髓違影，现士为性能更好的非离子梨对比剂所取代。

的非离子型有机碘对比剂 1970 年以来，欧

洲一些药厂致 」 开发新的含碘对比剂，寻找毒副民度小，使同安伞，诊断范围里大的产品：

1973年挪咸 Yycomed 公司首先合成卢泛醣胺 （metrizamide，amipaque），以匍䋞醣胺（glu－ cosaminc）代替三碘苯吥上的有机酸，所得的化合物溶于水通不电离，其渗透压，神经毒性及粘度均降低，除用十血管内泣射外，尚可用于沝网膜下腔及脑池遗影，它的面比受到普通欢迎：然而，此制剂的昆大弱占是遇水遇热时易分解，冷冻干燥的粉剂必㴴在临使用欮力可配成溶液，不能贮仔，故为战来开发的新产：品所代替。

80年代先房开发出碘菻六醇（：ohexot，omni－ paque），碘异酞醇（iopamidol，iopamirc），碘普罗胺 （iopromide，ultravist）及碘维案（ioversol，optiraty），它们都属非离子型单体有机碘对比剂。为三碘苯甲酸的衍牛物。的离于型对比剂相比，有以下几万和的改非：（1）不属盐类，水溶液无电窝现象，渗透压低，明显减少了头痛，灼热感及血管扩张所引起的不适；2不含羧基，神经毒性大大降低，经静脉给约的毒性显著城少：在分子细沟中引人4～6个醇基 (OH) ，均匀分布于分子周围，增加亲水性，提高水溶度，同时降低粘度，对比剂的毒性反应进一步城少：

这类非离子型单体有机嬹对比剂的渗透压较案子型的减少约 60% ， R 值均为 3 （兄表1－7－2），临床使用时，其毒副反应明鼠減少，适用于心脏，血管造影和 CT 增强扫描。

非离子刑＿－聚体有机碘对比剂的开发，又向前推进了一步。分子结构含 $8 \sim 12$ 个醇基，均诗分布于分子周围。不含羧基，两个两硇苯环共有六个碘原子， R 值为 6 ，渗透压降到接近侐浆的 $300 \mathrm{~mol} /$ kg ，即使对比剂浓度高时，也是如此，因而特别适出于全段脊膸造影，脑池造影及有高先因子的病人，其反应发生率较前述离子型及非离子型单体对比剂低H，轻。属于此类者有硨曲伦（iotrolan，iso－ vist）及碘狄醇（iodixanol，visipaque）。

近十多年来磁共振成像迅速发展，对脊椎管内病变的诊断准确而全面。更有闰创和安全性等优点，费用虽贵，倠比非离子型二聚体对比剂相差不多，达而基本上取代了大部分用非离子型䃆剂作椎管造影。

根据国内外大组病例统计分析，非离子型对比

剂静脉淐射的葉副反应发少比率比﨎子型减少 76.3% ，出现的反宣以轻度及外度为＋，重息的发生率減少更明业，离子型对比剂静眿注射死亡率为 1：3000，而非离子刑对比剂只有 $1: 250000$ 。仕动物试验中，静脉注射测试小鼠的 LD_{59} 表明，非离子型对比剂约 3 信于离子型，苦从蛛网膜下愘讼约，非离子型 10 倍丁离子型。可见非离子彗对比剂的茧副反应发生率比离子型少而轻，生物安全情大，神经系统检直尤共如此，因此，㑲得惟 Γ^{-}，然而，由下非离子型对比剂例造上艺复杂，成本离，比离子型对比剂价格高 4－15倍，使用受到限制，目前在国内外价大量使用离子型对比剂。估计在相当长的时间内仍将如此，
（二）胆排泄型有机碘对比剂（属生理聚积型。有静脉及口服两类）：

1，静脉注射脂道对比剂肶影葡胺 （wdovamide，biligrafin，cholografin），由两个三磺苯
而运载到肝，再排泄至㫜道，含碘的对比剂在呾道内显影。

出于肌影葡胺含羧基。且的们浆门蛋白结合。属离子型，高渗性，其葉副反寀比冰排泄型对比剂严重，不能用于I自管造影，炤道造影时．必须经静脉缓慢注射，一般为 $2 \cdots 4 \mathrm{ml} / \mathrm{min}$ ，用量为 20% 20 ml ，注射后，可见肝内朋管，总继管及胆襄在一定时间后，依次次影

2．口服胆要对比剂 碘番酸（iopanoic acid， telepaque）为白色粉末，诲片含 0.5 g ，一般用量为 3 g ，口服后由小肠吸收，在血液中皆血浆力蝁门结合，运载到肝，随胆汁排至胆道，此对比剂浓度很低。只有存经胆装粘膜吸收水分，浓缩对比剂后。方能显影：一般在口服稘番酸后 $12 \sim 14$ 小时后。可湿示肌裏，而胆管则不注示。

磺泊酸钙（calciun！iopodate，biloptin）是朵一种口服胆囊对比剂，其们点足显影时间较碨番酸缩短，ㄷ服 3.0 g 后只需 10 小时胆襄即河在 X 线片 $\mathrm{I}:$ 显现，

口服胆数造影以往是胆囊㢍病病人首选检查方法，必须时再辅以静脉法作为补充，日前，由于超共及 CT 的应用，此类 X 线检㿥已大大堿少。

（三）无机䃆剂

碘化钠（sodium iodrde）届尤机嬹剂， 12.5% 溶液呵形成良好对比，价格低廉，可古接拄人管道造

影。如逆行泉路（包折肾盇，输尿管及涾道），朋管术应造影等，如为膀胱造影。则学稀释至 6.25%的浓度，䃆化钠溶旅有局部刺激性，禁止经血！管内注射，目前管道造影多用离子刑对比剂，碘化钠浚液已很少使用。
（四）油脂类碘剠
1．碘化油（iodize．oid，lipiodol）为今碘与植物油的加成物，含碘 40% ，淡黄色，㨄度大，直接期入检查部位，如支气管，子宫输卵管，㬸控，瘘道做造影。吸收缓慢，造影后瓜尽快吸出，避免长期存留体外，日前，碘化油在介人放射学治疗肝癌中，不仅作为栓塞剂，进行经动脉碘油检塞术（lip－ iocol－transarterial emborization，LP－TAE）的栓寨材料．而目还用作肝癌介人性化疗中化疗约物的载体，因为它能显示病灶的位䈯和大小。

2．碘苯酯（pantopaçue，myodil）为脂肪酸碘化合物。含碘约 30% ，用于脊髓及淋巴管造影。椆度小与碘化油，在体内吸收极摱，检查后。应尽量吸出：非离了型有机碘问世后，再加上 MR 成像的应用，矌杂酯已基本上不用于椎管造影。

第4节 今后发展方向

回倾」：述 X 线检查用对比剂。侧剂及气体基本可满足消化道诊断需要，而应用范用最广汉的含碘对比剂，虽然经历数十年的研究，尚难说宅全㻦想。 20 世纪 80 年代以来研制扑的非离子刑有机磺溶液，豆克服了离子型的评多缺点。终非十分安全，小部分病人库可出现副反瓦，亦曾有死亡，报道。有作者在动物多验中，将氧加入非离子型对比剂，使之饱和，或增加 定量的钠，可以改善对比剂减弱心脏收缩 力的融作用，防止大剂量非案子型对比剂可能引起的心室纤䁦，另外，有作者品人前列环絭，又名依前列醇（prostacyclin）的同工异质体，升济前列素（iloprost），通过抗血小板聚集和扩张血管来防止对比剂所产生的微循坏紊乱：

碘出伦和碘狄䤃，其渗透放已降至与血浆…样，副作用最小，但由于属于二聚体，籼度大，注射速度受限制，这一缺点也待改进。

非离子型对比剂价格茚贵，虽问草已久，但难以迅速雅厂，此其原因。看来全面取代离子裂对に剂尚需时旦，只有改进 「艺，降低成本，分可推厂。

再研究新的忩恶的有机碘对比剂，所需周期 （一般 6－12隹），人力，物力及费用浩大，非离子型对比剂经过近 20 华的探索，才有今犬的成绩，舟前进一步均非易事

除碘而外，能否从其他原子序数高，惊f量大的元䒺巾探索合成颜的对比剂？古午善试过溴化锶 （ SrBr_{2} ），氧化锠（ ThO_{2} ），等重金属化合物，侣由于其专性及难以排出体外而放弁，曾认为凡原子㑏数高于 56 的元紫，因毒性无法解决而不宩虑作对比剂用。然而。近华来 Gd－DTPA 广泛用丁 MRI而没存出现毒性，让人们重新想到重金属盐炎。它们比碘剂吸收 X 线多，造影时可采用能量较高的 X 线，病人的嚗射晕可以減少。这只是一条可以探索的途洤。

在前述的有机碘剂中除显示脂道者外，均分布在细胸外且从肾脏排出－尚若能找到对特定组织和器官有亲和力的对比剂，聚集在细胞内部，对诊断帮助会更人。近年米研究对家集中在肝想。有作者将非离子型对比剂碘普罗咹的分子包裹在微脂肪粒 （liposome）中，经静脉注射后，为网状内皮细胞所分㩐，在 X 线片上，肝，脾可紧影较长时间，肿熘组织不含网状内皮细胞，古现低密度以，可与止常肝，脾组织区别开米。在动物实验中，2～3mm的癌灶可以显小，在临床应用则尚需时け。若获成功，对实质器官的诊断将是有帮助的。

为研究人只注视的万一课题是血池对比剂 （blood－pool contrast agent）的开发，即注人血管屄不向外渗透的物质，叮显示而管的琽塞，组织缺血，测支循环，动脉㨨的存在，肿瘤血循环等。设想中的血池对比剂是：一种不溶于水的化合物或颗粒的乳剂或混悬物，战一种分了白大的对比剂，在血管内可滞留足够长的时间，将血管的图像摄取在胶片上，在检查结東高，而刮入某种酶，使血池对比剂进行生物降解，分子更小，可通过肾过滤，排 H体外。此项研究正在摸索，迄今尚末找到合适的对比剂。

第 5 节 对比剂的反应和防治

对比剂中钡剂是相当安全的，惟一应警惕的是不能含有可溶吽钡盐：气体造影时应防止气栓的发生，注入气体前必须先问抽，确定针众不在血管

内，分诃注气：化在出血的部位禁止作气体造影，
亘怀疑有气恮尔在，应迅速将病人置于左侧卧位，防外气体过人肺动脉，油脂类对比剂濑用时有㞴能出现油检，例如子宫输卵管造影，应避免在子宮出血时作造影检查，注射时压川不宜过大。

临床工作中遇到对比剂反应人部分米自有机碘溶液，含碘对比剂使用最广泛，主要是血管内注射，多数人能较好地舺受，有时也出现反应。这些反应可以轻微及－过性，们少数叮以产重并危及生命，故亚引起广泛行意。以下将对比剂副反应发生瘄，有达因素，预防及治疗分別叙述。

一，对比剂副反应的发生率

国以月前最赏使用的离子型对比剂，其副反崔发生率在 5 友左。由丁对比剂的政进，较 70 年代初期统计的 $7.0 \% \sim 8.5 \%$ 有所下降。按副及应的程度及出现频率叙述如下：

（一）轻度副反应

恶心，呕吐，头痛，瞈晕，思寒，潮红，出汗，轻度当麻胗等，占 $3.0 \% \sim 3.9 \%$ ，症状通常属自限性，不需处理：

（二）中度副反应

轻度低保压，支气管痉挛或喉头水肿，较重的恼吐或䓍麻疹，面部水胺＝占 $1.0 \% \sim 1.6 \%$ 。反寀知知，需处理，无生命威胁：

（三）重度副反应

血压显著下降，休克，昏迷，惊厥，显著的支气管痉栾及喉头水肿，心律头常，心搏停止。占 $0.01 \% \sim 0.06 \%$ 。有生命危险，必须紧隠处理，
（四）死亡率
重度副反应木及时处理，或治头大效而死亡，占 $0.25 \% \sim 0.74 \%$ ，也就是说，每 $13500-40000$次检亘中有 1 人死亡。

使用离子型对比剂，不同利类造影术其毒性反应发生率与死亡率条代相同，见表1－7－3。

表 1－7－3 不同造影术反应发生率与死亡率

经静脉尿路造㷧	5.89	0.001
经静脉旡道造影	8.53	0.0007
一般血管造影	2.83	0.007
脑血管造影	2.98	0.02
心血管造影	2.16	0.1

二，对比剂毒性反应发生的有关因素

对比剂反应发生的机制迄今尚末完全阐明，仪就厂解多的叙述如ド：

（一）对比剂过敏

血管内注射对比剂，即使是很小㫣，如作过敏试验用的 1 ml ，亦可引起显著的过敏反应，显然与剂量及浓度无关。

反应出现迅速，与上知过敏反应相似，有过敏史的病人中，对比剂反丽率较普䦽人高约 $2 \sim 5$ 倍：在重度反应的病人中，发现了对比剂的抗体。在某些反应中，找到组胺释放的证据。根据上述事实叮以推断，至少一部分的对比剂反应是经过对比剂－抗体相互作用，导致肥大细胞释放组胺。在对比剤反应濒危病人的血清中找到针对对比剂的抗原，是支持这一论点的根据。

某些病人从来未接触过对比剤，仍可打现对比剂反应，可以周交叉过敏解释，病人已对环境中㭉物质结构上与对比剂类似者罊感，由此产生的抗体只要遇到分子结构上部分相似者即叮 j 之结合，而产生过敏反应。

（二）与对比剂量有关的反应

注射对比剂含碘量超过 20 g 者，出现严重反检的较多些，低于 20 g 者，出现副及应较少。轻度与中度反应率似与对比剂剂量不关。心脏大血管造影及介人性操作汗人对比剂剂量往往较大，出现重度反应的比例较多。

大量高渗性对比剂注人，病人容易出现反应，离子型对比剂的渗透压数倍于血浆，当较大量的高渗对比剂短时间内注人血管内，血容量在几分钟内可迅速增加数百至 1000 ml ，使心貹负荷加重，对心功能原来不好的病人威胁甚大。高渗溶液还可引起红细胞，血管内皮以及血脑屏障的损害，对比剂通过受损的血脑屏障后，可引起抽搐或凉厥。

此外，膏渗对比剂还可造成肾脏受埙，在一般病人中有 5% 出现可复性肾损害；而在原有中度至重度怪功能障碍者，约 75% 可加重肾功能损宫。

除对比剂的高渗外，它还有化学毒性及神经毒性，机制相当复杂，目前末完全荓明。

（三）病人的高危因素

在实践中发现使用相同种类，浓度和剂量的对比剂，某些病人更易于H现反应，其程度往往较

車，亟待扐起临㾁及放射科丁作人只的注意，旦加防范；具有高危因系的病人有：

1．肾功能障碍 尤共是中位及果度病人，造影后肾功能㻭作可能加重。

2．哮喘，枯龟热，当麻疹，湿疹及其他过敏性疾病，出现对比剂的中 \sim 重度反应为正常人的 $2 \sim 5$ 倍：

3．糖㲾病，骨髓痛，甲状腺机能六进和头水状态。
4．心脏病 特别是充血性心力衰竭，重度心律失常，远心病，肺动脉高压，紫绀性先心病，其发生死 ${ }^{\prime}$ 或重度反应者高于止常人。

5．对比剂或其他约物过敏史 有对比剂过敏史考发生重度，中度和轻度反心的危险性分別为留通人的 10.9 倍， 8.7 倍和 6.9 倍。有对比剤过敏史者再次造影，约有 40% 出现副反应，但多数属轻度和中度反应。其他药物过敏史病人发生重度和中度反应分別为普通人的 3.2 倍和 2 倍。

6．年龄 1 岁以下婴儿和 60 岁以上老年人反应的发生率也较高

7．高度恐㥍 -5 情绪紧张的病人容易出现反应
（四）造影部位和方法
㝴状动脉造影，左心室造影，肺动脉造影，脊髓动脉造影等风险较大，出现严重反应的儿率人。再者，凡高浓度对比剂快速注人，总剂量大的造影或介人操作，副反应出现率高。

三，对比剂反应的预防

使书有机碘溶液造影有小部分人会出现副反应，即使是非离子型对比剤比不能完全避免，故后在事前做好防范准备，尽量减少副反应的发生，并减轻反应的程度。

（一）了解病史和病人情况

有过敏史病人严車反应的发生率较无过敏史者高 4 倍，因此，应询问有无对比剂，约物，食物等过敏史。对有莦麻疹，哮喘，湿疹等过敏疾病者应特别注意，提高警惕。还应该了解存无其他高危因素，例如较重的心，肾或尒身疾病。

（二）碘过敏试验

含碘对比剂使用前是否应常规作磺过敏试验，颇多争议。部分学者认为必须做，我国现行 已生行政法规桪作了这样规定，但国内外大量统计资料指出，碘过敏试验阳性率很低，且有不少假阴性，即试验阴性病人在造影过程中也可能出现副反应，也

有假阳性存在，故在国外不少地力对造影术前的碘过敏试验已予废弃，而强调作好预防和抢救准备。

在匹种碘过敏试验中，口服法和结膜法粗慥，度内法和静脉法使用较多，后者被认为可信度较高－方法是经静脉注射 1 ml 同一有机碘溶液后，观察 15 分钟，如尤异常，则认为试验阴性，如病人感到不适，或有学麻疹等，则为阳性。

（三）对比剂的选择

非离子型碘剂确比离子型安全，但即使在发达国家，也不是一律采用：根据效用／价格比原则，结合我国现时情况，1991年召开的尒同造影剂临床应用及进展专题座谈会提出合理选用非离子刑碘剂临床使用范制如下：

1．具高危因素病人；

2．高危造影检査，如觜髓血管造影，肺动脉造影，荙状动脉造影及左心室造影；

3．鞘内注射，脊髓造影，脑室利脑池造影均禁用离子型对七剂；

4．精神紧张，焦虑，言话不通或不能合作的病人；

5．本人希肝減少副，应机会而又有经济承担能力者。

全于离子㘹对比剂的适应范围们然广阔，静脉注射店在无高危因䒺的病人仍占很大比例，包括静脉求路造影和CT增强扫描等。管腔造影奴逆行永路造影，直接引人法胆道造影，瘘管造影等，均常规使刃离子型碘对比剂，一般多无副反应出现。

冠状动脉造影及脑血管造影，有条件者用非离子型对比剂。如果用离子型对比剂，冠状动脉造影选择 76% 复方泛影葡胺，即含有 10% 钠盐，而不用纯泛影钠或纯泛影比胺。脑血管造影须用 60%以下的泛影俌胺或异泛影葡胺，不用其钠盐，非离子型对比剂无抗凝作用，在做动脉造影，特别是冠状动脉造影等高危情况检查时，应先行肝素化。

注意控制所使用对比剂的总量，对比剂含碘超过 20 g 时，重度反应率明显上升。对比剂的浓度及注射速度也应掌握好，过快推注及让高浓度都可以枵起反应。

（四）预防反应药物

1988 年 Wolf 等对比分析三组病例，静脉注射离子型碘剂 6006 例，离子型碘剂造影前加服激素类药物 805 例，非离子型碘剂 8587 例，副反应发

生率分别为 $4.4 \%, ~ 4.0 \%$ 和 0.6% ；重度反应发生率分别为 $0.3 \%, 0.2 \%$ 和 0.01% 。

国内一些报告指出，造影前联合使用皮质激素及抗组胺药物，可能减少对比剂反监的发生。例如对高危因素病人，在造影前 $1 \sim 2$ 小时口服扑尔敏 $4 \mathrm{mg}\left(\mathrm{H}_{1}\right.$ 受体阻滞剂），西咪巭丁 $400 \mathrm{mg}\left(\mathrm{H}_{2}\right.$ 受体阴滞剂），造影前经静脉注射地塞米松 $20 \mathrm{mg}+10 \%$葡萄糖液20 2 ml 。

四，对比剂反应的处理

对比剂反应常发生在注射时或注射后不久，且来势迅猛。迟发反应虽然可能，但较少见。因此，在注射过程中及注射完毕后必须密切观察病人，对具有高危因絭者应加倍注意。一日出现副反应，立刻停止注射，并保留血管内针头或导㚛，以便及时推注抢救约物。

检点室内必须准备有急救设备及药肳，如血压计，吸氧设备及常用急救药物。医务人员应该熟悉常见反豆的表现，特别是识别早期危险的征象，例如喉头水肿，支气管痉挛，休克，惊厥，昏迷等：要掌握常用的急救方法，如人工呼吸，体外心肶按摩及急救药物的剂量和用法。轻度反应只需注意观察，不必特殊处理，遇到某些症状明显者，则应给子对症治疗，包括注射抗组胺药物，以免发展成为中度或重度反监。对中度及重度反应需及时处理，注射有关药圽（见表1－7－4）并及时与有 天科室联系，如 ICU 等，派人具同参加抢救。

表 1－7－4 对比剂重度反应急救药物参考表

	嶉新复		
休克	去甲肾上腺素	IV	$0.5 \sim 1 \mathrm{mg}$
	新福林	IV 或 IM	10 mg
惊厥	异戊巴比贯	IV	$0.3 \sim 0.5 \mathrm{mg}$
	副醛	IV	$1 \sim 2 \mathrm{ml}$
	副醛	IM	2－5m］
喉头，支气管痉挛	肾上腺索	SC	0．5～1mg
	氨茶碱	IV	250 mg
	异丙嗪	IM	25 mg
喉头水肿	肾上腺索	IV	$0.5 \sim 1 \mathrm{mg}$
	异肉滕	IM	25 mg
肺水肿	肾上腺素	IV	0．5～1mg

注：（1）IV＝静脉汇射 $\mathrm{IM}=$ 肌肉注射 $\mathrm{SC}=$ 皮下注射 2
（2）中度及重度反应均 话及早静脉注射地塞米松 $10 \mathrm{mg}+$ 10% 葡桿糖液 27 ml
（3）氛茶碱应与葡匋糖液—同静注
（肖剑秋 陈培曹 王小宜）

第 8 章 X 线诊断的原则和步骤

接受一个病人来作影像学检查时，必须出先考虑：根招病人临床表现，此病人足贷需要作影像学检查，如果需要，哪一种方法听能有帮嘲，又将叫能出现哪些表现？

X 线诊断的准确性，在相当程度 R ，取决于对 X 线影像的特点及所及映的解剖，病理，生理基础的认识和诊断思维方法正确与否，为与作中证确的 X 线诊断，在分析和诊断过程中単遵循 定的惊则和步骤。

第1节 诊 断 原 则

X 线诊断就是对 X 线影像加以分吥，㲔別出止常与异常，从而了解机体刚部的病理解剖利病理生理的变化，解释这些变化发牛的原因。然后再 $-j$临示资料，包括病史，㾟状，体征及其他临床检枳结果，综合分析，才能得出比较正确的 X 线诊断，

对 X 线征象的认识，要行析它的病埋学本质：向某种病理学政变可能由 一种或多利疾病所引起，且往往是号一种情㫛，敬不能简单地认为，业现楽利 X 线征象就叮以诊断为某种聅㑂，考种 X 线征象同时仔在时，首光単考虑它们之间有着内在的联系，是否统一于㭉利病理过程，当不能合理地解释时，也切忌牵强附会，伏为互代梢十的多种 X 线征象同时存在也是可能的。

在诊断思维过程中，不仅要止确认识备种 X线检査方法对不同疾病的诊断敏感性（sensitivity）和特异性（specificity），而 1 l 要 5 解临床资料特别是其他影像检查的诊断价值。在综合分析 X 线表现与临床资料时，经常出现下吻合甚至倨互矛质的情况，这时要正确判断哪些资料较客炠地区映了疾病的本质，在很人程度上取决于各种 X 线诊断和缶床资料价值的深入认识。

第2节 诊 断 步 骤

在 X 线诊断运程中，遵循一定的步蝃有利于

发现问题，各观分析，得出较川靠的结论：

一，全面观察

观片时首先要了解照片的质量，摄影位置和范围是否正确，曝射条件是否恰当：然扂按一定顼序，系统地观察。例如，观察胸片时，应他哲胸郭，阨，纵隔，膈及胸膜，观察肺部要自 I ：向卜，由内何外，双侧比较，规察骨关出照片时监包括骨骼，关节及周周软组织，只有全面观察，才不会遗漏病变；企观察分析过程巾，焦熟墨正常解剂利变异情况，注意以分正常㝍异常。

发现存异常 X 线表圲时，要注意它所在的部位，范囲，形态，边缘，数且，大小，密度，病变的周围情况及所在器开的版能状况等：

二，客 观 分 析

通过对异常 X 线表现的企面规察和分所，考数情况下゙可以吅唃该异常 X 线表现属于哪种基本病变。例如：肺部的异常 X 线影像呈类圆形，均匀软组织密度，边界清楚，根据这些表现可以叺确为肺部肺块性：病变。体基本病变只是某种或杂些特定的肜态表现，并不 定代表某种特定的疾病，而为多种疾病所共有，即所濖＂异病同影＂，如肺部牳块性病变可以足肺瘤，结核球，炎性假瘤及䪄肿等。然应，有些较特征性的 X 线表现有助下推测病变的斿理性质或特定的疾病，例如肺部肿块性病变，肺块内出现盎米花样铃化，则极有可能为错构瘤；如果肿块在透视下随呼吸产牛形态变化，则很㞴能为襄肿。总之，訨全面观察病变的基础上细致地分析，有些病变可以得出特定疾病的诊断，但大多数病变篅细合临床资料和其他检查结果作结论：

三，结合临床作出诊断

单纯根据 X 线表现就能够肯定诊断的情况并不多见，人多数病变的 X 线表现没有明确的特征性，往往需要结合临床资料加以验证和补充，以求得出一个比较正确的诊断，临床资料中的年龄，性

别，职业史，接触史，生活史，症状，体征及其他检合们所见和治都经过等，对确定 X 线诊断都只有豆要意义。如果临床资料支持对 X 线衣现分析的初步臆测，则诊断的可靠性比较大；如果两若不一致，则必须深宅其原因，是 X 线所见和分析不可靠，还是临床资料有误或不全面？当然，X 线表圲与临床资料存在客观矛盾的情况也是可能的，作结论要特別慎重。

经过上述步骤得出的 X 线沴断结论一般有三种情况：（1）肯定性沴断：经边 X 线检杳，发现有特征性的 X 线表现可以确诊，或孝对 X 线表现的分析初步推测与临床资料吻合，可以肯定诊断。 （2）否定性诊断：经过 X 线检古，排除了临床疑诊的疾病。但对否定性诊断，必须㗆慎行事。首先必须确定是否有时间因美的影响，早期细微的病变不

能发现，如骨髓炎在两周内 X 线检查可能为阴性；二是必须考虑所采用 X 线检查方法对发现某些病变恰当 $\operatorname{lig}^{\text {否，也就是一种检查方法对某一疾病的敏 }}$感性如何。如结肠息肉不用常规钡灌肠检查，病变就不易被发现，这就表明常规钡灌肠对诊断结肪息肉的敏感性不高：（3）可能性诊断：经过 X 线检查，发现异常 X 线征象，但无特征性，结合临沐资料分析仍不能得出肯定性诊断，这时可按仃能性大小依次列出，并叮建议作有特殊鉴列价值的其他影像学检查，实验室诊断或临床检査，其至活检技介，以达到最店确诊。

总之，正确诊断来之于仍细观察和缜密思维的过程，它尤系着病人治疗力法的选择，预后的评估，作为医生在操作时，必须慎之又慎。

（王小宜 陈培青 肖剑秋）

第9章 影像医学的安全防护

X射线是影像医学巾的主要丁具，X 射线装置已普及到基层医疗单位，与之接触的人群日益增多：射线的防护口益引起人们的关注，以下就 X线防护的意义，方法和亱施作一笛介。 （笛于放射性同位素的安全使用，将在核医学卷内介绍，

第 1 节 X 线防护的意义

X 线具有能量高，对物质页穿力强的特性，当它通过人体时，产生一定生物学效应，对组织细胞有损害作用。由于 X 线不可见，短时间接触人㑀没有什么感觉，容易被忽略，以至遭受过量照射引起损害。

生长繁殖迅速的组织对放射敏感度最高，例如牛殖，造血器官和胎儿，放射线的作用可以累积，在照射后长时间内其影响还可能存在，甚至发展成为不可恢复的慢性放射损伤。在本世纪初期，X 线应用于临床不久，人们尚不懂防护的重要㤢，曾出现过不少放射损伤的案例，包括造血及生殖功能抑制，手部皮肤灼伤等。当时的 X 线设备较原始， X线曝射量大，防护措施差。近一，三十年来，X 线机制造T业受惠于高科技发展，如高 下伏技术，影像增强器，高速增感屏，高敏感度胶片，DSA 技
工作人员及病人接受的曝射量远远少于过去：国家有关防护的规章制度逐步完普，防护的标准及要求较以往严格，防护工作存了指导与依据。因此放射损伤情况显著减少。

过去 X 线诊断中曝射量较大的是繁忙的肺部透视，胃肠铞剂检查，末㝑摄片等，由于新技术新装备的应用，问题大部得到解决。某些复杂的造影检查及介人放射学成了今天曝射量较大的项目，值得引起注意。

第2节 防护原则和措施

X 线防护的月的是尽量减少病人和工作人员的

受照星，而且义能达到诊断与治疗的要求。应该从二个方面努力：设备和技术符合标准；正确选择受检病人；专业人员遵循防护规章制度。前两者与病人及专业人员均有关，后者则只涉及专业人员。

一，设备及技术符合标准

X 线设备及制造除满足技术先进，性能优越，结构合理及使用方便外，不容忽视的是必须符合射线防护要求，设备出厂前应该通过测试。使用设备的人员应该经过必要的训练，熟练地掌握操作技术，允分 5解有关的 X 射线防护的规章制度。

（一）定期检查 X 线设备

临床使用的每一台设备，应该由卫生行政部门定期检查，用仪器仍细测量，确定射线只从认定的方向射出，所发出射线的质及量均符合要求。
（二）正确使用准直器（collimator）
在 X 线管窗口装有准直器，以限制射线的范围，峛姐检查胸部时 X 线只包括肺及心脏范围，而不应该照射腹部。开放准直器的大小，不得超讨荧屏的范围。

（三）用铅制品保护性腺

X 线检查尽量避免对卵巢及睪丸作不必要的照射，如果照射范围很靠近，须用铅橡皮遮盖性腺区域，对育龄妇女及儿童更属重要。

（四）射线过滤

从 X 线管发出的射线，其波长有长有短，根据通过球管两极间的电压而定。波长长者射线较软，完全被人体吸收，这种软射线根本不参与影像形成，反而增加不必要的生物效用。要除掉这种有害的软射线不难，在 X 线窗口放置一块薄铝板，即可将软射线滤过吸收，因而减少了病人淁受的曝射量。

（五）建筑防护

检查室的修建应符合标准，不能太小，检查室六面应有必要的屏蔽，特别是有人群活动的地方。通向建鄫及邻室的门窗，亦应有相应防护，防止射线漏出窒外。控制室应该装修有防护屏

及规察窗。

二，医 疗 防 护

接受确有作 X 线检查指征的病人，对不必要的检查做好解释说服上作。
（一）不必要的常规检查 如一次短暂头痛即申请头部 CT 检查。偶尔一次上腹痛及要求钡餐检查，滥用 X 线检查的情况比比皆是，既增加医疗费用和医院负担，也使病人接受完全不必要的射线。
（二）不论结果如何，丝毫也不会改变对病人治疗方案的这类 X 线检查 例如一晚期肺癌病人，经同位素县扫描，腰椎肋胃 X 线片已发现多处溶骨性转移，症状，体査及实验空检查也都支持已有转癹，病人情况哀弱，此时如再川请作全身骨骼逐一拍片，实为画蛇添足。
（三）病情明显好转后的某些追踪检查 十二指肠溃疡病人经钡餐检查有球部变形，治疗后症状好转，其后每隔 $2 \sim 3$ 个月申请钡餐检查，所见与首次检查相似。又例如心脏病病人，症状缓解后每 3～6个月出请作心脏三个位置照片复查，再多的复查就非必要。
（四）能以无射线损份之莫类的其他方法替代，其效果相当或更好者，就不用 X 线检查。例如胆道系统，从性内生殖器官，胎儿，肝，牌，心包疾患等，USG已成为首选方法，背髓造影大部已为 MRI 检査代替。肖质密废测定已有更安全准确的方法。
（五）育龄如女作 X 线检査，亚尽量避免特别是曝射量较大的如钡餐，钡灌肠，尿路造影，血管造影等，应该了解病人是否有尿，尤其在怀孕前三个月内，不应该让䏩儿受到任何射线辐射，以防止畸变的可能

恰当筛选病人作 X 线检查，一一方面是为减少病人所受曝射量，另一方面也是从降低医疗费用负担考否，少花钱，治好病。

病人的疏导工作，不是放射科医生单独可以承担的，必须和临床医务人员密切配合，共同探讨，

此外，对人民群众医疗知识的宣传普及也是重要的一环。

三，提高专业人员技术水平，增强防护意识

X 线专业人员包括医生技师应该佫守制度，注意防抭措施，他们经年累月接触射线，只有严格遵守防护规则，才能将损害减至最小。即使终身从事此项工作，亦可保持健康的身体。假如在日常工作中疏忽大意，则可导致身体受辐射损伤，不易完全恢复，以至成为慢性放射病病人，于已于国均不利。良好的防护习惯包括：

1．注意屏蔽防护 有射线发生时，在近台检查病人，必须穿铅胶皮围裙，需要时着铅手套，拍片时尽可能在有铅防护之控制室内操作。

2．运用距离原则进行防护 如前所述 X 线线量与距离之平方呈反比，当拍片曝射的一瞬间，可能时离开病人尽可能远一些。用移动式 X 线机在病床旁指片更应注意。

3．定期检查辐射剂量 工作人员应该按规定佩带剂量计（仪）。或装有胶片的胸卡（badage），并定期送检，以了解某一特定时间内，所受之射线量。应定期作体格检吊包括血象。

4．技术熟练 受检病人各不相同，从啼哭的婴儿到．耳 目不㴔的老人，从激动不安到昏迷不醒的都有，在不能合作的病人中，要想检資顺利，结果理想，医务人员必须技术娴熟，经验奔富，耐心细致，注意投照位置，范围，曝射条件，检查目的等的准确性，否则，可能作多次曝射，其至不必要的多次检查，使病人遭到过多辐射。

总之，我们恰当利用 X 线有益的一面，为人类健康服务，而不应忽略其有害的一面。只要坚持应有的防护措施，控制对人体的曝射量，不论病人为诊断需要接受 X 线检查，或是医务人员长年在 X 线机旁操作，都是安全的。

综上各章所述，在影像医学中，尽管断面成像发展极快，常规 X 线投影成像仍是基础，不可替代。

第 10 章 X 线成像新技术

近年来，在 X 线成像中，也有不少新的技术引人，如 CR（详见本卷第 5 篇）和 AMBER（ad－ vanced multiple beam equalization radiography，移动式多线束均衡 X 线摄影术）及胶片荧屏的改进，使成像质量得到提高。特别是前者，它使 X 线成像数字化。AMBER 的原理，如图 1－10－1 所示，它是通効一种技术来补偿，主要是在胸部摄像中，各种器官对 X 线衰减范围悬殊所造成的图像质量不佳， AMBER 利用一水平线束对病人作垂直扫描。此线東分成 21 个平行的节段（segment），每段 2.0 cm宽， 4.0 cm 高，每一段 $5 \mathrm{j}-\mathrm{C}$ 个可透过 X 线的氙探测器（xenon detector）相连，形成一阵列（array），位于病人与胶片之间，从探测器反馈同来的衰减信息涳制着 X 线束的多少，每次扫描需时 0.8 秒。这一设备提供一个实时局部曝射控制机制（real－ time local exposure control mechanism），其结果是

图 1－10－1 AMBER 示意图
线束对病人进行垂直扫描，线束分成 20 个平行节段，每节段宽 2.0 cm ，高 4.0 cm ，每一节段与氙探列器对准，探测器位于病人与愿像接受融之的

线東均氺，使高衰减的部位，如心脏，纵隔与低衰减区，如肺脏之间得到比较好的对比，而使心后区，膈后区的正常解剖结构及病珲情况得以清晰䅉示。

（肖剑秋 陈培青 王小宜）

参 考 文 献

1．吴恩惠．总论 X 线诊断章，见：刘玉清，李铁－，陈熕贤ま编．放射学下册．北京：人民卫生出版社． 1992. 1－8
2．陈尾菜等主编．全身 CI 和 MR1．上海：上海医科大学出版社，1994．67－73；80－83
3．荣独山主编．中国医学百科全书：X 线诊断学．上海：上海科技出版社，1986．1－2
4．中华放射学杂志编委会．全国造影剂临床应用及进展专题座谈会纪要，中华放射学杂志，1991，25：372－373
5．Steven F．Ross Radiology Learning Center，UCSF：Intro－ duction to clinical radiology 1991 UCSF School of Medic：ne． San Francisco，1－8
6．Krause W．Contrast media research and development． Chapter 4 computed tomography．State of the art and fu－ ture application．International workshop edited by Vogl IJ， ClauH W，Li GZ et al Berlin Springer 1996，29－43
7．Thomsen HS，Bush WH．Treatment of the adverse effect of contrast media．Acta Radiologica 1998；39：212
8．Katayama H ，Yamaquchi $\mathrm{K}, \mathrm{Koszuta} \mathrm{T}$ et al．Adverse reac－ tions to ionic and nonionic contrast media．A report from Japanese Commi：tee on the Safety of Contrast Media．Rad－ diology 1990；175：621－628
9．McClernan BL．Yonic and norionic iodinated contrast media； Evolution and strategies for use．AJR 1990；155：225－233
10．McColiough CHI．The A＾PM／RSNA Physics turorial for residents．X－ray production．Radiographics 1997； 17 ： 967－981
11．Se．bert JA．The AAPM／RSNA Physics tutorial for resi－ dents：X－ray generators Radiographics 1997；17：1533－ 1557
12．Geleijns 」，Broerse JJ，Julius IfW et al．AMBER and cun－ ventional chest radiography：Comparisun of radiation dose and image quality．Radiology 1992；185：719－723

第2篇

：HINESE MEDICALIMAGING

主编 陈炽贤 高元桂

CT 的开发成功且短期内迅速发展，是与科学技术的各个门类同时高度发展密切相关。尽管 CT 是在 20 世纪 70 年代初期应用于临床，然而，在它之前，许多科学技术已有长足的进展，包括 Radon 及其他作者在数学方面的研究，放射学的发展和小型机及微机和阵列处理器的应用等，这些领域的研究发展发生在 20 世纪 60 年代末期，也就是说开发CT 所需的技术要素均已到位。

第1章 CT 机的基本结构和成像原理

第1节 CT 机的基本结构

一，X 线 源

图像是影像诊断的主要依据。要提高影像诊断的质量必先提高图像质量。因此，进人 20 世纪 70年代层，开始将电子订算机 $\mathrm{E}_{\mathrm{j}} \mathrm{X}$ 线机结合来改遣 X 线机，对人体进行薄层打描以避免重叠造成的混淆，将影像数字化以提它其精确度，从而产生了 CT 机（图2－1－1）。

图2－1－1 CT 机的基本结构
X 线源即 X 线聟：CT 机所用的 X 线管与传统 X 线机所用的 X 线管结构相同，两者的阴极都有周定与旋转两种 C 第一，二代 CT 机的扫描方式为平移与旋转相结合，连续产生 X 线。打描时问长，产牛热量多，效采用油冷或水冷以确保散热：第三，四代 CT 机的扫描办式，脉冲式产生X线，扫描时间疑，但取样时电流大，方可保证有足够的光子通过受硷部位。由子固定阳极的热容量小而改用旋转四极的 X 线管。它的热容量人，焦点小，寿命长。

二，探 测 器

它是一小测量室。根据 X 线的电离作用和荻光作用特性，室内所盛物质可借以点示通过的 X

线量。臼前，CT机探测器的小测晊室的内含物质有两种：一种为气体探测器，内含官度压缩的气体，如氙（ Xe ）或氪（ Kr ）；另一种为围体，如碘化钠（ NaI ），锗酸珌（ $\mathrm{Bi}_{4} \mathrm{Ce}_{3} \mathrm{O}_{12}$ ）等，称之内胨探测器。

（一）气体探测器

电离室巾置一金属丝作为正极，室壁作为负极。室内充以具有 $20 \sim 25$ 个大气生的氙气或氪气。工作时，两极间因有一定的电位差而形成电场。当 X 线照射耂离室时，室内气体发生比离，产生的止负离子分別向两极移动。这些光电离子被收集姓极集中层，产牛和 X 线强度成止比的电流。这种探测器的优点为稳定性：好，无余辉。缺点为效率低，在高电场有气体再组合性耗损。

（二）闪胨探测器

这种探测器利用 X 线能使某些晶体产生苂光进行工作。所以必须与光电倍增管组合。

光电倍增管主要由光电阴极，倍增极（二次发射极）和阳极构成，闪胨晶体将射线转换成光能。光电阴校则将光能转換成电能。倍增校可多达 10级以匚，每级的倍增可使电子数量增加 6－12倍，总放大倍数可达 $10^{6} \sim 10^{7}$ 。倍增后的电子再作用到阳极，并叫此产生脉冲信号。

C「机常用的闪湶唱体约 10 余种。它们不仅化学成分不同，而且密度，衰减系数，转换效率，发光光谱，余辉指数及稳定性等忖不一样。选配探测器时一定要将获光旨体的发光光谱和光电倍增管的感光光度分布求得一致。

三，扫 描 架

这是一宋固的金属框架，可保证攴撑静止及扫描运动时安装在这一柾架上的 X 线管，探测器，准直器及有关附件的稳定性。扫描架（gantry）的中心有一大的涢形探描窗け，可容纳病人及依坉，第一，一，\because 代 CT 机的 X 线管和探测器皆以相对位置固定在同一框架上，以便在平移或旋转式打描中保证两者的同步运动。第四代 CT 机与前面几代

CT 机的主要区别为扫描运动只有环形旋转而无平移，以及採测器增至 $600 \sim 1500$ 个日平均环绕扫描窗口分布：由于结构的改进，不仅扵葫时间缩铊，由 10－40 秒缩短为 2－－5 秒，同时获得的信息也多，使图像质量明显提高。为了适应人体不同部位检查的要求，扫描架还可进行 $=25^{\circ}$ 的倾斜。其他的附属设备，如激光定位及对讲装置等则分别安装在框架的颃定部位。

四，检 查 床

检查床的设置供安放病人进行扫描之用，有活动及固筀两种。活动检查床为准备病人之用。目前，运送及固定病人的工具大为改进，且扭描时间明鼠缩䂒，活动检查休已被䍇汰。床面高低可随意操作，所用床面及托热必须透 X 线，安周酎用，不易变形或折断。根据检点月的调节床位，将病人摆放在规定位置后，对不合作的病人进行固定或由家人看守以保证安全和防 F ：移动造成的伪影。床的传进则按既定程序规定的层厚及层坄等由计算机控制进行。传统 CT 的多层扫描。要求病人接受扫描时反复进行屏气，扫指一层，呼吸，床向前进行到下一层面，图像重建等操作。两层抖拈间消耗一些时间，信息也中断。螺旋 CI 扫描时，X 线管连续旋转，床连续前进，代仅总扫描时问缩短，还获得连续数据。

五，准 直 器

CT 机所用的准直器是用传统 X 线的准直器演变而米。它的四壁吸收 X 线，将有用的 X 线限制在一定范围内。CT 机的准直器不仅吸收散射的 X线，还用来决定扎描的辰厚，有利广提高图像的清晰度。

六，计算机系统，图像显示与记录

CT 机是计算机与X线机相结合的产物，通过操作台控制着CI机的运行。

计算机系统包括中心处理装置（central process unit，CPU），主储存装置辅助储存装置，显示装置，操作台，打字机和快速打印机；其中中心处理装置，又是计算机系统的神经中枢，可协调及控制各部分的活动，中心处理装塄联同主储存装置，主管投影数据的收集和运算工作。

辅助储存装置有光盘和硬盘储存图像数据，数据可先存在缓冲正，待完成一次扫描后将原始数据进行处理再存人图像区。硬盘的存储量因机而异：硬盘巾的图像数据叮调出，用偏振光照片（polaroid film）或黑白照片制作永久记录。

业示装置用阴极射线管。月前多用黑白电视显小装置，灰度为 $16 \sim 64$ 级，少用彩色电视显示装置。

检杳每一病人时，首先输入病人的有关资料 （姓名，性别及年龄）然后根据检查计划，由操作台发出指令，采集数据，重建图像（二性，二维，矢状面及冠状面），测 CT 值，对兴趣区进街放大而便于观察及打印层面的数字矩阵。

第2节 CT 成像原理

CT 是用 X 线東围绕身体的某一层面进行照射。扫描过程中用相当敏感的探测器测定透过的 X线量，由模拟转换器数字化后，再经电子计算机算出该层面单位容积的衰减数值。这些数值各在原位排列成纵横的数字矩阵，然后把这些信息储存，或重建成图像用阴极射线管显示出来。

一，数 据 床 集

CT 机的 X 线束扫描病人，与之相对的是固定的同步运动的探测器。现以亨氏所用第一代 CT 机为例，安置头部的照射野为 24 cm 的正方形：每扫楛一次则按照 240 个点测量透过的 X 线强度。每扫描完一次，将 X 线管旋转 1° ，再扫下一次。如此反复进行扫描和采集数据，直到转完 180° ，共得 43200 个数据。

人体是由不同器官及组织构成。它们之间的密度及化学成分下差万别。因此当 X 线透过时，其原强度依受检层面的正常及异常组织的密度不同而产生相应的吸收而衰减。 X 线的衰减规律如下式：

$$
\begin{equation*}
I=I_{0} e^{\mu x} \tag{1}
\end{equation*}
$$

式中：I_{0} 为人射 X 线强度，I 为透过物体衰减后的 X 线强度，e 为电子电量绝对值，μ 为物体的线性衰减系数（linear attenuation coefficient），X 为物体厚度（图2－1－2）。

如将 X 线通过的路径分割为大小相同而衰减系数各异的小块体元， X 线通过第一块后测得的强度为：

图2－1－2 密度不均的体 几

$$
\begin{equation*}
I_{1}=I_{0} e^{p, x_{1}} \tag{2}
\end{equation*}
$$

进 步透过第二块后测得的强度为：

$$
\begin{equation*}
I_{1}=I_{0} e^{\left\{\mu_{1} z_{1}-\mu_{2} z_{2}\right\}} \tag{3}
\end{equation*}
$$

通过厚度相同的 n 块后则测得的强度为：

$$
\begin{equation*}
J_{n}=I_{0} e^{2 i \mu_{1}+\mu_{1} \cdot \mu_{n}} \tag{4}
\end{equation*}
$$

求解 μ ，取对数则

$$
\begin{equation*}
\mu_{1}+\mu_{2} \cdots \cdots \mu_{n}=\frac{1}{\mathrm{X}} \log _{n} \frac{I_{0}}{\bar{l}_{n}} \tag{5}
\end{equation*}
$$

根据代数原则，求解 n 个未知数，至少需 n个或更炙的方程式，故需作炙方问投影，测出每．方向的数据，即 $\log _{n} I_{0} / I_{n}$ 。然后方可测出每－一体素的 μ 值。这一用投影数据来计算体穴衰減值及重建图像的方法称之为算法：

现以简图（图2－1－3）说朋如下：
在一个层面上有 4 个正方形像元，它们的大小相同，但衰减系数分别为 $\mu_{1}, ~ \mu_{2}, ~ \mu_{3}, ~ \mu_{4}$ ，有待测量。经由 5 个方南照射后，测得的射弁量分别为 $A_{1}, ~ A_{2}, ~ A_{3}, ~ A_{4}, ~ A_{5}$ 。根据公式 2－1－5 可建立 5 个线生方程式：

$$
\begin{aligned}
& \mu_{1}+\mu_{2}=3 \\
& \mu_{3}+\mu_{4}=7 \\
& \mu_{1}+\mu_{3}=6 \\
& \mu_{2}+\mu_{4}=4
\end{aligned}
$$

图2－1－3 体元和敃影数据

$$
\mu_{1} \sqrt{2}+\mu_{4} \sqrt{2}=5 \sqrt{2} \text { 简化为 } \mu_{1}+\mu_{4}=5
$$

求解 5 个方程式谷得该层等像元的衰减系数 $=$

$$
\begin{aligned}
& \mu_{1}-2 \\
& \mu_{2}=1 \\
& \mu_{3}=4 \\
& \mu_{4}=3
\end{aligned}
$$

二，矩 阵

如上所述，CT 打描一个层面时须围绕人体从多方向行X 线照射，用算法求得该层陑每个单位的衰减系数，犹如用织横两组万相垂直相交的及有一定距离的直线将该浔泊分割成多个大小相同的方块，形成整齐的知阵（图 2－1－4）。这些方块就是组成图像的单位，其面积为像立（pixel），体积为体元 （voxel）c像元及体元的尺寸越小，组成图像的像元及体元知阵越大，图像的清晰度地越高。CT 图像重建时所用矩阵一般为 $256 \times 256,256 \times 320$ ， $320 \times 320, ~ 512 \times 512$ 或更高。每组数字表示纵横线条数目，其乘积即矩阵的像元数，

图2－1－4 像元，体元和铊阵
上述每一层面中的每个単位体积的衰减系数都是模拟量，且是随时间而继续变化的皇。要把它们输人计算机必先由模拟／数宁转换器将它们变成数字量存入硬盤后，再经计算机运算，得出图像中每个单位的吸收系数并排列成矩阵（求得的吸收系数结果义存在硬盘待用。

三，图 像 重 建

由探测器测得的经准直的 X 线束穿过人体受检层面后衰减的 X 线信号，先在计算机中行模／数转换为原始数据，再进行重新组建，以形成图像的方式并显示的赾程叫图像重建，这种重建的方法叫图

像重建算法，常用的图像重建算法主要有以下几种：

首先对未知图像的各像元给予一个假设的初始值，然后根据这个假设数据计算各像元的相应衰减系数，再同实际数值进行比较，取修正值修正各对

应像元的衰减系数，如此重复选代计算，直到二者接近为止。迭代法的优点是图像清晰，可真实及映扫描物体的形状。但计算时间较长。以代数重建技术为例平 2×2 矩阵形式介绍如下：（见图2－1－5）

（二）反投影法

由像元组成的扫描物体，在不同投影方向上段得数值岳，再将这些数据值反投影到原像元に进行累加，从累吅和中减去原矩阵的基础值，最后除以各像元的最大公约数，即得到图像的吸收系数，此方法的优点是过程简单，不需要了解更多的数学楼念。缺点为此法不能重旔出真实物体清晰的边缘及管要较长的计算时间。

以 2×2 个矩阵为例，用数字图解方式说明如下。（见图 2－1－6）

第一次计算
原始投影数据绿

1	2	3
3	4	7

> 第二次计算

新垂直投影数据组

1.5	1.5
3.5	3.5
5	5

最后数据结果

1	2
3	4

原始垂直投影数据喴新投影数据
除以 $2(4-5 / 2=-0.5,6-5 / 2=+0.5)$
图2－1－5 选代法

$3+3$ $=6$	$2+10$ $=12$	墄去基础 背景常数
$1+8$ $3+12$ $=9$ 6		
15		

| $6 \cdot 6$ |
| ---: | ---: |
| $=0$ | | $12-6$ |
| ---: |
| $=6$ |
| 9.6 |
| $=3$ | | $15-6$ |
| ---: |
| $=9$ |

除以最大

公约数 3	$0 \div 3$	$6 \div 3$
$=0$	$=2$	
$3 \div 3$	$9 \div 3$	
$=1$	$=3$	

图 2－1－6 反投射法

（三）解析法

解析重建技术是从投影巾重建图像，是图像重建中最常用的一种方法。解析法（analytic methools）的基础是傅立叶（Fouricr）变换及其投影定理。投影定理即为 一个投影的一维傅立叶变换与共二维傅立叶变换代中心线上的值相等。主要包括下述三种方法：
（1）二维傅立叶重建法：先将扫描所得的投影值变换到频域，利用映象将频域变换为二维南角坐标系，最后利用二维傅六叶诎变换反演到真实空间，即可得到重建的图像，快速傅立叶变换（FFT）重殷…幅图像需要进行正，反傅立叶变换各一次，避免了二维傅立叶变换的复杂运算，加快了車建速度。
（2）卷积法：运用快速傅立叶变换法可以得到质量满意的图像，但在实际监用中，需要快速傅立吁变换器对原始数据做空域－频域的正反变换。目前在傅立叶分析基础 1 的卷积法重建图像。优点是即可得到较好的图像，计算时间矧，使快速成像变为现实。上反投影法相似，此法是所有数据在反投影之前。用滤波方程进行滤波和卷积，产生轮廓清晰的图像。反投影法由于星状模糊图形使物体轮廓不清，再使用适当的滤波器，经过滤后清除这种模糊边缘。而此方法为先获得所有数据，再获得每个数据点的对数，反投影对数值乘以卷积过滤系数和过滤值，总和过滤投影，使阴性和朐性成分柏互抵消，得到轮廓清晰的图像，
（3）滤波反投影法：先把扫描测得的投影值进行反投影，形成有星芒状模糊的图像，然后利用二维傳立叶方法变换到频域进行滤波，最后反演到真实空间得出重建图像。

四，图 像 显 示

存人硬盘内的数字俗号，根据计算机的显示指令，要经数字／模拟转换器的作用将数字量转换成模拟量，方听在阴极射线管上显小出来成为图像。

第3节 CT 的发展

CT扫描机的基本组成部分创拈 X 线管，准直器，探测器，拥描架，检査朱以及电子计算机系统。根括 CT 机的适用范围，结构特点或发展次序而命名：CT 机的类型分类如下。

一，按适用范围分类

（一）头部专用 $\mathbf{C T}$ 机

亭氏前先设计的 CT 机就是这一类型。它的构造简单，只有一个探测器，拍描时间长，3－6分钟。 广式为旋转能平移。适于顾及领面部椎查。

（二）全身用 CT 机

雏形的 CT 机经过改非，提高了精确度和扩大了检查范讳，因而本仅可作颁脑检查，还号用以检相胸部，腹部，脊柱及四肢。

自20世纪70年代初期字氏（Hounsfield）公布发明 CT 机以来，各同专业厂商竟相研制 CT 机，放射工作者报道大量关于在医疗工作中应用 CT 的情况。十年内在全世界兴起一股 CT 热：CT 机的构造及性能迅速提高。

二，按发展的先后次序分类

（一）第一代 CT 扫描机

是亨氏设计的平移／旋转型，故称第一代（图 2－1－7），

图2－1－7 第一代 CT 扚描方式

多为头部专用㞶。由一个 X 线管和 $2 \sim 3$ 个晶体探测器组成。X线管采用固定阳极。由于 X 线管的焦点大而产生的半影大，故用准直器将其锥形 X线束校准成 $2 \mathrm{~mm} \times 13 \mathrm{~mm}$ 大小（ 13 mm 是层涅），从 24 cm 正方形的一边开始平移扫描。每扫描一次，按照 240 个点测量透过的 X 线强度：周而复始，X线管每旋转 1° 即扫描一次，直到转完 180° ，共得出 43200 个数据。这类 CT 机的缺点是采集的数据少，图像质量差，扫描速度慢，扫描一个层而需时 3～6分钟，不适于检查不合作的病人，现已被沟汰。

（二）第二代 CT 扫描机

它与第一代 Cm 机没有质的不同，作是平移／旋转型，而是在第一代的基鿎下作了一此改进（图 2－1－8），将探测器增至 30 余个，以收集较多的信息，X 线束由锥形改为扇形 $\left(5^{\circ} \sim 10^{\circ}\right)$ ，提高每次旋转角度而将扫描一个掅面的时问缩短为 $20 \sim 90$秒，但仍难避免病人移动所造成伪影。目前已被淘沈。

图2－1－8 第二代 CT 扫描方式

（三）第三代 CT 抣描机

它的 X 线管和探测器阵列联动（图 2－1－9），是 $C T$ 机制造上；的重大跃进，成为头顾及尒身两用机。探测器改用氙气电离室，增加到 $300 \sim 800$ 个，密集排列成弧形与辐射角相对应。 X 线辐射角， $30 \sim 50^{\circ}$ ，可包括人体整个断面，不需要平移，扫描时间只需 $2 \sim 4$ 秒。 X 线管采用旋转阳极以提高其管电流量：它的优点是构造简单，操作方便，图像质量高，佖影明显减少。

忞2－1－9 第三代CT 扫描方式

（四）第四代CT扫描机

它的特点为探测器明昆增多至 $800 \sim 1500$ 个并固定在扫描窗口的框架上，形成一探测器环（图2－ 1－10），一改第三代的 X 线管和探测器阵列的联动方式。扫描时，病人卧在扫描窗口中央，如 X 线管环绕病人在探测器环内旋转时，需时 $2 \sim 5$ 秒；好 X 线管在探测器环外旋转时，倾斜的探测器也作同步旋转的垂头运动（nutation）完成一个层面扫描需时 $3 \sim 30$ 秒。

图2－1－10 第四代CT担描方式
\｛五\}电子束 CT (electron beam computed tomography，EBCT）又称超高速 CT（ultrafast com－ puted tomography，UFCT）。

20世纪80年代初美国 Imatron 公司的工程师 Boyd 将电子枪（electron gun）应用到 CT 机上（图2－ 1－11），取代了 X 线管并制成产品问世。按发展次序的先后而称之第五代 CT 机。

1．与第一至第四代 CT 机的区别

（1）不用 X 线管而改用电子枪：枪的体积大，

所占空问明显大于 X 线管，伧电覑及电流分别为 130 kV \＆ 635 mA 。电了束在枪内出甴磁线圈进行

聚焦及偏转，使之去中1枪内 4 个排在检查床下的 A，B，C，D 铇靶环，

图2－1－11 电子東 CT 扫描方式
（2）扫描时间短而以毫秒计：每次扫描则用电磁线圈的偏转代替第一至四代 CT X 线管的机械运动，因自将扫描时问缩短，以毫秒计，最快为 50毫杪，故可避免心跳伪影。电磁线圈的偏转最大范围为 $210^{\circ}, ~ 50-100$ 毫秒内完成。

2．扫描方法及参数（EBCT 的扫描法有三种）
（1）单忶扫描法：用于心脏，大血管，头顾，胸部及腹部检查。选用 C 靶及第二组探测器（864个探测器），层厚 $1.5, ~ 5, ~ 6, ~ 10 \mathrm{~mm}$ ，可下 76 ms内获得 40 层的数据。不能屏气的病人可于 100 ms内获得满意图像。
（2）多层妇描法：包括血流序列和电影序列，是 EBCT 特有的用于心脏检査的方法。 $1-4$ 个靶任意组合，同时用两组探测器。每个靶出两层图像。一般心脏检查选用 8 层，每㧁厚 7 mm ，层间隔 4 nm ，每层包括一个心动周期，共 10 幅图像。较大的心脏则扫描 10 层以 $1 . 。$ 血流序列主要用于规察心肌的血流灌汗，冠状动脉或搭桥血管的血流及先心病分流。电影序列主要用于观察心腿的解剖

结构及动态功能，并可作到定量，如心脏容积，每搏量，心输出量，心詣数，肌块重量及射血分数等。
（3）连续容积扫描：井于扫描时床连续运动，故可获得该段人体的容积图像。层厚 $1.5, ~ 3, ~ 6 \sim$ 10 mm ，揑描时间 $0.12 \sim 2 \mathrm{~s}$ 内任选。这一扫描法之所以较螺旋CT 优越，在于一次扫描的层数较多而高达 140 层，扫描的范围较大而长达 570 mm ，以及扫描速度更快（ 140 层 $/ 14.6 \mathrm{~mm}$ ）。

3．扫描体位：
（1）常规横轴位：同传统 CT 和螺旋 CTa
（2）心桩短轴位：原头抬率 $12^{\circ} \sim 15^{\circ}$ 及床纵轴顺时针方向旋转 $22^{\circ} \sim 25^{\circ}$ 。
（3）心脏长轴位：床面平，床纵轴逆时针方向旋转 $22^{\circ} \sim 25^{\circ}$ 以显示二尖瓣，主动脉根部，主动脉流出道及心尖。
（4）扫描触发方式：1）手动触发，2）定时触发，3）动态触发及，4）心电图门控触发。
（六）螺旋 CT（helical or spiral CT，SCT）又称

螺旋容积 CT（spiral volumetric CT）－ 1990 年分别由 Kalender 及 Vock 报道故应为第六代CT 扫描机。它是通过快速连续扫描来采集人体某一段的蝟旋数据的新技术，是在 CT 成像技术上的一次跃进。

1．原理 螺旋 CT 扫描时，X 线管不断地产牛 X 线和围绕按预定速度沿纵轴前进移动的病人旋转 （图2－1－12）。因此，中心 X 线在病人体表走一螺旋轨迹故名。

传统的 CT 机通过电缆将电力输送给 X 线机和计算机，限制了 X 线管的快速环形运动。螺旋 CT则通过滑环技术，一个个连续移动的转子和一个供电系统，与扫描休连续移动虽结合进行工作。通过高压滑环法向转子供电的为高压滑环，用低压滑环法向转子供电的称之低压滑环。由于采用了这一技术。 X 线管就可在 $30 \sim 50$ 秒内高速连续旋转和扫描。

图2－1－12 螺旋 CT 扫描方式

2．特点
（1）缩短总扫描时间：${ }^{5} \mathrm{j}$ 传统 CT 䄄比，螺旋 CT 检查大多数需病人一次屏气 20 秒米完或对整个一段身体的容积扵描。传统 CT 的多层扫描，病人反复屏气，扫一层屏一次气和进一次床，多用去不少时间。
（2）增加进床参数：兮传统 CT 相比，螺距 （pitch）是螺旋CT的重要参数。

$$
\text { 縩距 }=\frac{\text { 床进速度 }(\mathrm{mm} / \mathrm{s})}{\text { 层厚 }(\mathrm{mm})} \times X \text { 线管旋转 }\left(\mathrm{s} / 360^{\circ}\right)
$$

常用的螺距值为 $1.0(1: 1)$ 及 $2.0(2: 1)$ 。如 X线管每旋转一周需进 1 秒时，螺距为 1.0 则病人前进一个层厚，螺距为 2.0 则病人前进两个层厚。
（3）提高对值班医生及技术员的要求：由子螺旋 C厂 检查需时较短，必须根据病情及临床要求决定检查范围，且检查多在 20 秒内完成，所以要求值班的医生：及技术员熟悉各项参数，包括层㴟，沐速，全部扫描对间及重建间隔时间，以便在预订的时间内完成某一体段的检查。选择参数时应先了解病人能否在一次屏气时问内完成扫描。必要时让病人练习屏气。

3．优点
（1）排除呼吸及其他运动所致误记头影。螴旋扫描只需病人短时间内（ $20 \sim 60$ 秒）屏气即可完成兴趣区的容积扫描，因而适用于儿童，不合作的或外伤病人。
（2）縩旋 CT 扫描所得乃沿病人纵轴（ Z 轴）的连续数据，所以可任意提取某一段落的数据进行图像重建而忽需再行嚗射。
（3）可进行动画及三维重建。与传统CT 相比。螺旋 CT 所得者为连续数据，将其输人有关软件的工作站，开二维或三维技术进行重建，操作动画以及三维仿真内椝镜（气管，结肠镜等）。
（4）螺旋 CT 检査时病人接收的 X 线量低于传统 CT：（1）螺旋 CT 的 X 线管电流低于传统 CT； （2）蛘旋 CT 检查避免了在传统 CT 常见的病人不合作所致重复扫描；（3）传统 CT 常因求得高质量的三维显方而重叠扫描；（4）螺旋 CT 采用大于 1 的蝶距比传统 CT 连续扵描时接受的 X 线量少，螺距为 1时则两种扫描技术给病人的 X 线量相等。

4．螺旋 CT 的临床应用 目前螺旋 CT 几乎应用于人体的各个部位。
（1）顾脑及领面部：后颁凹伪影明显少子传统 CT。对频脑及领面外伤的快速三维重建以显示血肿及多发骨折。有利子诊断及快速及时处理。
（2）胸部：（1）由子一次屏气进行容积扫缷能观察整个肺部，有利子检出肺内结节性病灶；（2）由于容积扫描排除了呼吸的影响，在冠状位或矢状位重建中可显示 2 级， 3 级支气管。三维重建可显示先天畸形，支气管狭窄，其至肺移植后吻合口的并发症皆可显示。
（3）腹部：（1）螺旋 CT 检查肝耻，当泣射对比剂后，可得到肝动脉期显影，存利丁观察动态变化，提高肝肿瘤的检出率；（2）胰腺在血管造影的动脉期成像，提高对肿瘤的诊断准确率及对总胆管及胰管的观察；（3）情脏在血管造影检査时对情示小肿瘤优于传统 $\mathrm{CT}_{\text {。 }}$
（4）血管：螺旋 CT 的血管成像（CT angiogra－ phy，（TA）是一损伤很小的准确性很育的新的血管成像技术。一般用高压注射器由前臂或其他外周静脉注射对比剂。优点：（1）CTA 诊断的准确性与图像质量密切相关，可形成类似血管选影的图像； （2）用三维重建技术能显示重盉的血管以及血管的外表轮廊，显示由不同角度观察血管结构；（3）成像速度快；（1）能分辨钙化斑。

1）脑 血管的 CTA：对脑底动脉环及后顾凹血管病变，如动脉㽷，血管闭塞及先天性䓫形的显示快而准确。

2）领动脉的 CTA：用来显示颈动脉狭窄，矤动脉夹层，管壁内钙化以及颈动脉和颈部包块的解剖学关系。

3）主动脉及分文的 CTA：对显示主动脉弓病
构的关系的效果很好。

4）冠状动脉的 CTA：由于心脏搏动及远状动脉管径细小，螺旋 CT 显示较差，但可用于观察搭桥术，它旁路血管的开放情况。

5）腹主动脉的 CTA：可用以观察腹主动脉及其分支，如腹主动脉瘤的范围及其与分支的关系，肾动脉及肠系膜下动脉狭窄及开放情况。

6）肺动脉的CTA：螵旋 CT 可用来显示动静脉畸形。用血管造影可显示肺动脉及分支内的血检。
（5）肌肉骨骼：由于螺旋 CT 检查速度快且可作三维重建，对骨折及脱臼的显示效果很好。
（郭庆林）

第2章 评价 CT 机主要技术性能的指标

自 20 世纪70年代初期第一台 EMI CT 扫描机诞生以来至今，电子束 CT 和螺旋 C厂 技术相继的用于临床后，CT 机的功能有了突飞猛进的发展。其主要标志是：扫描速度快，检查效率高和图像质量显著改善。此外，某些特殊功能软件和独学与作站的开发，使 CT 机性能更加完善和多样化，㡺用范围越来越广泛。

第1节 扫描时问，重建时间与周期时间

一，扫 描 时 间

扫描时间（scan time）是指完成一次数据采集 X线穿透人体所持续的时间；螺旋式 CT 机，扫描时间是指限定扫描架竨转 360°（可时有 X 线发生）的时间。在扫描时间内穿透人体某部位的 X 射线至少要保证 CT 设备能提供良好的图像质量。因此，扫描时间是 CT 机性能的主要技术指标，一般的 CT 设备都设有几种扫描时间供选择。若扫描时间不足 1 秒系指部分扫描。如 Picker 6000 型 CT 机，扫描时间缩短至 0.6 秒时，扫描架仅旋转 230° ，适用于外伤躁动者 CT 检査」 对于所有 CT 机型而咅，部分扫描时由于因图像重建所需数据本身减少，这实际上是以牺牲图像质量来达到缩知扫㻤吋间的，不能作为 CT 机的技术指标。

CT 发展趋势是从提高速度方面提育图像质量，包括缩短数据采集，去间延时和计算机运算处理时间。短的扫描时间可有效的减少或消除运动伪影造成的成像结构变形和衰减值的失真。除了一般所指的病人身体活动外，在体部有多种形式的不白主运动，如心脏跳动，肠管蠕动和大血管搏动及肺和腹部脏器因呼吸运动幅度过大等。日前螺旋 CT及共他高档 CT 机在一次屏气期间荻得多个或全部扫描层面数据，则可消除反复多次屏气扫描必然出现的漏扫或重复扫描等弊端。相反，若一次屏气只获得一个扫描层面则有叮能漏掉已知的肺部小于

2 cm 小结节。上腹部，尤其是肾上腺，胰腺和胆斏等小器官的 CT 扫描也存在类似情况。造影增强扫描时，较短的扫描时间，在血中对比剂浓度达到高峰期，感兴趣区可望获得较多扫描会面，由于滑环技术和螺旋CT已曾及到中，高档CT机， 1 秒扫描，一次屏气可完成胸，腹部CT 扫描已成为现实。

二，重建时间

重建时间（reconstruction time）是指阵列处理器 （array processor，AP）在主控计算机控制下，用原始数据重建成显小数据矩阵所需要的时间。 AP 与主控计算机是并行工作的，AP 的运算速度与其内存容量是决定重建时间长短的重要因素。早期 CT机因计算机容量低，不佰扫描时间长，图像重建也是在扫描期间后完成，使周期时间明显延长。自 90年代初期开始，数据采集和图像重建可同时进行。快速CT 机常采用相当复杂的特殊 AP，图像重建可在 3～4秒内完成。图像重建时间短，可及吋看到图像，有利于及时决定是否需要补充扫描方案。如杂重建时间短至 1 秒或 1 杪以下，CT 图像实时重建或称实时透视图像（real－time fluoroscopic imaging）是可行的。

三，周 期 时间

早期 CT 扫描中的周期时间（cycle time）是指数据采集时间和图像重建时间之和。现代 CT 机的土控讣算机和 AP 机并行工作，数据采集和图像重建可同时进行，第一层扫描后的图像重建尚未结克，第二层扫描已经开始，所以把 CT 扫描时间和图像重建时间简单相加计算周期时间已尤实际意义。

第2节 CT 机的特殊功能

随着CT 主机性能提高，具有特殊功能软件和独立工作站的开发和应用，CT 机的特殊功能也在
 3 D ）重建，HRCT，QCO 多（＂1A筧以外，（＂1模拟内窥镜，介人CT等新技术也阶续应用于临安。

一，三维图像重建

三淮显小技术（threc dimensional rendering techniques；历史可以迫溯到1977付，Herman 等用衣而提取法首次完成一维（丁成像，利用呩准床渐
 CI数据。 三维业小技术主要适用丁所用，颌面部，肙州骨盆和叫肢等缺乏仆随甞运动的部位，便丁更准砤地观察肖折，先大畸形，肿瘤及具他疾病引起的肖肜念和炶构的变化，

与传统CT 相比，䗆施（「T优㤩之一为病人次屏气 30 秒钟即可完成全胸球今腹（＂！扫描，有效的避免 个呼吸运动所致的误记，由于 SCT－－次扫描采集数据的迁续性，可以在人体纵轴（即 Z 轴 j成）任们 点以任意间隔重建众多重登䢁位公面图像，在此基础上制作一维方体图像

利用螺旋CT 容积数据的三维显小技术而㻃首先产生一组重叠的轴位原像，然含利用：维显小算法将该组轴位图像重建成三维图像：目前有収种显小技术可利用 SCT 的容积数报制作多平的，曲面重组图像或一维图像：（1多半而，曲面委组；S謶
法。

（一）多平面，曲面重组

多平和和曲面重组（mulit－and curved planar re－ formations．MPR／CI＇R）代表学一位无体层层面，羔平面重组（MPR）是在一系列横断面基础上形成的过状位，矢状位或斜依方向 1 单一体素虽度平面，对显示佂意方向 1 解剖关系的各种变化很付
血匕不能显示其全程。

曲面重组（CPR）是按照甽在轴位，重组层面或三维投影层面 $1:$ 的一条曲线車组的曲面，并将其扩展到整个数据系列，将所得＂曲面＂变平，并显示为二维图像。与最大强度投影法相似，曲面重组图像卜的灰阶仅映的是 X 线衰滅值，可使兴趣炶构从㥵邻的血管结构中分离忛来，消除厅升丁血货重叠造成的韍淆，

MPR 和 CPR 图像尤其有利于炠察腹主动脉瘤

直头的壁，泉刚们畅的加永管腔的关系；具 …从邻近通物的管腔内
架的内景。

MPR 和（CPR 的制成利准确程度与操作的熟练
信息。吠此，选层不准可洖拟病变或違漏确有的病相：在 CPR 图像上 代能进行测量，判断结构的相对位䈯过必须娦重：因此，解释（PR 图像必须結合轴们图像和其他•维最小゙图像，否则呵能导钽镆误的结论。

（二）遮盖表面显示法

 （SD）法是最简化的 维罪が技术，首先确是兴掫绍沟的（「T國俏，恨据此值取得成像容积的一维影像，计算机将 CI 间估范国内连续像元构成三维结
必何反射，并以灰阶或伪彩／试に录慔型的衣面影像。SSI）的制作开用多个（CI阀值并对代同（T 值结构以彩色显示，以使切割具有隹同衰减值的结构 （图像编辑）。

甘前主要用于省骼，比管结构的三维成像，応其有利十业示上朔脉以部及大血管根部等复杂的重叠结构，SSD法两个立要限制：IjOT 闻值的选定朋鼠影响血管狭系的表现：在 CI 间值的范闱内，SSD）法不能区分具有不同裏减值的结构，如饬化和管腔内的对比剂等：

（三）最大强度投影法

最大强度投影法（maximum intensity projec－ （im，MIP）最初用于MRA．SCT 血管造影技术的出现使MIP法最先厂＂泛的単用于（T）MIP法足一组投影线沿着顶远的视角穿过容利数据系列，飦条技影线上的最高CT作被维码形成，－维技影影像：因此，MIP 灰阶反映的是相如 X 线衰减值。由于没有似SSD汒的顶先确定CT间值，从面保证：尤唐息遗漏，并能显小微小的密度差别，在鉴别钴化胡动脉䊀样硬化坟决和管腔内的对比剂们本要意义 MIP 法的缺点是根据一个图像不能灲断共深度的相却关系，而需要采用绕轴旋转的等问隔多角度产：生挐一组MIP 投影，这一张图像可作为し影图像泉小结构的深浅关系。 MIP 种某些SSD 的力一个限度是高哀珹伯似结构如背，金属植入体或泉著强

化的脏器实质可掩盖兴趣结构。匤为MIP仅选择每条投影线上最亮（即 CT 值最高）的像元。线上任何高密度结构均可掩盖 CT 值较低的兴趣结构。为了克服这一缺点，必须采用手控或米白动技术，在 MIP 显示之前排除明贈高于兴趣结构的密度。于

控技术有赖操作者对每一轴位层面上选择用于3D显示的兴趣区的解剖知识。这种技术费时 $30 \sim 60$分钟，但是它可最大程度地控制3D 显示中被取舍的结构。MPR／CPR，MIP 和 SSD 优缺点比较总结如下表：

麦 2－2－1 MPR／CPR，MIP 和 SSD 优缺点比较

（四）容积显示法

容积显示法（volume rendering，VR）是利用 CT血管造影数据最新的三维显示技术，假定投影线由选定视角通过扫描容积，对其像元信息进行综合显示。由扫描容积内像元 CT 值制成的直方图，经过分析，规定各种组织的不同色彩及不透明数值，给人以近于真实三维结构感受。VR技术的优点： （1）显示前无需图像切割。不必预定 CT 阈值因而不会丢失信息（MIP 和 SSD 仅利用约 10% 的数据），显示容积内无论深在的还是表浅的所有结构及相关的衰减值；（2）VR技术可从容积数据内产生透视图 （perspective views）——透视容积显示法，宛如携带观测器在血管，气道或胃肠道等空腔脏器内旅行，近似内窥镜功能。

容积显示法需要大容量计算机，目前，配备有抉速计算机图像处理功能的工作站问世，容积显示法已用于CT 的数据处理。

透视容积显示法（perspective volume rendering， PVR），目前三维显示技术主要的应用是从容积数据系列外各点产生图像。一种仿真技术就是借助于轻度发散光线模拟人的视觉系统，观察同样大小的结构时，近者大远者小。

透视容积显示法则是从 CT 容积数据内而不是

从外部各点观察的至关重要的显示技术。SSD 和 VR 均可由 CT 容积数据内显示透视影像模拟内䇲镜。利用这种技术在观察支气管和血管的内腔及胸腔内的解剖暞病理情况，已显示相当可观的应用前景，不必进行数据编辑就可显示从外部看起来可能互相重叠的结构间的图像，尤其具有吸引力。

二，高分解力 CT

高分辨力 CT（high resolution CT，HRCT），一种使空间分力率尽可能完善的 CT 技术。常用于肺部和骨性结构（如中耳，内耳和乳突）的CT 检查，在具有良好低对比分辨力（密度分辨力）基础上提高 CT 图像的空间分辨力。

（一）肺 HRCT 扫描技术参数

1．层厚与层间隔 HRCT 规定层厚为 1.0 mm $\sim 1.5 \mathrm{~mm}$ ；层间隔视扫描范围而定无固定标准。直径 $<3 \mathrm{~cm}$ 肺内结节病灶的 HRCT 扫描，层间隔不宜过大，一般以 $2.0 \mathrm{~mm} \sim 3.5 \mathrm{~mm}$ 较为合适。可包括整个病灶及其上，下缘邻近的少许肺组织。肺内弥漫性病变，如行全肺 HRCT 扫描，层间距应为 10 mm ，若仅扫描几个特定区域则可酌情缩小层间距。

2．什伏及毫安秒 在 120 kVp 条件下， 125 ～

150 mA ，扫描时间 2－3 3 s 为宙 每层扫措 X 线卓必须控制伍 450 min ．以下，否则对病人，设备以及图像都有害l迫无益。尤其是现代高档 CT 机的固存分辨率已相当理想，如 Picker PQ2000 以 卜．在型 CT机的空间分辨率已高达 $20 \mathrm{~L} . \mathrm{P} / \mathrm{cm}$ 以上，只要不是讨于肥胖病人，选井 120 kV ， $125 \cdots 150 \mathrm{~mA}, ~ 2 \mathrm{~s}$ 扫描即叮取得满意效果。若病灶靠近左心室或主动脉，用 2 s 扵描以减少心睙大血管搏幼伪影，定会提高 HRCT 图像质量。现代 CT 机一•般都具备连续掝描技术（只计算抖描时间和层间延时时问），如病人条件允诈， $10 \sim 15$ 个扛描层面，最好在 $1 \sim 2$ 次屏气扫描以全部获得，两次屏气扫描之间底重叠一个朢面以免遗漏信息，此时以 2 秒抖描为宜。

3．图像重建范国或观察鬯（field of view，FOV）
FOV 通常设定为 300 mm ，包捊双侧弫野。体型㾣小及儿童叮适当调整为 $200 \mathrm{~mm}-240 \mathrm{~mm}$ ，总之应遵循的原则是 CT 图像（包括駨壁在内）应尽是充满整个视野。此举可缩小像元大小，有叙提䦓图像空问分辨力。

4．图像重建算法 HRC° 扫描必须使用宙－空问－频率重建算法（high－spatial－frequency reconstruc－ tion algorithm）重建（T 图像，有的厂商标以锐利 （sharp），边缘增强或骨重建算法。顾名思义，结哲病灶边缘可出现增强效应，纵隔窗观察，结兮边缘可出现环行高密度影，不叮误为钙化，必要时可将原始数据用肺 CT 常规重建算法重建图像以资鉴别。

（二）图像噪声与信／噪比

由于使用窄的准直㫗度（ $1.0 \sim 1.5 \mathrm{~mm}$ ），到达探测器的光子数减少而致肺实质嶼声水平提峝，信楽比下降，影响原像质量，此外，高－空间－频率算法也使肺实质噪声增加，必此，必须增加 X 线量以提高图像质量。

（三）病人准备

HRCT 扫描前合必要使病人受吸气及屏气练二，达到可屏气 30 秒钟。同时漏坿病人在定位扫描和 HRCT 抖描时尽可能保持相同的吸气深度。如病人合作，较小的结节病灶有望经 $1 \sim 2$ 次算气扫描即可获得病付它貌。深吸气使肺脏充分膨胀，连同肺血管和支气管树充分舒展及减少肺血苼积效应的影响，而提高图像质星及诊断准确兴。
（四）肺 HRCT 适应证

肺部HRCT 的优势在于显小朋的微细结构（即供应肺小叶的文气管，血管和小叶间隔），从而得到在肺小叶水平的信息。

1．昁内弥漫性病变 FIRCT 主否用子肺以弥漫怅病变的影像学沴断和鉴别沴断，癌性淋巴管炎，淋巴管肌瘤痕，郎＂罕细胞增多症（Langerhans cell histiocytosis），肺泡蛋打沉积庣，特发性肺间质结维化，肺气肿及支气管扩张症等，当近现典型 HRCT 庡现时可明确病变的性质。

2．肺内单发结并病灶 准确判断肺内单发站节病灶的病䧉性质一直是影像诊断学的难题，是恶性还是良性病变，足瘏发性支气管肺膈还是结核，急慢怍炎症或其他吽质病变，原时 30 余载，布紷单纯常规放射学检杳（胸部平片及体层片），到低挡次 CT 扫描，直到 H 前高垱次 CT 打描。这问题一直在困扰着影像诊断医生。在常规胸部（TI扫描基础以再行病灶 HRCT扫描，叮更充分地显小゙其形态特征，如病灶边缘轮席，内部结构（支气營气像，钙化，脂肪成分，有无不死空洞等），以及病灶约周国结构（支气管，血管及胸膜）的关系等。结合常规 X 线检含及常规胸部 CT 扵㩲所见，临床体征，症状及必要临㳭化验检否资料等，均有助丁单发肺榬节病灴的影像学沴断和监别诊断，

三，CT 血管造影

进入 20 世纪 90 年代，螺旋 CT 容积抽描技 ※的研制成劸并广泛试用于临床买践，标志前（「技不快速进展和一个新吋代开始。其中最突出的进展之一就是用于的管成像～CT 血管造影。再配以大谷量，可快速进行图像处理的计算机三维显示技术，使CTA 成为当今心大无创性血管成像技术 （CTA，磁共振血管造影，多普勒超声）之一。

（一）CTA 的基本原理

厄力注射器经肘前静脉由 20 号导管快速团注造影剂，在兴趣血管船内对比剂浓度峰值期间， SCT 完成连续性数据采集。然后在人体纵轴（却 Z轴）上以小于度秒进床距离的任意间隔重建横断面图像，获得多㫳互相重叠的图像，再经计算机各种 －维显示技术处理，显示血管的三维结构影像。

（二）CTA 设备要求

1．具有高分辨力的縩旋CT扫描枕在 $120 \mathrm{kV}, 250 \mathrm{mAs}$ 条件 ${ }^{-}$下能够进行 30 秒以上的连绕

打描（即连续旋转 30 转以上）以快逗获得容积数据，然后使今共你高多辨率的 180° 线性内拆运算法 （ 180° linear interpolation）合成涉断！ 1 面图像，以便

2．压力注射器 能门凮㓮静永内注射高流速的对比剂；定时准确，位兴趣血管腔内刘比剂维持峰值期间完成容积数据吾集；注射与扫描二苩必须同步才能获得最佳血管成像效果。

3．三维显示技术设务 人容量计算机，复杂的计算机软件系统（即快速计算机图像处理I．作站），以便在最短的间内制作出高质量血管：维立体结构图像。

（三）CTA 技术要求

1．成像容积，数据采集的间 在（TA 之前必须准确确定成像空积（imaging volume），即扡描长度。为此，必须先行常规 SCT 打描（准南器宽度设定为 10 mm ），以朋确兴趣血管部位及成像容积。造影数据采集时间（即 SCT 扫描的问）必须在病人叮拊受的屏气时间以内。实践证叻，经过训练即使老年人屏气 30 秒钟是完尒叮能的。所以，CTA数据采集时问以 30 杪为宜，最长不超过 50 秒。延长数据采集时间的优点：（1）在进床速度不变的情况下可以扩大成像容积；（2）保持成像容积不变，娍慢进床速度叮以提高图像的 Z 轴分辬率，

2．进沐速度与准南器宽度 根据成像突积大小和数据采集时间计算进床速度（ mm / s ），即：

$$
\text { 进床速度 }=\frac{\text { 代描长度 }(m m)}{\text { 屏气时间 }(s)}
$$

准直器堅度（相当于罢厚）与非床速度直接影响 CTA 图像质量（即空间分辨力和信／噪比），血管分㲔力高低依赖于体元（像元表面积和有效罢面厚度的乘积）大小。准古器宽度和床速之间的关系可用螺距（pitch）表示，即螺距等于床速与准直器宽度的比值乘以打描架旋转周期时间（ 1 秒）。
螺距 $-\frac{\text { 林传进速度 }(\mathrm{mm} / \mathrm{s})}{\text { 淮直器宽度 }(\mathrm{mm})} \times X$ 线管旋转周期吋间 (s)
其中，蝹距必须大于或等于 1 ，小丁或等于 2 $(1 \leqslant$ 蛠距 $\leqslant 2)$ ，即准直器最人宽度（mm）必须小于或等于每秒进床䟥离（ nm ），选择最小的准直器宽度也必须保证 pitch $\leqslant 2$ 。所以准直器宽度取决床速大小。

SCT 扫描，pitch 值和内插运算法直接影响轴位层而有效层面厚度及体元大小。当螺距 $=2$ 时，

妘画敏感性曲线（section sensitivity profile，SSP）的半峰㨁最 人莬度（full width at half maximum， FWIIM）——即有效层自敀度串有所增吅－采用 180° 线性内插运算法合成辂位层面图像时，pitch $=1$时有效层自厚度仍与准直器资度保持－致；pitch＝2时则分效层的厚度较准直器宽度增加 30% 。若采用 360° 线性内插运算法合成轴位层面时，同样的 pitch 傗，有效层向愿度将分别增加 26% 和 116% ，体元亦明显增大，导致䆑问分辨力下降，

因此，准直器宽度及进床速度都是依据成像容剂大小改变面异的：：成像突积较小时，使 pitch＝1；容积较大时，则增大进束速度，但必须保证 $1 \leqslant$ pitch $\leqslant 2$ 条件，叮在相同时问内蕧義较大的成像容祝（即较长的扫描范用），值得注意的是，（TA 血管分辨力的高低依赖于体元大小，在像元大小不变的情况下，分辨力的宙低敢决于准直器的宽度：如准直器宽度大于血管管愘自径，分辨力将囚部分容积效应而下降，九其会将低佔水平方向走行掹管管空的䉺窄程度。

3．层角内显示野（FOV）为最大限度地缩小像元大小，必须从 CTA 昆示野中排除与之 关的结构。CTA 的层面内显示野大小为 $15 \sim 25 \mathrm{~cm}$ 。确定 FOV 人小的原则是，如果扵描长度 $>18 \mathrm{~cm}$ ，那么 CTA 图像重建的 FOV 应与扫描长度一致。这样多平面重建和三维显示图像可以充满显示矩阵。

4．病人的准备 为获得最佳 CTA 图像，病人的合作洂至关重要：在胸腹部 CTA 时，不同深度的吸气叮使有关的解剖结构纵向移动 $3 \mathrm{~cm} \sim 5 \mathrm{~cm}$ 不等。所以检査前必须训练病人使之在定位扫描 可 CrA 容积数据采集扫描时尽可能保持相同的吸气深度，以免兴趣血管动出戍像范围。只要训练恰当，即使是老年人屏气 30 秒是完全可能的：估耻骨联合以下的盆腔结构代受呼吸运动的影响，病人保持平静呼吸，数据采集时间可适当延长。
（四）对比剂流速，团注时间及扫描延迟时间
进行 CTA 时使用的坐力汗射器白肘前静脉经导管快速注药；SCl 图像对运动敏感，所以最好选用非离子型对比剂（ $300 \mathrm{mgI} / \mathrm{ml}$ ），以免因对比剂不良反应（如恶心，呕吋等）导致成像部位任数据来集期问移动：

对比剂团注时间应与SCT 数楛采集时间一致，准确预定扫描延迟时间至关重要。以此保证兴趣白

筲最大程度的强化及强化的均主性，又尽可能減少静脉及脏器矢质的增强，其重要意义在于最大限度减少三维显示之前的图像编辑。桭据兴趣血管的部位及病人的体重决定对批剂释放速度（ ml / s ）＝根据 SCT 数据采集时间和对比剂流速计算对比剂总量，一般为 $90 \mathrm{ml} \sim 150 \mathrm{ml}$ 不等：

预定扫描延迟时间一般可根据心率，血退和其他非生理性指标估算扫描延迟时间。但是准确预定理想的扫描延迟时间只能讦人而异，通过小的试验

剂量来决定。 $15 \mathrm{ml} \sim 20 \mathrm{ml}$ 硔对比剂经肘前静脉内导管以 $4 \sim 5 \mathrm{ml} / \mathrm{s}$ 的流速注人。注人后第 8 秒开始，在预定 SCT 扫描起点水平扫描一次，以后每隔 2 秒在同一层面重复扵描一次。在主动脉内画一些兴趣区制作时间一密度曲线，以便确定合适的扫描延迟时间。一般来说，腹丰动脉的典型延迟时间为 12 － 25 s ，而胸主动脉和颈动脉为 $8 \sim 20 \mathrm{~s}_{\text {。 }}$ 全身不同血管区域 CTA 扫描技术参数可参考文献中的相关数据。国人体重较轻可适当降低流速及减少对比剂总量。

表 2－2－2 不同血管区域 CTA 推荐枝术参数

	,	mathes	表落	数旅棌靠 时新（s）	（ame	（m）	MIS	蛽（
顾内血管	1	1～1．3	1～1．3	40	4－5．2	90	3	
预动脉	2	3	1.5	20	6	100	4	
胸主动脉	3	5～6	$1.5 \sim 2.0$	$30 \sim 40$	15－24	120～160	$4 \sim 5$	
肺动脉	3	5	1.67	30	15	90	3	
腹主动脉	3	5－6	1．67－2．0	$30 \sim 40$	$15 \sim 24$	$150 \sim 160$	4－5	
肾动脉	3	3－5	$1 \sim 1.67$	30	9～15	150	5	
物系膜动脉	3	3～5	1～1．67	30	$9 \sim 15$	150	5	
致动脉	5	$7 \sim 10$	1．4～2．0	$30 \sim 40$	$21 \sim 40$	150	5	
内脏静脉	3	4－6	1．3－2．0	30	12－18	150	5	60

（五）三维显示技术
在充分了解各种三维显示技术相对优缺点基础上，从实际情况出发选择一种琙几种显示技术制作兴趣血管的三维立体结构图像是非常重要的。洋细情况可参考本章第 2 节有关三维图像重建的内容。

（六）CTA 的限度

尽管 CTA 是目前无创性血管造影的首选检査方法，但也有其局限性。（1）由于部分容积效应和噪声的影响，兴趣区内血管腔内对比剂浓度较低，与常规血管造影和 DSA 比较，相对来说 CTA 是一种低分辨力的成像技术。尽管如此，如兴趣血管管腔直径 $>2 \mathrm{~mm}$ ，CTA 恩像的分辨力是可以满足临床诊断需要的；（2）在胸腹，盆腔和四肢等部位高分辨力 CTA（指准直器宽度 $\leqslant 3 \mathrm{~mm}$ ），在 pitch $=2$ 时也只能覆盖 $18 \mathrm{~cm} \sim 24 \mathrm{~cm}$ 的扫描长度（数据采集时同为 $30 \mathrm{~s} \sim 40 \mathrm{~s}$ ），这对于某些血管区域来说是不合适的；（3）对于胖大体型的病人，采用窄的准直器宽度必然导致信噪比的明显下降而严重影响图像质量。

解决上述几种限度的措施主要是采用较高热容

量 X 线球筲，在 SCT 数据采集期间提供大毫安量的电流，可提高图像的信噪比。在此基础上可适当缩小准直器宽度以提高图像的分辨率；缩短扫描架旋转周期时间以便在相同的时间内扩大扫描长度又不降低图像分辨率；亦可解决肥胖病人因 X 线量不足导致的信噪比下降问题。另一个有效措施是提高探测器的接收效果。

四，定 量 CT

长期以来人们一直对利用 CT 值反映组织特性的研究感兴趣。其基本原理是各组织的整体密度和原子序数均不相同，影响它们的 CT 值。设计定量 CT（quantitative computed tomography，QCT）这一术语就是为了反映这一研究的特性。

多数应用 QCT 的原始目的是为了确定兴趣区内某种特殊类型组织或化学成分的含量。这些测量包括：（1）脊柱，髀部或者桡骨的矿物质含量以判断有无骨质疏松；（2）脊柱脂肪含量以便较早诊断骨质疏松；（3）肝的铁含量以评价某种肝疾病；（4）中状腺

碘念星以便研究甲状腺垁病；气人体躯干部的脂肪令量，如躯平背部肌肉随丘龄而北肪含量增加； （i）肺结学钻含量以确定疾病臼前状态；（组织为电子密度以使较好制定放疗计划。

但足，由 CT 机所提供的各利成分的定量信息的不像希望的那样准确，其原因是彩广血的。其中设备本身方面的原国有：线束硬化产＝生的伪影，X线滤线器的形状，探测器变收敞射线的显；病人本身的原因如围绕兴趣区周围的组织密度和数量，以及人为的原因如使用单一水平直片，其血厚度及部分容积效应的影啝。

QCT 骨矿物质分析：应用 QCT 判断腰椎的骨枋物质含量，一般测量 $\mathrm{T}_{12} \sim \mathrm{~L}_{3}$ 四个椎体，层厚 10 mm ，扫描耊面河椎体终板平行。各个椎体的骨矿物质命量由轴位层面计第㽣根据扫描数据认算：直两种基本的 QCT 昜矿物质含量分析技术：即前处理技术和后处理技术。后处理技术使用最后的重建泈像雨i不是使用原始的投射数据（raw projection data）。店处理技术包括单能（single－cnergy QCT， SEQCT ）和双能（dual－energy QCT，DEQCT）定量 CT，
（苏惠群 郭庆林）

第3章 CT 扫描技术

CTf干描拔术沙及喵多应面的内容，大致包括

的确定；立扛描参数的选择（kV，mid，打描）\％厚，问
婲应式（半抖，荜强扵掉，造影吉工描，特殊打描等）：重图像的后处理技术；寉抏术的抎成，摄片等对㭉同病例恰如其分地耺闲不同 CT才描技术是
地学握，经用好这些技术。不仪可桀证洛像的质量要犮，而目可使我们敏䈍地发现川常规病例，并根据具体情况有钻对性地采再们问（T扫描技术。从而确保多得品质冝的 CI 图像，其至获得常规（T）提供不了＂的诊断居急。进的让到诊断上质的 飞跃。为 个醀于埋解和掌相本产价大内容。我们将以（丁打描前梿备工作：北抽，增强于三描，造影抖揹以及特殊打搑为守线对 CI 打描技术作如下介绍，

第1势 CT 扫描前准备丁作

不同部位（T下描时，扫描前的准备 「作不尽祖［1］

（一）一般要求

1．扫描前噌详细河仙病里，复水有关临本资科以朋确 CT 扫㻤所需要解决的具佁问题，以便恨

2．对踈动不安㖪代合作的病人的恨据情况给子镇静剂

3．对幣要做增强抽描的病人，提前做碘过敏试愉

4．㷋做增强扫開的病人，检查前4－6小时要禁倉

5．对扛萍范湖内体良金属异物要取掉，如发上，原环，假牙，衣物 L的金属辰物，皮佛等

（二）眶部扫描

打描时白嘱病人网服赇问前凝视似动。
（三）喉部扫描

寸掉过程山代能做供咐动价
（四）胸部扫描

（五）腹部扫描
1．帘腹
剂在肠渞内们留。

3．根报整要抖措前给孔い1服舍碘对比剂，以倛使出肠道有刈比剂台偳

沴断上的困难。

5．对怀疑肌总管结不的病例，最好代爱服用含对比剂水，问饮弫开水代管。
含金属药物。

7．为了仰制物柎动，減少玚运动椦影。必安时可肌肉注射抗胆㽣约物（ $654-2,10-20 \mathrm{mg}$ ）或讨射费高粒紫 1 mg 。

8．扫掉剪间样尘训胁病人呼吸，一般平静呼

（六）盆腔扫描

1．打描剪半小刖䌶 小时大量饮水，约 +00 －
世开始进行言描。

2．必曹时以清沾整物，然后用碘水刏比剂倣
肠和乙状结肠：

3．行好科病人（T 打捐的可于阴道内放疽纱布響子，以健明确阴道科案领的位置。

第2节 平 扱

平扵（plain scanning）又称为普通f描战非增强

是碳，足（ T 扫描首省要进行的 通过（T 半扫，观
炶构，还可观察有无高或低密度病炘存在以及病灶

成分进行分析。如以䈌助明确病灶内的无新鲜山血，钲化，脂非成分及妼死囊变等。

CT F打时绝大多数采用抽位扣掉，对丁鞍区病变则一般采用冠状们打锚，哏眭，楽，察窦，折部，频领关节等部位的选捎性地配含使用过状位扵描。平抖时病人一般仰匝于与描床1：。在被动体位病人，或行腹部（高打描时，为了澼开胃肠道山气体或对比剂对肝左叶的下扰以及膀胱内有叮疑血块时，必要时过可采用或辅助性俯卧位或側匜们：

根据要求，C厂摆俘完戊后，撚作员则恨据需㻃确定扫㻤范围，显示野，打描升度及打描条件等，打描宁度，间隔则根据具体情况捔定，般泵 H 10 mm 层距，感岚，倱也叮有其他多种选择（1， 1．5．2，3． 5.10 mm 等），如进行的是縩旋（＂1打婲还需选择螺距，朱进距离等参数。

扫描过程中，病人的制功是非常鲁要的，否则叮造成运动伪影，例动方法川采用制动州，手按后等机械办法，也可便用镇静剂点至麻醉约物。
影。扫描时嘱病人平静呯吸，然唐丁呼与后憋隹气或直接整估气抖描，以避免层与至之间评吸㥜度的
快，因此可采用一次屏气箺成整个感兴趣区的㧊描。由于是容积扫描，无扫描高以／f任，因此不会何层正漏打的情况出现。

第3节 增 强 扫 描

增强扫描（cnhanced scanning）是指在打描前出静脉内注人碘对比剂右所进行的 Cl 扫描

一，增强扫描的适应证

为了増加疬变组织 -j 正常组织间的密度差异，更准确地对疾病做出诊断，CT F打之后，还常常要进行增强 C丁扛描，特別是在大医院，由丁病人的阳吽率离，疑难杂症考，因此采用增强 CT 打描是经常性的，增强（「打描主曹用丁：（1）发坝堅期

的小病灶：太为病灶小，特别是微小病灶 -j 周団止常组织间常常缺要密度对比，因此仅行平f1有可能造成漏沴：空疑有等密度病灴，特别是（＂厂平扫所
内血供，病灶增强曲线或观察病变与周事血管及组织间的关系拈；号确定病变是否为血管性病变时：
恶性：肿瘤的答别：

二，CT 对比剂有关问题

（一）CI 常籿对比剂利类，主要们两大类，即离子型对比剂（如 $60 \%-76 \%$ 复方泛影莆胺）和非离厂刑对比剂（优维情［ultravist ${ }^{-}$，欧乃派克［om－

（二）如何选择侑州对比剂（详见本书第 1 篇第 7 章第 5 节

目 前所朋的离子梨和非离子型CT对比剂在通常情况下相冮安全，两者的增强效然也无差异，均可获得满意的强化效果，与离个型对比剂相比，非离 f型对比剂由于改良了制剂的巩化特性，尤其是渗透压，时此一定程度了是高了用药的安全性。并较显著降低了对比剂副反应，特别是重度副及应的发牛率， 1986年95到1988年6月间 Kalayama 对静脉使出对比剂的 33 余力病例的研究结果也证呢厂这点，此列究收集使用离子型对比剂者 169284 例，使角非离f型对比剂者 168363 例，其中不良反应总发牛率：离子型对比剂为 12.65% 。非离子型对比剂为 3.13% ；严車不良反保的总发化率：离子型对比剂为 0.22% 。排离子留对比剂为 0.04% 。

但由于非离子犁对比剂价格昂费，约为离子型对比剂的 10 倍。因此使用时必须在对比剂的安全
发牛：机会，而义有经济承受能力省，最好使用非离 f＂型双比剂，但需要强调的是非离子型对比剂并不能穴全避免碘本身引起的特异质反应，故电非绝划安全，也有死亡的报道。
（ \because ）病人的高他约素（详见本书箷 1 篇第 7 章第5 背之一つ）

对子高危因子，近儿牛来已引起人们的＂泛重视，应慎重对待，可做可不做增强 CT 打描时等量不做，或网其他成像应法代替，或检查前给予皮质激素，保留静脉输液管，并做好抢救准备，可能的

悄沈下最好便挷非离子刑造影剂

三，增强扫描给药方式

（一）团注法

龄，不同以的存所不问，一般为 $60 \cdots 100 \mathrm{mll}$ 或 1.2 －－2ml／kg 体重。汀射速业舟秒2－3ml，40－50秒以応格所有对比剂汸射灾比

（二）静滴法

雨们比剂或 160 ml 对比剂向静脉快速要游，胙滴人

不先为一种可选择的力㳂

（三）滴注团注法或团注滴注法

剂化的管内浓度维持形阳较长，故血两利考法合㸺，叮达到更为满意的效楽

四，动 态 扫 描

注射时问，流粊，打描的问等

（一）概述

区的快速牲续扫描：此方法能把打揣过程与图像覀建过桂分历。则与描过程有先进行，然猃于抲描结

 X 线球管领们边提出了吏高的咬求。

（二）优越性

所脨降然

（三）适应让

念

（四）动态CT扫描方法

不同需要，动态打描夫致分为 $2-3$ 种。

灶，特别䢕小病灶

3．小病烟动态CT押掉 对丁 1－20m的小病
定的病炕客而，而造成动态子指的先败，尤其是休念作的病人，因此有人行议扫描时収了－5 mm 层厚和间貙，3－－5运进沬式扫描为一组，重复数次。即在较小的感兴趣区内怾速及夏抽描，这样可确保的组存部分㘮层通过病灶公面，从白达到动态观察小病灶时间密度曲线的日的。

五，延迟扫描

延迟扫茁（delayed meanning）付多种含义，主要他据以下儿个方面：
（一）一般是指膡脉一次人剂童注射对比剂届 4～6小时重复进行的全讣扑描－它思对朋脏其他增强打描方法的补允，其原理为（丁所使用的㽷路对比剂经静脉汗射后，绝夫汿分经㲾路排断，仅有 $1 \%-2 \%$ 的小部分喕对比剂经肝脏排沺，H于正常肝细胞具有扯温和再吸收有机做的㘦能，加己在其排之继道之前，䃆在正常加实质内的滞留。因此十用约数小时它正常肝实质的 CI 直会有开高，约 $6-$ 20 Hu ，而肝癌细胞大具信这种㘦能，从而造成止常肝实质与病灶间密度痓增大，病叶的检出率自然也会增加—们人报道对丁 1 cm 左盾的小病灶，延迟扫描的检出率约为 $50 \%-60 \%$ 。延迟抽描的方法是在增强扫描后 4－6 小时円次对伞腰进行 CT 打描，对比剂用䖧为 $550 \sim 180 \mathrm{ml}$ ，含晪量约为 $50-60 \mathrm{mg}$ ，
（二）其他的延边打苗为短则延迟扫蕞，他括：「衫肝腱增强 CT 扵描时，为了鉴列肝癌和肝血管瘤，在汗射对比剂后 7～15分钟于病灶部位进行的延造妇描。（2）脾肺增强打描，特别是在行动态 Cr打描时，十注射对比剂扂早期，约 1－2分钟内有 50 年卡常脾䏹：可表现为斑点状代均匀增强，这是因为迫过脾脏的红丵血流速度不同所致的对比剂分布不诗，此时脾胜的八病灶物被漏诊，故有时应补做延迟扫描，管假性动脉瘤时通过延迟扫描叮观察对比剂延迟排空的情况。（对于肾血，输冰管或膀胱内的病变有时需要行延题扵描以观察上速部伦有无病变引起的允䀂缺损。

六，CT 血管造影

（一）动脉造影 CT（CTA）和门脉造影 CT（CT

 arturial pertography，CTAP）是将（＂T打描与血管造影两利技术相结合的一。

种检查 $/$ 法，其主要用与肝脏占位性病变。此丽种分法对肝内小肿溜检出率较常规 CT，动态 CT 或血管造影为高，口前被认为是对小肝煰，特别是 1 cm 以下的小肝㾸检出的最钽感方法。

1．CTA：经股动脉穿刺将血管造影的导管插入并置于肝沾有动脉内，将导管固定后随即把病人移到 CT 检查台上，然后通过导管直接注射对比剂，同时在朋区进行动态打描，该方法可观察全朋的动脉，单叮监示由肝动脉供血的富血管性肿瘤，所显示的肶瘤大小可小至 5 mm 。本扫描的扫描分法为使用 $30 \% \cdots 60 \%$ 的对比剂，䋍次注射 $10 \sim 15 \mathrm{ml}$ ，泣射速度 $1-2 \mathrm{ml} / \mathrm{s}$ ，行持续注射，并于对比剂注射开始扂第开秒边注射边行移朱式动态扫描，另外需要汸意的是朋动脉变异其多，因此为确保不发生或少发生嶀诊。应于 CTi 㷙先行腹腔动脉或肠系膜上动脉造影，以个解有无解部变异，并根据变异情况做相㖇的处㳌。

2．CTAP：将恤管造影导管蕶人肠系膜 F ：动脉或䛲动脉内，泣人 60% 碘浓度对比剂， $1-3 \mathrm{ml} / \mathrm{s}$ ，于对比剂注射开始后 20－25秒平始扫描。此方法不论肝脏肿瘤血管半富与杰，病灶均表现为低密度影， 11 检出率高，其原理为此吋增加ら主要出门了静脉供而的 1 区常肝组织密度，而主要由肝动脉供血的肺瘤无明显增强，从而增加今两者间的密度羊，提㟔了病灶的检出率：

1－述两种方法对小肝癌显示率髙，但均属有创性检查，因此有一定的禁忌耻。

（二）螺旋 CTA

䌨旋 CT 扵挜的出现使尤创刡（T 血管造影成像成别可能，众所周知，由于螺旋CT扫描速度很快，每青只需 1 秒，其至更短的时间，加上无扫描间歇吋间的应用，能在短时问内抖描一定的范围，因此可采用一次屏气完成对病人某一脏器或感兴趣区的扫描，如扫婲肝肶可通过设制 $8 \mathrm{~mm} / \mathrm{s}$ 进床速度，于 24 秒钟完成 19.2 cm 的扫描长度，从而达到一次屏气完成扫描全肝的日的。此时如配合使用高压注射器，并根据需要设定对比剂用量，流速，扫描开始时间，即可得到通过工作站做 CTA 的容积数据：

螺旋 CYA 临床应用可涉及全身各个部位，如头，颈，胸，腹，四肢等，唋可显示动脉血管外，还可获得朋门静脉像及某些部修的动，静脉像。

第 4 少 造影CI打拈

一，胆系造影 CT

（一）静脉法

（二）口服法

打㖞

二，脊檖造影 CT

三，脑池造影CT

四，脑室造影 CT

五，关节造影CT

还要将’怵护出

六，涎腺造影 CT 检查

七，肠腔充盈造影 CT

 • ${ }^{\circ}$ ］

打描。般向能牧到満甞的效果
（二）对于疑有小肠病变者，只要病人能够附受，最好尽可能多地饮时岕淟对比剂溶液，一般无最大剂甾。但至少要け服 750 ml ，其け $200-250 \mathrm{ml}$在打描前抆片：
（三）对于盆腔区域的㣌掉，应于扫描萠 4 小的沙服喚对比剂 $500 \sim 1000 \mathrm{ml}$ ， 2 小时左右雨服 500 ml ，问时慗冰，然犮再进行扫范：对于有条件
保留灌肠，当然也可叫直肠内直接汸人对比剂或
出，而H吁避免肠道造成的一些类似病变的假像。

第 5 节 特 殊 扫 栉

由于 CT 检查部位不同，诊断要求不同，因此除进行常规（TT扛描外，有时还清采朋一些牧殊 $力$法。

一，重 查 扫 描

指打描时设定床格动的跅离小于辰面面度度的抽㩲厅法，例如采用 10 mm 唇隹， 5 mm 云距，此时因伝涌有部分是重叠的，故而减少部分容积效底的影响，当然快就减少淆掉小病叶检作的可能愔，但由于使用本方法迯行 CT 打描时，抽描层数会有增多，因此怆就增加了病人的X线㗪射量及检查费用，所以该办法代做为（T 检查的常规，而只用在感兴趣区局部。

二，目 标 扫 描

只对感兴趣区进行抽描，而对其他非感兴趣区域不进行扵掻

三，薄 层 扫 描

需使用第二代以钓的（T 机，最薄扵描层高可达 1 mn 。本方法能克脑弫部分容祝效）単引起的假象，十要用来观察病变内部细节或用来发现小的病

灶，如肺内小病灶，胆系和泌尿系梗阻性疾病之梗
膜，当然有些特定部伦地常规采用薄切层，如鞍区，眼眶，桥脑小脑角，耳部区等：

四，龩 扫 描

逆过靶重建技术完成，即应用扫描时的原始数据以相同的短阵对小范围感兴趣区进行再论重建，此方法能使象元通积缩小，空间分辨力提㟔，阤就寻说它可使感兴趣器宣成像放大而又不降低它的空间分辨力，畑重建技术主要用下小器宫和小病灶的罡示，如中，内特结构，肾に腺，垂体，肺小明或肺内小结节病灶等。

五，发音状态 CT 扫描

常规喉部（T 抲描是在平静㭔吸下进行的，此时出带外髮。佃也可配合使用让病人在连续发 ＂E＂各的扫旿，此时声带及村状软骨内收，要侧梨状窝膨胀，枋会厌皱襞变薄，因此能更好地亚小南带，枋会厌铍臂的形态以及梨状賲结构，并能记录声管的功能。

六，高分辨力 CT 扫描

可作为单独的扫拈检查，也可作为常规CT的补充性检查。进行 HRCT 时需使用高分辨率 CT机，以 $1-2 \mathrm{~mm}$ 薄层连续扫描，主要另于耳部检查及肺部某些垁患，如帅内弥渞性病变或肺内局灶性胍立性病变。扫描时认了减少图像噪声，可采陆较高 kV 和 mA 。本方法区别于常规 CT ，由于县右极好的空间分辨力，囚此对组织的细微结构显小゙朋显优于営规CT，如对肺部形态学的显示，几乎达到了与火体标本相类似的程度，因此在某些方面 HRC：比常规CT史为优越，且不能被常规CT 所代替，
（宦 怡 郭庆林）

第4章 CT 图像分析

第1节 像元和体元

一，像 元

像元是一个二维概念，像元是组成 CT 图像的基本单位，即矩阵中的小方格。其与图像质量的关系是：像元越小，组成 CT 图像的矩阵越大，图像清晰度越高。如 CT 像元为 $1 \mathrm{~mm} \times 1 \mathrm{~mm}$ ，矩阵为 256×256时，一幅图像由 $1 \times 1 \times 256 \times 256=65536$ 个像元组成。像元等于扫描野（ mm ）除以矩阵，如扫描野为 250 mm ，矩阵为 256 时，像元 $(250 \div 256) \approx 1 \mathrm{~mm}$ 。高分辨力 CT 扫描要求小的扫描野 $(160 \sim 180 \mathrm{~mm})$ ，大短阵（ 512×512 ），此时像元 $(160 \div 512) \approx 0.3$ ，理论与： $>0.3 \mathrm{~mm}$ 的病变，高分辨力 CT 即应显示出来。

二，体 元

体元是一个三维概念，即准直后的 X 线束穿越人体的厚度与像元的乘积，如 X 线束厚度为 3 mm ，像元是 $1 \mathrm{~mm} \times 1 \mathrm{~mm}$ ，则体元为 $3 \mathrm{~mm} \times 1 \mathrm{~mm}$ $\times 1 \mathrm{~mm}$ 。体元与图像质量的关系是：体元越小（ X线束越窄，CT 扫描层越薄）图像越真实，但穿过人体光子越少，图像噪声越大，图像质量越差。为保证图像质量需增加 X 线量。

像元与体元的关系：为了计算每个体元的 X线衰减值，被每个探测器记录的值需要通过 X 线球管和探测器组同步旋转和对某一层面进行懪光时进行的。每一层面的二维图像中，每个体元是通过像元表现的，像元的大小和位置取决于扫描层面中的体元大小和位置。在荧光屏上每个像元表现为或黑或白的阴影，此与相应体元的衰减值一致，即衰减值高的组织如骨骼，像元表现为白色；而衰减值低的体元如脂肪则呈黑色。

第2节 CT 值

CT 值（CT number）是测定人体某局部组织或

器官密度大小的一种计量单位，通常称亨氏单位 （Hounsfield unit， Hu ）。 CT 图像的每一个像元的 CT 值代表某一组织的 X 线线性衰减系数的相对数值（因为重建过程中不能推导出 X 线衰减系数的绝对值）。以下面公式订算 CT 值：

$$
\operatorname{CT} \text { 值 }=\frac{K\left(\mu-\mu_{\mathrm{w}}\right)}{\mu_{\mathrm{u}}}
$$

μ 代衣受检物质的 X 线衰减系数，（ $\mu \mathrm{w}$ 为水的 X 线衰减系数， $\mathrm{K}=1000$ 为机器的放大常数。通常将标准水的 CT 值定为 0 Hu ，即：

$$
\text { CT 值水 }=K \frac{\left(\mu-\mu_{w}\right)}{\mu_{w}}=\frac{1000 \times 0-0}{0}=0(\mathrm{Hu})
$$

CT 值与所穿透的物质密度有关，物质密度愈大，吸收 X 线量越多，穿透的 X 线量越少，探测到的信号越少，重建的图像越呈高密度（白色），如骨皮质，钙化组织等。相反物质密度越小（吸收 X线量越少，穿透 X 线量越高，探测的 X 线信号越多），重建的 CT 图像越呈低密度（黑色），如空气的 CT 值为 -1000 Hu ，圼低密度影像。通常 CT 值的大小反映了物质密度的高低，因此可以用 CT 值来判断为实性或囊性病变。

另一方面 CT 值还受 CT 机产生 X 线量的强度的影响。在物质密度不变的情况下， X 线量剂量大，穿透物质的 X 线量多，探测到的 X 线信号强，重建的 CT 图像密度低，但在日常工作中，机器条件仍为次要因素。正常人体组织器官的 CT 值和人体内各种液体的 CT 值，请参考表 2－4－1，表2－4－2。

表 2－4－1 正常人体组絽，器官的 CT 值（参考值）

K4．31．		C1 紋（4）
肝	55 ± 5	45～75
睥	45 ± 5	35－55
肾	30 ± 10	20～40
胰	40 ± 10	25～55
肌肉	45 ± 5	35－50
甲状腺	70 ± 10	$50 \sim 80$
脂肪	-65 ± 10	$-50 \sim-100$
脑白质	35 ± 2	28－32
脑灰质	40 ± 4	32－40
嘧质骨	$250 \sim 1000$	
疏质骨	130 ± 100	
钙化	≥ 80	

表2－4－2 人体内各种液体的 CI 值（参考作）

液 体 名 妳	标准值（Hu）
恼漛液	5 ± 4
血液（流动）	45 ± 5
凝固 fini 液（新鲜）	$80+10$
凝固血液（陈旧）	$45+15$
血浆	27 ± 2
渗出液	＞18＝
漏泍液	$<18 \pm 2$

第3芧 囟 技 术

（｀T 图像的最传业示技术又称为窗技术（win－ dow technique），是用窗宽和窗位调节进行选择所观察感兴趣区内组织犃呁的本质和求得最佳图像的一种方法：在 CT 机备技术指标恒定的条件下，主要存两种参数与此关系密切，即窗宽（window width）和窗位（window level）。

一，窗 位

需要显示组织结构的 CT 值所对应的灰阶的中心位置，用C（center）或 L（level）或 M （mean）来表示。窗位的作用是规定所选囱宽从 $1000 \cdots+$ 1000 Hu 之间，共数值为窗宽的最高值加最低值除以 2 。选择窗位的原则是，依据所分析组织或器官

图2－4－1 正常棹脑（＇T 内率平面 W80，L．40，膇灰，H质对比白然，亮度适中

感兴㻓的（丁值确定畕位的平面，即可得到满意的图像质是，如脑灰居的（丁值为 35 Hu 时：选择窗位拉为 35 ，肝实质 C厂值为 45 I H ，窗位应为 45 ，其图像最伴。如脑组织的 CT 值多在 40 左左，窗位 40 观察最任（图2－4－1），如窗位 <35 ，图像偏白 （图2－4－2）；＞45 时图像偏黑（图2－4－3），代易分析解剖位置及病变性质：

终 2－4－2［風图2－4－1 中面，改为 W80，L30。图像变得较兑，脑灰，觓穹对比久住

图 2－4－3 同图 2－4－1 平面，改为 W80，L50，图像变得较暗，脑灰，白质对比欠伴

二，窗 宽

窗寃规定了 CT 图像所显小゙ CT 值的范围，用 W 表示。CT矩阵中锖一像元的 CT 值重建的图

像，按人视觉从白到黑的最大等级范围分为 16 个灰阶，每个灰阶又分为 4 个抎次，故共有 64 个连续不断的过渡等级。人体组织的C．T 值在 +1000到 -1000 ，即 $2000 \div 16$ 。每个灰阶含有 125 个 CT值，即物质的密度差別 <125 均表现同一应度，而人体大多数组织器官及其病变的密度差别均较小，人的肉眼不易分辨，给诊断和鉴别诊断带来困难，所以引用窗宽这一概念：在窗宽所规定范围外的 CT 值，如大干最高值的组织结构或病穻，无论高出多少，均呈白色，而小于最低值的组织结构或病变均为黑色，不再有灰度差别。佫宽值的宽窄直接影响图像的对比度和清浙度（图 2－4－4，图 2－4－5），窗宽变窄，即显示CT 值的范讳少，如窗宽为 80 ，两种组织的密度相差 $5 \mathrm{Hu}(80 \div 16$ 个灰阶）以上时即有灰度变化。每级灰阶所代表的 CT 值的幅度小，图像对比度强，易于显示密度接近的组织或病变，如肝内病变。反之窗宽变宽，则 CT 图像的对比度较差，但轮廓光滑，密度较均匀，如台宽为 1200 时，CT 值相差 $1200 \div 16=751 \mathrm{Hu}$ 以上时，才有灰度变化，适用于显示密度差别较大的结构或病灶，如肺组织。在窗位确定后，愙宽的变化自接影响灰度的差异，如窗位为 40 ，窗宽为 80 时，所显示的 CT 䈯范围为 $0 \sim 80$ 之间的 80 个 Hu 范围，＜ 0 呈黑色，>80 为白色。㸗宽确定点，窗位不同， CT 值范围亦不同，如窗宽为 100 ，窗位是 0 时， CT 值的范围则为 $-50 \sim+50$ ，在此 CT 值范违之外的组织结构就不能显示。

图 2－4－4 同图 2－4－1 快面，改为 W40，L36，图像变得粗糙，但脑坎，旨质对比较强

图2－4－5 成图24－1 平面，改为W150，1．70，图像变得䂭细，但脑灰，白质对比较差

综上所述，同一层面的CT 图像，叮因选择不同的窗宽，备位而获得不同质量的图像，依生个人观察炶果和检查日的可适当进行调整。

双窗或多窗技术：人体某些器官如胸部同时存在密度差异较大结构（如气和软组织）及密度差异较小的结构（如血管和软组织等），如果用单一周定的窗宽和窗位（单窗技术），难以分析。为明唃显示不可组织和结构，人们采用双窗或多窗技术达到诊断月的。劝窗或多窗技术的窗位仍对怎于所观察感兴趣组织的CT 值，并以 CT 值范围决定䫅宽的范围：例如顾脑 CT 抖描，即要观察颅学结构是否完整，有无破坏，增生，用骨窗（ $\mathrm{W}>1500, \mathrm{~L}>$ 250 ）。而观察脑组织时则用脑组织窗（ $\mathrm{W}=80$ ，L＝ 35 为宜）。又如观察肺组织时，用肺窗（ $W=1000$ 。 $L=-500 \sim-700$ ），而观察纵隔时，用纵隔窗（W＝ $200, \mathrm{~L}=35$ ），观察骨组织时又用骨窗（W $=>$ $1500, \mathrm{~L}>250$ ），有时影像医师为了显示某－•病变，可根据习惯和最佳图像显示程度进行调节。

第4节 分 辨 力

一，空间分辨力和密度分辨力

（一）空间分辨力

指 CT 对物体空间大小（两点间距离）的辨别能力，用 mm 表示。

$$
\text { 空问分辨力 }(\mathrm{mm})=\frac{L P}{(\text { 线对数 }) / \mathrm{cm}} \frac{5}{}
$$

 ulation transfor function，MTF），㒄元的多少，检测器尺寸和敢样大小，机器粗密度。

1． $\mathrm{LP} / \mathrm{cm}$ 的数甘表小调制传递函数的截止频率， $\mathrm{LP} / \mathrm{cm}$ 的数据越多，分裙力，迹高

2．像元越小，空间分辦力越离：如矩阵为 256 $\times 256=65536$ 个像元组成的（工图像，较矩阵为 $160 \times 160=25600$ 个像元组成的（＂图像空问分辨力高约 1.6 倍。

3．检测器孔尺－寸越小，空间分䐻力越高。即当检测器孔尺寸小于两物体间跑离时，物体即可被分辨出来。

4．探测器数且越多，分梄力越高，
5．取样越大，采榎间階越短，空间分辨力越高

6．被检物密度差别越小，空间分辨厅越低，

（二）密度分辨力

密度分普力即鉴别密度差别的能力，用\％長示：有时指 CT 值的敏感度：通常大多数软组织密度差别非常接近或梱等，全在 F 多之几或更小。任
误差最终限制了密度分辨 J ，评价此种偏差的参数是标准颜（ δ ）。 δ 的计算公式为：（T值：－ n 个像元的平均值， $\mathrm{n}=$ 用以计受的像元数， $\mathrm{CLI}_{1}=-$ 个像几值。 CT 机的密度分辨力一般在 $0.3 \% / \mathrm{cm}^{2}$ 到 $2 \% / \mathrm{mm}^{2}$ 之间：如某 一组织的 CT 值在 +1000 H L之间，呩准芙为 5 Hu ，则 $5 \mathrm{IL} / 1000 \mathrm{H} \mathrm{ju} 0.005$ 或 0.5% ，所以大多数CT机区别组织差别能力为 0.5% 左右。理论1：讲，两种物质密度差别 $>0.5 \%$却能分辨出来。

影响密度分辨力的恩索有：扫描镸厚，信噪比，桨光屍的尺寸和观察距离。減少县厚而代增加 X 线剂量则信噪比低，图像质量差，分辨力低。探测到的 X 线信号多，信噪比出，密度分辨力高，

二，部分容积效应与周围间暯现象

（一）部分宫䂒效应

在 CT 图像上，每一像元的 CT 值即为比体素内各种物质 CT 值的平均渞。如果层雷较厚，重建图像时所用短阵小，同，用献内含有不同密度的物质，则这 像元就（＂「值为其所有物质的平均（＂T佔，处能真实反映其中任何－种物质本身的 CT

俏，因胹也不能真实地湿示共各自物质的图像，这种现象称为部分容积效应（partial volumc effer ）实际に作中，经常遇到部分效应现象，致使病变组织在 CT 图像上出现假象，造成诊断闲难。病变组织密度高，而周围组织密度低时，CT 侟要较病变组织低，如脑室体部卖性肺緢，可因层厚的部分为脑脊瘤与部分为肿瘤两者相混合，致肿瘤密度的
交铓术们或重叠扫描方法来显示图像，叮减少部分容松效应的影响，保证提高图像质量和避免误，漏诊率的发生，

（二）周围间隙现象

两个相邻且密度不同的物体与层面垂吉时，其物体边缘部的 CT 值不能准确测定，在CT 图像 1．，则交界处的影像不能分清，这种现象叫周国的隙现象（peripheral spece phenomenon），是出丁扫描 X 线束宽度，透过 X 线测量的隔和像元大小之间的不㚈调所致。周围问隙现象的存在，在密度不同的物体交䒜处，密度高的物体边缘其 CT 䈌小，而密度低的物作达缘CT值大。例如打描水中的苏合香精圆杜模型。其CT 佔为 60 Hu ，而其边缘有的 CT 作 $<60 \mathrm{Hai}$ ；如國柱直径 $<4 \mathrm{~mm}$ ，则其边缘 CT值明显小于实际CT 值，扫描密度差别小的相邻物质时，交界处影像不清，图像に不可能辨別井㸉度的差别。

三，橾声与伪影

（一）檪声

CT 噪声（noise）是出于扫描相同物质时，图像点頻点之间 CT 值的波动形成。即 X 线学透人体危到达探测器的光子数量少，旦位知阵中各像元上分布不均匀，直接影响 CT 恩像质显。组织噪声为各种组织（如脂肪组织，骨组织等）的平均 CT 值的关异引起，不同组织具有不同的 CT 值，任诊断时应注意义分正常或异常。CT噪声可通过扫描一均匀的水模来测星，理想的情况是水模中的每个像元的 CT 值相同，但实际上 CT 值是围绕一个 CT 值在一定范用内呈常态曲线分价，图像中各点的CT 值并不相等。CT噪声川用图像矩阵中的像主值的标谁差计算，公式为：

$$
S D=\sqrt{\frac{\sum_{1}^{4}\left(x_{1}-\bar{x}\right)^{2}}{N-1}}
$$

$\mathrm{N}=$ 计算区域内像元的总和 $x_{1}=\mathrm{N}$ 个像元的平均像元值 $\bar{x}=$ 每个像元的平均值。

组织噪声为各种组织（如脂肪组织，冎组织等）的平均 CT 值的差异引起，不同组织具有一定的 CT值，在诊断时应注意区分正常或异常。如扵描顾脑时因层厚较薄（ $<3 \mathrm{~mm}$ ），X 线输出量仍同 10 mm 层厚扫描时一样，探测到的 X 线信号少，冬像上往往显示较粗大且不玸匀的颗粒，往往造成假象。

噪声水平可用 CT 值或对比度百分比来表示，即已知图像一侧感兴趣区內的均值或标准差。例如某 CT 机的 CT 值为 $\pm 1000 \mathrm{Hu}$ ，标准差为 3 ，则

$$
\text { 噪声 }(\%)=\frac{3}{100} \times 100=0.3 \%
$$

CT 机对不同操作方法，物体大小，矩阵和 X线输出剂量有不同的噪声比。噪声比来源主要与下列因素有关：

1．探测到的光子的数量
2．矩阵大小（像元大小）
3．层厚
4．计算机算法
5．电子噪声
6．散射
7．物体大小
克服噪声应采取如下措施：（1）安装 CT 机时进行严格的机器性能检验；（2）每天做水模扫描，发现问题及时校对；（3）在薄层扫描时，应加大 X 线输出量（一般噪声减少一半，需增加 4 倍的 X 线量）。

（二）伪影

指被扫描物质本不存在，而出现于图像中的所有干扰图像的影像称为伪影（artifact）。影像医师必须认识图像中的伪影，才能防止造成漏诊或误诊。伪影的产生圭要有两类因素。

1．病人因素：
（1）病人的运动产生伪影：在扫描过程中，扫描部位的自主运动（如呼吸，身体移动，吞咽动作，咳嗽，转动头位等），器官不自主运动如心脏跳动，大血管搏动，肠胃蠕动等），导致 X 线束从一次扫描到另一次扫描不协调，探测信号失误，计算不准确，产生移动条纹状伪影，部分结构模糊不清。克服的方法包括：缩短扫描时间，向病人解释，争取病人密切配合，防止自主运动。对儿童及病重，病危不能合作的病人必要时给予镇静剂是克服此种伪

影的有效方法。
现代 CT 机采用了减少伪影的措施，如在抽描过程中进行数据重复采集，在同一时间同一部位采集两次数据并加以校正，同的在图像重建过程中使用特殊软件减少伪影。
（2）两种以上物质密度差別过大引起 X 线硬化程度不均，经计算和重建在交界面处产生放射状头影。如术后金属夹，金属义齿或填补的病齿，金属针或钢板，金属异物等 X 线投射经过它们时，引起衰减和计算错误所致（图2－4－6）。如虎底骨霉脑结构之间组织密度差別很大，经探测器测得 X线信号多少不一，重建时可产生放射状或大片不规则侈影（图 2－4－7），严重影响图像质量和诊断水平。

图 2－4－6 金属伪影呈线条状放射的高密度影

图 2－4－7 版底骨伪影呈线形低密度，位于影叶底及脑干平面

2．机器设备本身产生的们影
（1）探测器本身灭敏度不 一致或校对偏差，引起数据组反技影错误，产牛环状伪影。如果探测器不匹配，则引起每一个数据组反投影轻度偏美，即可产生多环伪影。大多数情况下测在物体高对比度区域，并有可能同低对比度区域发散。
（2）取屰频率较低或探测器之间间隙较大时产生交叠混杂你影。
（3）抆影曲线作等角状分布时，产牛角度伪影。
（4）球管的探测器对应性羞，重建时位移，重建图像的中心与扫描旋转的中心重合，产生模糊伪影。
（5）重建计算机的 AP 故障而引起的似影，呈条状或 $1 / 4$ 图像杂乱伪影。
（6）CT 设备的咸県几何形状引起的佖影，如头部等某些区域在扫描时，所丁邻近组织的重叠而不形成图像。

机器设备伪影是可避免的，因为任何机器都不可能十全卜美。如机器性能不稳定，探测器的漂移，设备的几何形状，时间点的光子流速变化， X线透射量不足和硬线束等嫄因均可引起伪影。上述伪影可以通过维护机器处于良好的性能㓇态，保持 X 线探测器的对应性，加强探测器的灵敏度和减少机器故障等手段加以克服。

第5节 CT 图像的分析与诊断

一，CT 图像质量分析

CT 图像质量与影像学医师，技师的经验及机器妵能，病人配合程度，检查参数，窗技术，暗室技术等多种区素有关。重要的是影像学医师掌握各种影响因索，克服广扰条件，获取最大限度的高质量图像。
（一）熟悉和掌握各杉不同类型的机器性能，选用最佳参数，如扫描条件，最溥层厚的限度，扫描时间，重建矩阵大小，有无高分辨力，各种后处理技术的性能和能达到的指标等。
（二）对受检器官和检査部位的要求和应达到的日的需做到心中有数，如病人重点是弄清肝癌或肝血管瘤的鉴别诊断时，应仔细询问病史，有关化验资料，其他检查结身，临床特点等，重点对所检

部位进行有步骤的扫描。发现病变时，根据平扫征象，决定是否需要增强扫描，而血管瘤则应采取注约快，扫描快，延迟扫描等措施加以鉴别。
（三）掌握窗技术，调节荧光屏灰阶，选定最佳窗宽和窗位，最大限度地把病灶与邻近组织的解剖结构和病理特点显示出来。对感兴趣区做必要的测量或其他方位的重建，必要时应观察 CT 值的动态曲线进行分析。
（四）做好质量控制（quality control，QC）和质量保证（quality assurance，QIA）工作：不断提高照相和洗片质量。
（五）识别物体本身的真实图像和＂假象＂及假潒产生原讷，其中噪声与伪影的辨认至关重要，应采取相应措旅消除或减少假象，最大限度地显示物体的本来面目，

二，CT 图像的诊断要领

CT 扫描反映的是人休某组织或某器官本身的图像表现，做好 CT 诊断应从以下几方面考虑。
（一）从人体这一有机整体出发抓住共性，区别个性，准确分析每一受检层面的影像表现，按顺序，分层次综合对比，多方位全面判断疾病的本质。例如肝癌病人，多从肝炎，肝硬化发展成肝癌，大多数具备肝癌CT 征象这一共性，常常伴有肝硬化的征象，如肝外形不规则，边缘㷌硬，肝各幵比例失调，腹水，聛肿大，门静脉高压时可见门静脉增粗，雲底，变门，腹膜后，脾门静脉曲张，扭曲或成蚚蚛状，团块形表现，有时伴有门静脉内癌栓形成，肝门，腹膜后淋巴结肿大，转移等征象，
（二）影像医师应具备扎实的基础知识，良好的临床技能和考学科相交叉的综合诊断水平及专业特长。CT 图像是某组织，器官的真实表现，主要涉及到准确的解剖定位，病理，生化的变化特点，生理情况和临床表现及超声，同位素，化验等歹学科相互印证。同时应具备 CT 形成原理，图像分析，鉴别诊断的临床知识。例如大叶性肺炎，主要以肺旪为单位，主要病原菌为肺炎双球菌，病理经边充血期，红色肝样变期，火色肝样变期，炎症消散期。临床上多发生于青壮年，冬春季好发，有高热，咳嗽，咯铁锈色痰，血液化验兒细胞数升高。 CT 表现为，早期肺窗观察呈大片均匀模糊影，无

体积改变；实变期呈均匀高密影，有支气膏气象征出现；消散期，病变区密度代均，叮留有条索状影。

（三）CT 诊断应遵循下述原则

1．病变位置：许多疾病有共好发部位，如肺结核常见于肺上叶；骨结核多见于骨干骻端或脊杜：脑膜瘤多见于脑外脑膜附着处，神经纤维瘤多发生于祖经走行通路等。

2．病变的形状，边缘与大小：肺内斑片状阴影，纵隔窗常不能清楚显ぶ，多为炎性㾈变。肺门肿块，形状不规则，龺分叶状，周围结构妥侵犯，支气管有压迫和阻塞征象时，多为恶性肿瘤。一一般情况下，外形规则。边缘光滑，整齐，密度均匀者冬为良性肿瘤。

3．病变密度 $\operatorname{l}^{\mathrm{j}}$ 结构：病变密度较低，呈表性，多为良性病变。等密度肿块，边缘不规则，有浸润，粘连征象时多为恶性。

4．病变数目与周制结构的关系：转移瘤可为多发，周園水肿严重。炎性粘连，瘏痕，可见牵拉收缩，周围结构聚集，变形等征象。肿块七周围结构不清，远处淋巴结肿大时多为恶性肿痹。

5．病变发展情况：CT 图像只反映当时病变的

表现，大多数情况下还需从病理变化，试验性治疗告，（T复查，前后比较加以确㱏。如结核发展慢，可有钙化，抗结核治疗有效。白恶性肿瘤发展迅速，一般吽治将元效，尼期多发生远处转移，的珨围侵犯等特点，

6．密场结合临床：询间病史，家族史，周围有无结核，肝炎等传染病人，疫区居住史等，如西北地区，可发生包虫囊扐。与职业的关系，如粉尘瘖触史对矽肺诊断至关重要。垈㱓，小儿应多考虑到先天性疾病。 L_{j} 性别的文系，脑脱癖多发于巾年女性，脑膜附着区。

7．多种影像检杰相座印证，取长补短：如肝膅肺块，同位素表现为浓集区，超声检查巷现为块决强回声，CT 平扫示低笜度区，增强后边缘密度同腹主动脉密度一致，随时问延长，增高的密度逐渐向中心弥散的病变，应考虑为肝血管瘤：

县之CT图像是 • 种影像学检查方法，仍应按病灶定位诊断确定部位，病灶定性诊断区别实性，㐮性，羿，良性。病灶定量诊断测定大小。范围：有时应根据病变发展，治疗情况进 步定性诊断。
（张贵祥 郭庆林）

第 5 章 CT 的诊断价值与限度

由于 CT 只有较高的密度分辨率的特点，克服了结构的重叠现象，犹得的是人体内部解剖断面影像，因此萁临床应用价值是十分肯定的，并且随着 CT 机技术的不断改进，软件功能的不断开发，它的临床应用价值也在不断扩大。

CT 在脑部疾病应用最宁，也最战熟，叮用于对脑外伤，脑血管病，脑㾫，脑先大性畸形，脑炎，脑奇生出感染以及一些脑向质病等力面的诊断，定位准确，定性诊断价值也很高。

五官科方面，CT 可用了眼，眼诓，鼻，鼻萋，耳等部位先天性，外伤性，感染性及肿瘤性疾病的诊断，对鼻咽，Γ 咽及喉咽肿瘤的诊断也有重要意义，对颅底病变，影下世，翼腭窝，腮腺区占位病变的诊断也十分理想。

颈部方面可用于检查甲状腺包块，其他颈部包块以及淋巴结肿大等。

呼吸系统疾病中，CT 除主要用于肺癌的诊断外，还叮广泛应用于其他肺部疾患，纵隔肿瘤，胸膜及胸壁疾病。常规 CT 对心脏大血管病变的诊断府很多限制，只能大致规察心腔的大小，心包有无积液，大血管的宽度，有无动脉瘤以及用来估价冠状动脉钻化等，但超高速 CT 是个例外，其可获得心脏大血管的电影 CT 图像，可对心功能作出判断。

在腹部及盆腔疾患中，CT 对实质性脏器的检占是十分有效的。对胆系及泌尿生殖系疾病的诊断也能收到满意的效果。对于崮肠道肿瘤可用米帮助粗断肿瘤分期，

C厂诊断肌肉骨骼系统方面的疾病价值不一，对春柱骨折，椎间盘突出，椎管狭窄以及一些椎管内良性肿瘤有重要价值，划于骨肿瘤侵犯范围，有无软组织受累或软组织内肿瘤是否累及骨骼 CT 也能做出明确判断，但 CT对丹肿痛的定性沴断多需结合平片，另外 CT 诊断脊髓内病变也明显受限。

CT 介人可用来对病变进行活检或对脓肿，襄肿，血肿，积水积液等穿刺，引流，敌有诊断及治疗的双重作用。

现代 CT 机的发展，特别是随着螺旋 CT 机的

广泛应用，不仅使我们对聅病诊断的准确性有与进一步的提高，而且因为能获得高真实度的多平面重组图像，三维图像，CT 血管造影图像以及仿真内窥镜等图像，因此使CT 临床应用范围越来越 「泛，应用价值也不断提高。

当然 CT 应用也有其局限性，如小病变，等密度病变或接近等密度约病变 CT 可能漏诊，另外在疾病未造成人体结构发生大体形态学改变以前 CT也会表现为假防性。

（宦 紿 郭庆林）

参 考 文 献

1．李果珍等。临床 C Γ 诊断学．北京：中国科学技术出版社，1994．10－122
2，郭庆林等．CT 的临床应用．北京：人民军医出版杜， 1985．5－18
3．吴恩惠等．头部CT诊断学．第 2 版，北京：人民卫生出版社，1995．1－10
4．陈星荣，沈天真，段承样，施增需．全身 CT 和 MRI．上海：上海科技大学出版社，1993．10－18
5．陈盛社等。CT的噪声及其测量．中华放射学杂志， 1985，19（1）：30－32
6．曹丹快，蔡祖龙，主编。全身CT诊断学。北京：人民军医出版社，1996． 24
7．杰亚历山大著，汪臻，顾英译。CT 技术及其缶床应用。北京：中国医学科技出版社，1988，24
8．㕣明国主编．CT 影像技术学．陕西：陕西科学技术出版社，1995． 244
9．曹寸庆，HRCT 在肺嵒诊断中的应用，世界医药学器械，1997， 3 （1）：53
10．曹永胜，顾晋，周康荣。SCT 血管遗影及三维重建的临床应用，中华放射学杂志，1997， 31 （2）：96
11．㕷滨，毛松寿，电子束 CT 在心血管系统疾病诊断中的应用。国外医学临床放射学分册，21（2）：78，天津市医学科学技术信息研究所， 1998
12．肖红，电子束CT成像技术与扫描特性的探讨，实用放射学杂志，1997， 13 （12）：747
13．Brooks R A et al ．Theory of image reconstruction in com－ puted tomography，Radology 1975， 117 （2）：561－572

14．（jordon K et al．Image reconstruction from projections． Sct．Am，1975．23．3（1）．56－68

15．Seeram F．．Computed tormgraphy tectmonlogy ．first edi tom，W．Ts，Saunders compatiy，Philadephaa P A 19105 ［．S．4 1982，p5－32，71－88，123－138
16．Hataga J，Computed ionnograplyy of the booly．Firs：edi－ mon，C．V．Mosby comprany，St．Louls ．Mismouri 63146. U．S．A．p 1－22
17．Kiederar．S J et al．The notse power ywetrum in conpater

18．Fishman Fk，el al，Spiral Cl：promelen，techmquem，and sifnical application，New Yurk，Raven yunsor，1495，pI
19．Rubin GD．ot al，spital CT of rena．artery stenosis，Radool－ ugy 1994，190：181
20．Boonldı V＇M et al，I Ielical CJJ of the－Laver－value of an early ＂epatic a：tetial phast．Radeolongy．1995．197：357
21．Brink JA．Technice．Anpects uf heucal（spural）（＇T，Radiol Clin Nor：h Am．1995， 33 （5）：825
22．Zeman RK et al．Diagmosis of aortuc dissection：va＇ue of he－ heal with multiplastar reformation and inret－dimensiontal rendering．A．I．R．1995．164：1375
23．Kalender WA or al，Spinal volunteric Cr with eingle breath－hotd techmque，comimurus transpors，and contmen－ ous scanner retation，Radiology 1990． 176 ． 18 I
24．Retly－Jardin M，et al．Pultnonary nodules；detetion with flatk－stction sparal（ T veraus conventional CT，Radiology． $199.3,187: 513$
25．Rubin（IT），Tarec－diminsional helical（TT angiography．Ra－ diographics，1994，14（4）：905
26．Moss At，Gamsu G．Genknt HK．Computed tomography of the Bedy with magnetic resonance maging．2nd tel． Philadelphia：W．B．Saunders．1992．1362，1381－1382， 1.3721376

27．Kentada K，Kato R，Anno H，et ai．Gulance with real－
 1906． $200: 851-856$
28．Ifeiken JP．Thrınk IA，Vannitr MW．Syiral（Flelical ict Radiology，1993，189：647－6566

 Radocl Clin Vorth Arrı．1995，33：51－70
30．Dillon EII．van Leenwen WS，Femander MA，el ai ．Spurai CT angiography．DJR，1993，160＇1273－1278
 itenuses：stiral C＇I angrogration Jead：ology．1993， 189. 185－192

 splanchaic vascular matring．Redolosy，1996，200：5t4 568
 sional（＂I＇：real－time it leractive voluthe retidering．VRR． 199i，167：581－583
34．Rubin（ T 1 ），Beaumed（ F ，Aryms V．Perapective volume renderang of（＂J and MR irnetging：applicationss for endo－ scopic making．Radiology．1596，199：32：－330
35．Hers BR，Baker MF，Thavtus WJ，ct al．Helsal Cl of the abdomen：comparison of image quali－y betweert sean tithen of 0.75 and 1 sec per revolution．AJR，1996，167：58－60
36．Webb WR，Muller NL．，Vaiden 1）P．Standardized ierms for high－resolution compated tomogritpty of the lung：t propoued glussary．J Thorec Imaging，1993，8：167
37．Swemoen SI，Alghenfzagh GL．Thoughas WW．it at． Hightremolutos（ T of the lunzs：firdings tur varous pul－ monary diwases．AJR，1992，158：971－979
38．Nadich DP，Zerhomi EA，Siegelmen SS．Computed u－ mograploy and matnetic resonance of the Thorax． 2 nd ed ． New York：Raven Presh，1991．67

第 3 篇

第1章 数字减影血管造影发展

第1节 数字减影血管造影发展的促因

数字减影血管造影（digitcl subtraction angiogra－ phy，DSA）是继 CT 技术之后发展的医学影像学方法之一。DSA技术的开发始于 20 世纪 70 年代中期，在当时的条件下，DSA 技术的开发主要基于以下促因：

1．CT 技术开拓了医学影像学的一个全新领域，但传统的，层面采集方式的 CT 技术不能用于显示血管系统，即使对采集技术及后处理技术做了充分的改良，也不能提供可以在临宋上取代血管造影的诊断信息。

2．常规血管造影技术已沿用了数十年，但无法突破一些主要限制，如兴趣血管与非兴趣血管的重叠，兴趣区血管结构在时间与空间上的重迭，血管结构与非血管结构（特别是致密的结构，如骨）的重叠以及需使用大剂量碘对比剂，大量胶片及高的辐射剂量等。

3．当时已经沿用了多年的胶片減影方式可以提供去除主要的背景结构，保留血管结构的影像，但方法繁琐，胶片用量大及减影过程中会丢失信息 （详见后述）。

因此，在当时迅速发展的 CT 技术的启发与推动下，开发一种计算机辅助的，数字化的，专门用于显示血管系统的全新血管成像技术即成为迫切的需要，同期也在迅速发展的计算机与微电子学技术及影像信息数字化技术则为这种需要提供了可能性。

第2节 减 影

数字减影血管造影作为一种专门显示血管的技术包括两部分内涵，一为数字化，这是与方算机相关的处理，有关内容后面还要具体讨论；二为减影 （subtraction），实意为＂减法＂，即通过被处理成相

反物理量的两帧影像信息相减，消除非检查结构，保留血管影像的方法。
＂减影＂不是一个新的概念。早在1934年， Ziedses des Plantes 即提出了利用X线照片进行光学减影的方法。在一个曝光序列中，取一帧碘对比剂尚未到达的照片（不含血管影像）与一张未感光的胶片重叠，作光学曝光，得到原片的负片，作为 ＂蒙片＂（mask）。再用蒙片与血管造影的影像共同重叠在另一张未感光的胶片上作光学曝光，则蒙片的负影与显影像之相应正影相抵消，因蒙片不含血管影像，故最后的照片上仅保留血管影像。这种去除可造成于扰的骨影和其他无关结构影像，改善血管结构显示的方法一直沿用到 70 年代末，严格地说直到由 DSA 取代为止，尤其是在肺血管造影中应用很多（图 3－1－1）

图 3－1－1 光学减影法椎一基底动脉血管造影
胶片间的光学减影方法是基于胶片所含的固有信息，胶片兼有采集 X 线信息与显示影像两方面职能，二者均依赖于胶片感光材料的性能。迄今，感光材料的发展仍不允许在常规 X 线摄影中捕捉到更高量级的信息。此外，胶片减影是以胶片间灰度的抵消实现的，这样在减影过程中只会丢失而不会增加固有信息量。胶片减影的另一个缺点是增加胶片的消耗。

DSA 技术是采用类似胶片减影的原理，但通

过计算机处理亚示血管减影影像的方式。減影方法的细节将在以下章节中讨论。数字咸影技术不依赖于胶片，可捕捉到比胶片摄影微细得多的信息，计算机处理的减影技术可来用灵活的減影方式及复杂的后处理方法。事实上，数字琙影技术上也不限于血管造影，已有数字关节造影，数字喉造影，数字脊㵦造影，数字乳房造影，数字䛲门静脉造影，数字内窥镜逆行胆胰管造影等多种应用的报告。 1前，数字减影技术已取代了常规血管造影，并在众多的血管成像技术中（如 CT 血管成像，MR 血管成像等）仍然保持显示血管造影像的＂金标准＂地位。

第 3 节 数字荧光成像与数字减影血管造影

数字减影血管逶影的形成是基于数字苂光成像 （digital fluorography 或 digital fluoroscopy，DF），因此 DSA 发展的讨论主要涉及的是 DF 的发展。

传统的透视设备中，X 线穿过病人激发苂光屏，有不到 15% 的 X 线被茨光屏吸收，其中仅 30% 转变为可见光。由于这种转换的效率很低，只能在荧光屏上形成模糊的光影，放射医帅仅能作充分的暗适应后才能在暗室中观察。

20 世纪 40 年代，开始了在增加苂光屏影像亮度和降低 X 线管输出方面开展研究工作。Lang－ muir（1940），Coltman（1948），Morgan 和 Sturm （1951）等作出了重要贡献，开发了 X 线影像增强器（image intensifier I．I）。X 线穿过人体后不由苂光屏而由I．I的输人屏接收，以与荧光屏类似的方式被转换为可见光，但可见光接着被转换为电子，电子在 I．I 内被加速，然后激发 1.1 的输出屏苂光体，在输出灵光体内已被加速的高能电子再被转换为可见光。由于电子能量大大增加，I．I 输出屏上最终的亮度可为常规透视荧光屏的 $500 \sim 1000$ 倍。

50年代末，60年代初完成了I．I 的下一步改进，即将影像增强器的一端联接到电视摄像机下，在电视监视器上显示影像，导致辐射剂量大幅度降低和实现了明室透视。60年代末，在 I．］炶构上的另一个重要改进是开发了碘化铯（CsI）作为输入苂光体。应用 CsI 可增加 $50 \%-60 \%$ 的检测量子效率。70年代中期，一些研究者就是将高检测量子效率的 I．I 检测到的，由电视屏显示视频影像的

DF 系统 $\operatorname{Lij}_{\mathrm{j}}$ 算机技术结合，发展了 DSA 系统。
一些研究小组从 70 年代中期开始独市地开发 DSA 系统。他们分别对 DSA 成像链的构成；图像的快速处理知实时成像；减影中应用的不同变晕及减影方式以及DSA在不同临床领域中的应用等方面作了各自的京献。

自 20 世纪80年代初期年始，DSA 设哃开始在医学影像学科普及，经历广一个是否DSA可完全取代常规血管造影的矨暂的争论后，DSA 已经成为医学影像学科的常规设备，日前已经不再有传统的专用常规的管造影设备生产。

第4节 DSA 设备的最新进步

和CT ${ }^{1}-\mathrm{j} M R I$ 设备相比，DSA 设备自问世以来技术上的改进相对较少，主要有以下几方面：

一，高帧频与实时成像

单位时间内丞集的帧数与影像柔集矩阵的大小并最终以计算机的存储能为有关。早年的DSA 设备当以 512×512 的矩阵采集时每秒仅可采集 $2 \sim 3$帧；以 256×256 矩阵采集时也不过每秒 $6 \sim 8$ 帧，且不能实时显示减影影像。当前的设各通常在 512×512 矩阵采集时帧频可达 $30 \sim 60$ 帧／秒，并可实时或近于实时显示減影影像。多数设备可作到使用 1024×1024 矩阵采集，或者以较小的矩阵采集（如 512×512 ），而出大的矩阵（如 1024×1024 ）显示。

二，高分解录像

由于早年的设备时间分辨力与空间分辨〕不足，对动态器官，如心脏，大血管的显示需菜用电影方式，整个过程繁琐，费时，辐射剂量高且不能实时显示，还需用专门的洗印及观片设备。目前，较高档的DSA 设备可以提供高分辨力的冰像设备，可以以 25 帧／秒以上的速度提供动态汇录，完全可以取代传统的电影方式，且可立即回放与重复显示。

三，标识图（或路标）

为满足血管内介人放射学操作的需要，当前的 DSA 设备通常其有标识图（或路标）（road map）地能，即在靰血管区域注射少量碘对比剂品示血管影

像出，在其中 个监视器上保留凩部的血管影像作为介人操作中的参照，或者使介人操作中适时显示的影像吾叠于标识图 1：直接起到导向作用。

四，步进减影

为使长距离（如下肢）内的血管不妥视艮的限制，注射碨对比剂后…次全部显小，现代的DSA设备可在注射对比剂后借检查床或 X 线管／接收器的移动，跟踪血管内对比剂的流动作分段成像，并和注射对比剂前采集的蒙片作喊影。更先进的设备则可跟踪对比剂的流功作的速（而不是分段）运动与采集，并最终把减影的血管影像併为一幅完整的肢体血管影像。

五，三维 DSA

迄今只有少数厂家（GE，岛津公司）牛产可直接三维成像的 DSA 设备。此类设备借助复杂轨迹的

C 型臂运动，使非血管结构的影像＂模糊＂掉，实吋地显示：维的血管＂減影＂影像。 ，维 DSA 主要用于显示所内血管。其应用前景尚待观察。

另一种更为普及的…维显示 DSA 借助C 型臂做设定角度的分度旋转与曝光，得到不同角度投射的影像，这而组合在一起作三维显示。

六，双向 DSA

双向（bi－plane）DSA 不是新的发展，理论上及传统的双向 DSA 是采用双 C 梨臂结构，两套 X 线管／接收器系统，在一次注射对比剂后同步曝光，得到不同角度（进常是相互垂直的两个平面）的影像。先进的 DSA 设务在 C 型臂的结构，运动轨迹和速度方面有了很大的改进，通过单一 C 型臂迅速改变位置，叮以在极短的时间内政变采集方向，达到与传统的双向采集类似的影像，但大大简化了没备的结构，降低了成本。

第2章 数字减影血管造影设备的基本结构

第1节 DSA 的成像链

DSA 影像形成的基本过程与传统 X 线摄影相同，即 X 线透射成像。 X 线源发射 X 线，透射过人体后受到不同程度的衰减，通过检测到不同部位衰减后的射线强度获得影像。

有两类 X 线光子与成像有关，即未被人体异蔽的 X 线光子与散射的 X 线光子。二者统称原发辐射光子。检测到这些原发辐射光子即形成影像。原发辐射的强度与以下因索有关：人射辐射强度 （ I_{0} ）和组织的有效总体衰减系数 (μ) ，可以下述公式表示：

$$
\begin{equation*}
I=I_{0} e^{-\mu p t} \tag{1}
\end{equation*}
$$

式中 I 为人射到检测器的原发辐射强度，$p t$代表线束穿过的组织总体长度 (t) 与有效组织密度

乘积，e 为自然对数底。因此，检测器检测到原发辐射强度的分布即可提供与组织成分相关的信息。

但是，公式（3－2－1）的关系要受到散射光子的干扰，因为散射光子的途径是无法预期的。检测到散射光子无助子影像形成，却构成了影像噪声。因而，成像中希咥检测到尽可能少的散射光子。

假定人体组织仅含软组织和密实骨两种成分，第三种成分为注射的䃆剂。表 3－2－1 列举了三种成分衰减素数的能量依赖性关系。表中可见到，软组织 $\left(\mu_{\mathrm{T}}\right)$ 和 $\left(\mu_{\mathrm{B}}\right)$ 的总体衰减系数随 X 线能量增加而逐渐减少，磺 $\left(\mu_{1}\right)$ 的总体衰减系数在 40 KeV 能级以上也呈㐘似关系，但在 33 KeV 处其总体衰掝系数突然增加 6 倍。即此碘的 K－缘，是由于人射的 X 线能量与附着于碘原子核的电子的束缚能量精确地匹配时特殊的相互作用引起的。因此，在 33－ 70 KeV 间䃆是比铅更强的衰减材料。

表 3－2－1 在 DSA 中有吾要性的一些 X 线能量之总体哀减系数

基子上述与 DSA 成像有关的物理学因素， DSA 成像链的设置需兼顾所有要求，但又必然是所有要求的折衷。因此，除非在理论上，理想的成像链实际是不存在的。在整个成像链中，最重要的元件是 X 线源和检测器。

一，理想的 X 线源

＂理想的＂X 线源应具备有三种重要的性质：
（一）可提供高能量 碘浓度越低，或观察的结构越小，需要的 X 线源能量越大。理想的 X 线源应能提供应用于任何成像任务的能量。
（二）点源 理想的 X 线源应为横断面积任意小的点，从而获得成像结构的最佳锐度。
（三）单色辐射 成像性能是 X 线能量依赖性的，故理想的 X 线束应由单一能量的光子构成。

二，理想的 X 线检测器

理想的检测器应包括：
（一）X 线源能量 100% 的检测效率 检测器兴能检测到穿过病人的所有具有一定能量（ E_{S} ）的 X线况子：
（二）非 X 线源能量 0% 的检测效率 由于散射线，即从病人发出的小于 E_{S} 的 X 线能量也可激发检测器。检测器应对非 E_{S} 的能量们产生应答，从而检测不到散射 X 线。
（三）无噪声检测 检测器不监提共伴随量子统计学噪声以外的其他噪声。事实上，这样一种检测器的检测效率必定低于 100% 。
（四）无限的空间分辨率。
（五）大视野 可以同时观察所有有关的解缡结构，不必分解为若下部分。
（六）无失真 检测器应可精确区映解剖学的大小和形态。

实际的成像链当然不仅包括 X 线源和检测器。但其他的元件可以归人一者的范畴，如 X 线管和滤波器可归人 X 线源，光棚，1．I ，光学系统和电视摄像机叮归人检测器。

三，实际的 X 线源

X 线管发出的 X 线不是单 一能量的，而是跨越从 0 到很大能量范围的连续能橧。 X 线能级由管电止调节。此外，X 线从阳极逸脱店还叮受到X线管窗的固有滤过及附加滤过材料的滤过。这些滤过可以使最初的 X 线能临再塑形，使之适用于降低辑射量和增加影象中碘的对比双重吕的，图 3－2－ 1 为管电压调节到 60 KV 时三种忉料滤过的 X 线能谱：（1） 1.5 mm 铞（ AL ）；（2） 5.5 mm 锅；（3） 1.5 mm铝 +0.2 mm 轧（ Sm ），图中可见三种能谱极为不同，磺的总体衰减系数（ ${ }_{i L_{1}}$ ）为能量的函数。

DSA 中开能使用 60 KV 和 1.5 mm 铝的能谱，其中至少半：数 X 线的能是低于碘的 K－缘（ 33 KeV ），这部分光子只增加了病人的附加曝射而儿要不影响碘的对比，若监用 5.5 mm 铝，则可有 75% 的 X 线超过碘的 K－缘，而若㹡用 1.5 mm 铝 +0.2 mm 轸则可获得理想的改善，匤为钐可选择性地屏蔽低能 X 线及 47 KeV （钐的 K －缘）以上的 X 线，而获得与 μ_{I} 副面峰值较好重叠的 X 线能谱。假定病人软组

织厚度为 $10-20 \mathrm{~cm}$ ，显示相同质量的 DSA 影像时病人对（1），（2），（3）一种能谱需要的儤射量相应为 1．0，0．78和0．6，或从另一方面讲，碘的对比比率为 $1.0: 1.12: 1.28$ 。即是说在能谱 \bigcirc 再加上 0.2 mm 钐使碘的对比增加厂 28% ，X 线鎘射量减少了 40% 。

图3－2－1 X 线管电压为 60 KV 对，三种材料滤过的 X 线能谱

但是滤过也消耗部分有用能级的 X 线光子，这需要加大X线管电流补偿。上述亏种能谱需要的管电流大致比率为 $1: 2: 3$ ，即是说当管电流增加 3 倍时，病人曝射量才能減少 40% 。对大部分成像装莦讲，这在技术上是不现实的。

四，实际的 X 线检测器

检测器的第一一个元件是光梅，其结构和原理与传统的滤线棚相同。光栅哀减散射的 X 线，增加原发与散射光子的比率。但光梅也要滤过一部分原发辐射，特别是 70 KeV 以下能级者，通常，光棚只能透过原发辐射的 $50 \%-60 \%$ ，即是说需要牺牲大约半数原发辐射才能达到减少散射 X 线的目的。

影像增强器（I．I）为检测并转换 X 线为二维光学影像的部件。其输入端有一层对 X 线敏感的荧光体，日前通常用硔化铯（CSI）晶体。 $\mathrm{C}_{\mathrm{S}} \mathrm{I}$ 具有高的 X 线吸收效率和可减少光线侧向传播的唱体结构，被认为系一成功的荻光体。 $\mathrm{C}_{\mathrm{S}} \mathrm{I}$ 之晶体晶格倾

向在平行于晶格表面的方向传导光子，形成的光线强度剖面图比非晶体荧光体者窄得多，这意味着可以形成更优良的空间分辨力。

I．I和胶片－增感屏检测比较何根本的区别。胶片的灰度与检测到的辐射量相关，因此仪可检测到有限范围内的辐射。过低的辐射量可低于胶片的敏感性，过高的辐射量则使胶片一致变暗，均不能形成影像。I．I反映在电视屏上的影像亮度 $r_{于}$ 激发电视靶的光线强度相关，而不直接与特定的辐射水平相关。检测到的辐射强度通过光学系统应用的光学孔隙与电视靶上的光线强度相联系，改变孔隙大小即可改变电视影像亮度。因此，I．I 系统可在比胶片－增感屏宽得多的 X 线强度范围内形成可用的影像。

1．I输入端因要用一薄的岥璃或金属封套支撑一高度真空管，故不是平的而是凸面的。以增加强度。其后果是造成影像失真，称＂枕形渏变＂。该后果类似于将一规则的纱网投射为地图上的经纬线。这种失真造成测量的不精确性及图像外周部分分澭力下降。若用平面封套结构，则需增加封套的厚度，结果是降低检测效率。

由于影像检测各阶段的缺陷，影像内各部分之间的信息有微弱的联系，该作用称＂遮蔽闪胨＂ （veiling glare），代表光线散射现象，光学系统组合内之光线散射和 I． 1 内电子散射的总和，引起的影像质量衰减作用与检测到的散射辐射大致相同。

五，电视摄像机

事实上，电視摄像机是最常限制分辨力的元件。分辨力部分地取决于 I．I 的視野，若电视有 512 线的分辨力，则 $14, ~ 9, ~ 6, ~ 4$ 英 寸视野的分辨力分别为 $0.7, ~ 1.1, ~ 1.8, ~ 2.5$ 线对（LP）$/ \mathrm{mm}$ 。不过，整个成像链分辨力还与 X 线管焦点大小有关。随几何学放大，焦点模糊增加，在放大达一定范围后，焦点分辨力限与摄像机分辨力限的曲线交叉，后者则变得不那么重要，前者将决定整个链的分辨力。

基于以上估计，目前的 DSA 成像链要达到完美的理想的标准，需增加 X 线辐射剂量 $12 \sim 32$倍。或换言之，当前的 DSA 系统仅以理想者的 $3 \% \sim 8 \%$ 的效率运行。尽管如此，成像铕中年一环节的改进都要付出昂贵的代价，因此，必须容忍目

前成像链的各种限度，并根据本书述及的物理学原理作出小向有意义的改番。

第2节 DSA 视频信号

DSA 成像链采集到的原始影像及经后处理重建的影像均首先显示在电视监视器上，是为视频信号：视频依号主要取决于采集信号的电视摄像机。与 DSA 有关的几个视频信号特征存：

一，亮 度 响 应

DSA 的电视摄像机拾波管为一种换能器，即把光能转换为电流。测星到的电流应与光学影像的亮度，并进一步与 X 线强度精确相关。这种亮度－电流转换即为拾波管的亮度响应，若以 γ 表示亮度响应特征，则 γ 与入射亮度（B）和信号电流（I）有关，用公式表示为

$$
\begin{align*}
I & =B^{\gamma} \tag{2}\\
\log I & =\gamma \log B \tag{3}
\end{align*}
$$

将测量到的 B 和 I 值在对数表上制图，则连线的斜率是 γ_{0} 标准的二硫化锑（ SbS_{3} ）光导摄像管的 γ 值约为 0.7 ，而通常用于 DSA 的氧化铅（ PbO ）光导摄像管 γ 值约为 1 ，即信号电流与亮度的火系是线性的。

二，动态范国

亮度响应執非从 0 水平开始，也不会持续到元限大的亮度。设最大与最小亮度值分别为 $\mathrm{B}_{\mathrm{max}}$ 和 $\mathrm{B}_{\text {min }}$ ，则最大和最小的有用的亮变值比率即动念范围（D）

$$
\begin{equation*}
\mathrm{D}=\mathrm{B}_{\max } / \mathrm{B}_{\mathrm{man}} \tag{4}
\end{equation*}
$$

以氧化铅光导摄像管为例，其 D 值大致为 1000 。为满足 DSA 成像的需要，摄像机的动态范围必须适应（超过）人射到它的亮度值的动态范围。在 DSA 成像检查中，这一值可能相当小，如腹部检查时由于病人的厚度与结构的均匀性，D 值可仅为 3 ，头顾检査可能会大于 10 。所以 DSA 中拾波管的动态范围不是一主要限制，在 15 以上即可满足需要。

三，信 噪 比

理想的检测器自身对检测到的信号不应增加不

精确性或噪声，但是如果检测到的 X 线自身误差小，则米自检测器的噪声可潜在衰娍信高，信噪比 （SNR）在这里特指成像系统采用的唐号值最大差别的人小，即是说 SNR 与两个信号间可被分辨的最
重要的多。DSA中，由下纤态花围通常较低，较高的噪声水平与信号重恽的可以遮蔽相对微弱的瑊影信号，则相监部位的含碘的血管影像将会混入噪声背景之中，理想的用于 DSA 的接像机 S．NR 应大于 $200: 1$ ．

四，迟 滞

迟滞是摄像机对接受的亮度快速变化响庶的测量：摄像机拾波管内每问隔一段时间（如 $1 / 30$ 秒）叮读出一个视频颃。在形成一理想的视频影像之前，摄像机需要读出若干视频颃幅来达到平衡，这个现象称为＂建成迟滞＂。另一种迟滞是当㧐像机消隐，即不信号电流读油期间光导靶 I：有电荷建成，当摄像机开始读出时，靶 1 ：的残仔电何可形成可感知的信号水平，称＂余辉迟滞＂。

摄像机的迟滞若朋显，可限制 DSA 系统的时间分辨力，这对某些动态观察，特别是心脏的 DSA 检查尤为不利：对于广泛用途的 DSA 系统来讲，招波管的迟滞应低丁 10% 以下：

第3节 DSA 的噪声

广义上说，任何妨碇观察者解释的影像结构特征都可以认为是噪声。DSA 中严格地规定噪声的定义为：影像上观察到的弯度水平中随机出现的波泇。这就是说，从本质I：讲噪声主要是统计学的，而不是检测性的。

有很多奶碍 DSA 影像解释的现象，但不被认为是噪声，如DSA 检查中的移动伪影；能量减影影像中来自非唺材料的残存信号对血管影像的遮蔽；䆚究不当使影像亮度增益过小，好碍血管结构的业示等。

DSA 巾检测到的 X 线量与泊松统计学法则有关。当已知给定量的 X 线，如为 100 时，由检测器及复读出多次，可得出作为检测器读出次数函数的曲线波形。曲线的宽度即统计学汲动量，也即噪声显的大小。根据泊松分布法则，波动量的标准差

○人致等于曲线半宽或平均量（N）的平方根：

$$
\begin{equation*}
\delta=\mathrm{N}^{1 / 2} \tag{5}
\end{equation*}
$$

随检测到的 X 线量增加，影像中亮度的随机波动会堿小，也即噪声降低：根据噪声精确性的法则，检测到的曝射量增加 4 倍时观察到的噪声水平减少 2 倍，随成像对象周有对比减少和（或）大小减少，为达到理想的影像质量必须增加曝射量。

根据体模实验的结果，可揭示 USA 中另一统计学特征：需要增加的曝射量是对比减少倍数的平方，可用卜述公式表示：

$$
\begin{equation*}
\mathrm{N}(\text { 曝射量 }) \propto \mathrm{I} / \mathrm{C}^{2} \text { (对比的平方) } \tag{6}
\end{equation*}
$$

DSA 检查中，若静脉注射比动脉注射时对比惐少 4 倍，为达到相同的影像质暑，静脉泣射时则需把曝射量增加 16 倍。即是说，静脉（IV）DSA 的㬓射量不可能減少到动脉注射时的水平。

还可根据体模的曝射量实验揭示 DSA 中第二。个统计学特征：曝射量需以与空间分辨う改善的平方成比例的增加。即是说同样清晰地显京较小的物体需要增加曝射量。可以下式表示：

$$
\begin{equation*}
\mathrm{N} \text { (曝射量) } \propto 1 / \mathrm{d}^{2} \text { (物体长度平方) } \tag{7}
\end{equation*}
$$

来某一血管直䄱减少了 $3^{1 / 2}$ ，则为使之获得与原来相同的影像质量需要将曝射量增加 3 倍。

上还关系可纳入 Rose 检测模型，归纳为一个公式：

$$
\begin{equation*}
\mathrm{N}=1 /\left(\mathrm{p}^{2} \mathrm{c}^{2} \mathrm{~d}^{2}\right) \tag{8}
\end{equation*}
$$

这样，即可根据预期的对比水平（C），血管大小（ d ）和理想的精确性（ P ）估计形成理想的影像需要的曝射量（ N ），从而获得具有可接受的噪声水平的有用的影像。 DSA 检查中，减影步骤已消除了很多无关的背景结构，因而可在相对均匀的噪声背景中勾画出充盈碘对比剂的血管。从这个意义上说，并非是重叠的结构，而是噪声成为影像质量的主要制约因索。

第4节 DSA 影像的处理和显示

通过 DSA 成像链采集到的原始影像是模拟影像，该影像需经力数字化处理，减影处理及重建为模拟影像的过程，最终成为用于临床诊断的DSA影像。

一，模拟与数宇

模拟是以某种范畴的表汏方式如实反映号一种

概念范畴。比如，你在零售商占买 1.25 kg 糖， 1.25 kg 即为你要购买的糖的数量的模拟：在 X 线摄影范畴，X 线胶片或荧光屏可以㲹录或亚示从几平完全透明（白色）到几乎不透明（照色）的一个连续的灰阶范围，这种不同的灰度色调差别为任何一个局部所接受的辐射强度的模护，或从另一个角度讲为相应的成像组织结构对射线衰減程度的模拟。

数字在这里不仅意味着数码，数宁的概念是以某种人为规定的量级量化地反映号一种概念范畴。比如，你在超级市场购渠你需要的 1.25 kg 食糖，那里的糖为 0.25 kg 一包，则你可以买 2 包或 3 包 （ 1 kg 或 1.5 kg ），这里的＂包＂即为人为规定的量级，注意，在这种情况下你必须接受多购或少购 0.25 kg 的＂误差＂，这里涉及的即是数䆘化过程中精确性的问題。

二，模拟－数字转换

把 DSA 原始影像的模拟信号转换为数字形式是将模拟信号量化，为进一步行计算机处理的基本步骤之一。当前的数字成像设备，如 CT，DSA， MR 等，均应用原理上类似的元件完成这一转换，称模损—数字转换器（ADC）。

模－数转换器把连续的模拟信号分解为彼此分漓的信息，并分别赋予相应的数字量级。从数字城像的实际转换来看，即是把 DSA 视频影像上从 ＂白＂到＂黑＂的连续灰度色调分解为不连续的 ＂龙阶＂，并赋予每个灰阶格应的数字。通过 ADC ，实现了 DSA 视频信号的数字化。

三，减影处理

减影处理是 DSA 的关键处理过程之一，将在下一而详细讨论。

四，数字－栏拟转换

DSA 数字化处理的完成意味着经过模拟信号数字化利减影处理后获得了由每一像元的值组成的数字影像。但是，数字影像极难直接用于诊断目的，必须使之再转变为模拟影像显示在它视屏幕上。这个过程称数字－模拟转换，完成这个转换的広件称数字一模拟转换器（DAC）。
$\mathrm{D} A \mathrm{C}$ 的工作实际上是 ADC 的逆转，它把二进制数字转变为视频㲌压水平，形成视频影像。由于原始影像是以有限的样本率被数字化（取样）的，故经 DAC 转换后的模拟影像将会是一系列不同亮度的点组成的。为了使重建的模拟影像失真度尽炣能地小，通常通过泎过系统将周衔许多点的值加权总合来填补灰阶的间隙。这样复制的影像可能显得比未经滤过的獂像模糊，佳可更忠实地代表原始影像。

五，DSA 影像的显示

经 DAC 处理的 DSA 影像首先在电视监视器上显示，并可作备种后处理。经后处理以后选择的影像则可存储在各种存储媒体」，如磁盘，磁光盘， CD，高密度磁带等。迄今，最广泛援受的曗示方式除监视器的视频影像外，仍然是硬拷以（胶片）。

第3章 DSA 影像的采集和处理

第1节 DSA 的成像变量

数字减影意味着对在视野内发生特余结构的影像政变前后分别获得的影像进行数字化处理，施行減影米突出特定结构（含碘剂的血管）－ISA 影像帅城过程中可借以作減影处理的物理学变量有时间和能易．

一，时 间 减 影

常规 DSA 检含中，舟注射 次对比剂北获得

自对比剂到达兴趣区．（region of intercst，ROI）前至对比剂在 ROI 迄峰值水平后若干时何内的一个曝光序列。当取••帧对比剂到达 ROI 郩（蒙片） L_{s} —帧对比剂在 ROI 恰达峰值水平的图像组成一个 ＂减影对＂作减影处理时，即叮得到突出含碩对比剂的血管结构，消除了其他非兴趣结构的减影影像。在这个讨程中，构成减影对的两帧图像是在不同时间获得的，即是说二者減影应用的是时间变量，故称此种减影方式称为时间减影法（emprral subtraction）（图3－3－1）。

图 3－3－1 A DSA成像中获得 5 很客含对比剂的血流通过兴趣动脉的系列影像。此例以每秒 2 颀的帧频共摄得 25 帧影像 B 仅 2 个滤过系数乐等于零的图像组成堿影对用 F ：蒙片方式诫影

吋间减影过程中，减影对的丙顿图像内对作区域信号的差別仅为显影的动脉，或者说是充孜的磌剂，减影过程即是分离出不同时相间的着别位号。事实上，该差别信号非常小，若不经减影处理，即使在对比剂充盆的高峰时相也不能直接观察到含碘血笽，故 DSA 影像的业ぶ还需借助差别信号（必然也作噪声）的放大及借助DSA 系统的高的密度分辨力。

二，能量减影

DSA 检查山，随曝射能显的增加，倛的总体㐮減系数在 33 KeV 处突然增肌，即当使用比碘的 K －缘能量略高和略低的能量分别曝射时，所获影
组战＂減影对＂作减影也可分窝出䃆信号，两颃不

问能量的影像通常是在瞬间（如 50 ms ）相继获得的，这里的时间）屋別可略而不计，二者减影主要依赖的是能量变量．故称此种减影方式为能量减影（ener－ gy subtraction），又称 K－缘减影（图 3－3－2）。

若间隔 50 ms ，分别应用 70 和 130 kV 摄取何一部位对比剂充盛期相的影像，则应用较高 kV 者各种结构的信号均比应用较低 KV 者減少，相应为：磺信号减少 80% ；省信号减少 40% ；软组织信号减少 25% ；气体倌号在两种能量均很少衰減。将两帧影像琙影，则：气体影可完全消除；保留少量软纣织影；明显保留骨影；明足保留礓的影像，因而，能量减影除能分离出硔信号外还可有效地消除气体影，这在腹部血管的观察中広有意义。但是能量减影不能有效地消除骨影，

能量依赖性交化可见碘的衰减曲线在 33 KeV 誗近的锐利的，倨齿形的不连续性

目前，因时间减影对设备的特殊要求较少，因此是最普遍应用的方法。实际工作中，可以对这些基本的减影方式作一系列改良，还可基于不止一种物理学变量作减影，将于店述

第2节 DSA 检查中的基本概念

数字成像技术中涉及的基本概念在各种手段中是类似的，但概念的内涵有轻微的区别，随着从传统放射学何影像经学过渡，传统的概念也要更新。下面讨论与 DSA 有关的基本概念。

一，像 元

像元是构成图像的基本单位，也即影像被分解成的孤立信息。在所有数字成像方式中，像元的大小是由议备规定的。而在胶片成像方式中，每一银盐颗粒即为一个像元，像元的大小是由银盐颗粒的大小决冚的。迄今所有的成像方式均系二维成像，故像元的概念也是二维的，即只有长和宽两度空间。

二，体 元

义称体元。体元是像无代表的相应体积的单

位。体元与模拟影像」：的像元是对应的，决定像元在模拟影像卜的有关参数，如灰度值。体元的概念与像元不同，是二维的，即有长，宽，高二度空间。

和 CT，MR 成像方式不同，DSA不庶用断面成像（cross－setional imaging）方式，因此相同大小的像儿对应的体元可完全不同。在娍影后的影像卜，每一像元覆盖的血管厚度（直䄱）也不同：

三，矩 阵

矩阵是构成图像的像元阵列。数学成像方式中，矩阵的大小（即含的像元数目）通常是出数宁化设施的存储能力利计算机的功能决定的，炬阵大小也从初始的 $64 \times 64,80 \times 80, ~ 128 \times 128$ 逐步提高到 256×256 ， 512×512 。月前，DSA 设备的嚴大矩阵为 1024×1024 ，但过有 2048×2048 知阵的影像学设备问世。事冞上，设备的矩阵大小明显超过人类眼睛的分辨能力时在临沫为用厂已没有很大的意义。

四，空间分排力

空间分辨力（spatial resolution）为图像中可辨认的邻接物体空间儿何只寸的最小限度，即对影像细微结构的分辨能与。空间分辨力是衡量影像质量的重要参数之一，与图像矩阵大小相关，即是说与单位面积内含有的像心数目成正比；因此，在同样的面积以，任何数字成象设备的㤏像中像広的数月均远不及胶片影像含有者，即数字娀像方式所获得的 CT，DSA，MR 等影像的空问分辨力均不及胶片影像

USA影像是由影像增强器采集的，影像的空间分辨力还与增强器的尺寸有关，可以也视屏的线对（line pair，LP）表示。增强器的尺寸越大，覆盖的视野越大，空间分辨力越低。如 35.56 cm （14 英寸）增强器的分辨力为 $0.7 \mathrm{LP} / \mathrm{mm} ; ~ 22.86 \mathrm{~cm}$（9英寸）者为 $1.1 \mathrm{LP} / \mathrm{mm}$ ； 15.24 cm （6 员 寸）者为 $1.8 \mathrm{LP} / \mathrm{mmm} ; 10.16$（4英寸）者为 $2.5 \mathrm{~L}, \mathrm{P} / \mathrm{n} 7 \mathrm{~m}$ ，

五，密度分䩗力

密度分辨力（density resolution）为图像中可辩认的密度差别的最小极限，即对细微密度差别的分辨能力。密度分辨力是衡量影像质偖的另一个車要

参数，与图像中舟一像元接觅的光子数H成止比。
如前所述，并位面积内胶片所含的像元数日远多言数字影像者。当以相同的光子数日人射时，同样面积内数字影像的像九接受的光了数目要远多于胶片影像者。这种情况说明，数宁影像具有较高的豙度分辦力；或换 ri 㓆，数字影像是俩牲了部分空间分辨力，换取了较高的密度分辨打；或笼统地说，胶片影像具有较高的空间分辨力，数字影像具有较高的密度分辨力。DSA 巾对于含碘量比常规血管造影低得多的血管的高检测能力即蔀分地归因丁设备的高密度分辡り。

六，时间分辨力

时间分辨力（temporal rewolution）为单位时间可采集影像的最大颃数，在（「，MR 等层泊戊像设备，时间分辨力反映火单一云面的成像时间，I而在。 DSA 中则反映为单位时间的成像帧数，称帧频 （frame frequency），和 CI，MR 等不同，因为DSA要进行血管内（包括心脏）对比剂㢌清的动念观察，敌对于设备的时间分辨力侑专门的要求，特呺是在心耻和大血管的观察利动静脉异常交通部们的规察中通常要用高帧频。間于类似目的的检査通常需要 $30 ~ 60$ 帧／秒的帧频（电影亚小）或 25 帧／秒以上的帧频（高分辨录像）。

DS Λ 的时间分辨力与影像的采集和处理的条个环节有关，特别是利接象机的辿滞，图像矩阵的大小及计算机的运算处理涑度有关。

七，伪 影

伪影泛指影像先真。数宁戊像方式中，出现仙影的原因及伪影的形式术同，DSA中，对影像造成下扰的立要原因是组成＂减影对＂的两帧影像不能精确重合，系内为检本部位化两颃影像形成的间隔发生 了移动。不能精确重合的减影对称＂配准不良＂（misregistration）。因移动使减影对配准不良在影像上形成的仪影称＂移动伪影＂（motion artifact） DSA 检查中很多自主和不自手运法均可导致移动伪影，如呼吸，心搏，㤁咽，肠齞动等。轻微的移功叮不影响诊断或可通过㢄处理方式补救之，严重的移动伪影将使减影影像几诊断价值，

移幼伪影有儿个特征：（使结构内辺缘处最明显，近结构的中心部相对轻微；伪影的量随结构

边缘密度陡度增太啲增大；要伪影的量随移动的结构衰减系数增加而增大：

DSA 中另一较常见的伪影是时视频信号的动念范围增人引起的。当视野内某皆部位对躬线衰減极小时，如头颅检查时前后位投照中的副當窦，腹部检相吋较大量胞肠气，使声部视频信雱夗种，成为均匀亮度的无信妨区，妨碍与之重叠的有用结构泊观察，称＂饱和伪影＂（saturation artifact）。饱和伪影可经调整投照倍置或在相应区域放置补偿滤过材料（如锅片）消除，后者称平野滤过（field－flat－ tening filters）．

八，后 处 理

穴处理是指借助引算机功能对获得的影像作进一步的完善。数字成像设备均具存后处理功能，但不同成像「段它处理的内容不完全相同。DSA影像的后处理通常用于政善配准和增加影像肉信煰比，如像元移动，再配准，边缘增强，帧幅积分，递推滤过，混合减影及二维显示等，将于 DSA 影像处理一节专门描述：大部分后处理可在获得影像后联机处理，也可用专门的专什作较为复杂的脱机处理。

第3节 DSA 的成像方式

一，静脉注射数字減影血管造影（IVDSA）

发展 DS Λ 最初的动机是希望以简单的静脉注射力式显示幼脉系统，因此最早应用的 DSA 检查采用静脉注射对比剂。但是，实验与临休夜用的结果很快证实，即使是显示较大的血管，也需作对比剂团注，团注（blous injection）的概念是在单位时间肉和血管内注人一走量的对比剂，其量略大于同期血管的血流量，从而取代该节段血管内的血液；当这䑙分＂血流＂流经兴趣血管时，其中的对比剂便保持较密实，稀释较少，从而达到较高的对比。

但是，静脉内团注的对比剂在到达幼脉之前要在各心挖与肺循环被稀释。稀释程度可以下式表示：

$$
\begin{align*}
& \rho_{\text {lx:čan }}=\text { ! (对比剂浓度) (注射速度) (注射时间)] } \\
& \text { / (对比剂团通过期间 . 总血流量) } \tag{1}
\end{align*}
$$

其中 $\rho_{\text {lmes }}$ 为离不左心空的动脉平约僙浓度，依实际底用时各参数代人公式；泣射速度为 $20 \mathrm{ml} / \mathrm{s}$ ；注刻时间为 2 s ；从对比剂离不左心空算起，典型的对比剂㞌曲线长度冮 8 s ，设心输出量为 $100 \mathrm{ml} /$ s ，以 ρc 代表对比剂的硔浓度 $\left(\mathrm{mg} / \mathrm{mm}^{3}\right)$ ，则为：

$$
\begin{equation*}
[(100 \mathrm{ml})(8 \mathrm{~s})=\rho c / 20 \tag{2}
\end{equation*}
$$

上弪说明，当对比剂到达动脉系统时，初始的碘浓度稀释」 20 倍。

除对比剂平均浓度外，兴趣血管的亚示还和显影峰值碘浓度及对比剂出郭清曲线究度有关。这两个参数的基本关系是：

动脉峰值侬度 $=$ 注入的碘（mg）／中心系容量

对比剂囲曲线宽度＝中心血容量／心输出量

根据上式，IVDSA 中各种变量闻从不同力面影䀠显影结果。

（一）对比剂的浓度和剂量

根据公式（3－3－1），动脉内穔浓度和对比剂的碘浓度成正比，一些关于对比剂浓度的影像质量的对照观察证实，甚至 $30 \mathrm{mgl} / \mathrm{ml}$ 的对比剂浓度差別，影像质量的对比忩別都有统计学意义；

根括公式（3－3－3），兴趣血管内的峰值䃆浓度还与注射的効比剂剂量有关。注躬的对比剂剂量 ${ }^{\prime} \mathrm{j}$对比剂团喭清曲线峰值官度城开比，但不影啊曲线蓅度。回而。IVDSA检查中若希望得到较理想的高而窄的对比剂廓清曲线（时间－浓度曲线），一般䅼的次注射高浓度碘对比剂 $30 \mathrm{ml} \sim 40 \mathrm{ml}$ ，一次典型的 IVDSA 检查大约需泙射 40 g 碘甚至更多，

（二）注射速度和时间

公式（3－3－3）说明，动脉内碘浓度取决于总硔昜，这意味着与注射速度无火，例如，以 $20 \mathrm{ml} / \mathrm{s}$速攴注射 2 s 手以 $30 \mathrm{ml} / \mathrm{s}$ 速度注射 1.5 竗所得结果相司，这似乎与直规的预期相效：手实下，在对比剂团通过诸心腔和肺幼脉过积中，不论速度如何均会被稀释，从上腔静脉到主动脉的循坏时间为 4 － 5 秒，只要注射时间与之相同或少于这个时间，稀释的程度即大致相同。每次洁射 40 ml 对比剂时。意味着 $15 \mathrm{~m} / / \mathrm{s}$ 以上的注射速度对对比刘廓清听线的影响极小，这已在实验和临㳭观察中证实，即江射速度既不影响 IVDSA 中对比剂曲线的峰值，也号

不影响搏线的宽度：

（三）注射部位

［VDSA 可行中心或外開往射对比剂，前者足
兵者只需在肘部穿刺公使导管衸正中或贵要静脉 F 。行 10 cm 以 1 和中心埌射相北，外周注射较 力便，但是不比剂注：射速度柎应较低，争中心血窝量较大，比如，以 1012 l 采的速度护射 40 ml 对比剂，则汁射时间已长达 + 秒，大致相当于肺䰜环屿间中心血容量为心输出量或平约通就的的的积，印对

守致对比剂打㟲清曲线的䀱值降低，宽度堷扣 利中心泣射相比，外制注射时保号大约珹少 $20^{\circ}{ }^{\circ} 1$ 。 DSA中，显示血管需要的最低限度的碘鿉 ${ }^{1}$ 监管直径戊反比，故低的简号值对一于小血管移显示尤为不利。
（四）心输出量
根据公式（3－3－4），可预期对比剂泾劇消曲线增笕。动脉内碘淯度降低。妌果心输出望相当庄，対比剂自左心室至以边动脉的行程中还会逃一步桸释。

此外，离子型刏论剂的畄渗透性地会引起缃流幼加学变化，但成系一过性的，作作書点讨论。

二，动脉注射数字减影血管聕影（IADSA）

IADSA 的发展是对最初 IVISSA 的改良，根据前段描述，IVDSS 的缺点有：任静脉内泣射的对比剂到达兴趣动脉之前要经历 20 供的稀释；因而需要较大剂量和较高浓度；住尽管如此，对小恧管的显示仍不满意；（1）并件无损伤性：

此外，片一个极为重要的因系是 DSA 显示血
胡比：比如，欲使一直径 2 cm 为血管及其内 1 mm的㹫窄与一南社 4 mm 的血管及其内 2 mm 的狭窄成像一－样消晰，可有两种述择：将血管内的磺浓度加倍；或将曝射量提扄 4 倍，这种情况下，大大提高曝射星，从设备的负荷与病人的辑射剂量方百讲都是不现实的，当然以轵学血管内浓度里为可取，杕而，幼脉注射对比椡的方法应运而生。

INDSA时，对比剂南接汗人兴趣动脉或接近

三，DSA 的曝射条件

 V（．．）对tJVI）EA来法，川设r（顶期对比水

$$
\begin{equation*}
x=2\left(\mathrm{p}^{2} \mathrm{c}^{2} \mathrm{~d}^{2}\right)-2\left(0.5^{3}\right)\left(1+1.01^{2}\right)\left(0.1 \mathrm{~cm}^{2}\right)^{2} \tag{5}
\end{equation*}
$$

－ 8010101000 检测的 X 线 cmi^{-}

 2500 万 X 线／ CrO^{2} ，这样打直援轮換为：

$$
x=\left(80000000 \cdot \mathrm{~cm}^{2}\right) \quad\left(25000000 \cdot \mathrm{~cm}^{2}\right) /
$$

$$
\begin{equation*}
\left(2.58 \times 10^{\circ}(6 \mathrm{~kg}) \mid 10.3 \mathrm{mR}\right. \tag{6}
\end{equation*}
$$

即是说。在1：述条件下IVIS」算检测到的曝
测效率毒考为 50% ，因向检测到的筫射量必须增

第4节 受检病人的辐射剂量

受的辒射将远远大于一个減影对者。传统的 DSA秴查中，病人接受的辑射主䅼有三个来源，即透规，实验性溙光和获取影像。

一，透 视

透视检查是获取影像前必贯的定位步骤。透视则间是每炊曝射吋间 H 总愫射次数的乘积，在不同甘的的检查中不同。在不合作的病人或需设法犾得最宣体位的㐱次调整时。䒺积的儤射剂暈必然增名，不梳该使用高KV作透视检查。表面上高KV似乎可以减少病人的轵射剂量，仙是 X 线筼的他流强度低于一是詣值时。停止透视后可发牛电缆放旦。这是因为心缆在䆨症时积蓄了电荷，电缆放儿沙对检杏者与被检查者产生额外的鎘射，收透视时电流不应小于 0.2 mA ，

二，实验性曝射

为获得电视监视器下最訨的视频饱种，较旧型号的设备在付个曝射序列之前平均至少要作 次实验性煍射，每次检杏将牦括几，个㳟射矛列。这样，每次检查中实验性輁射累积的及肤剂萋为 1.5 － 4.5 R ，即使尽量压缩实验吽：曝射的次数。而次检各的度肤剂晕也至少为 2 R ，较新型的 DSA 设备已经省去厂实验性嚗射这一环䏚。

三，采集影像

采集影像期间受检者的辐射剂萋与 KV 的设出，遮光器的设置，成像的儿何学，视野的大小，滤线棚的心业用等有关。

根据最简单的选辑，采集的影像越多，可获得的倞息越多，曝射的剂量地越人，因此在可能的情記下宜来用低帧频和程疗式曝射；程序式曝射可设定使对比剂团到达兴趣血管前以低帧曝射，到达兴趣血管后改用需要的较高帧，廓清的晚期仍改用低帧，曝射的程疗可事先规定，由设条自行调节，以每个暴射！妾列摄 8 帧，每次检査色括 5 个曝射序列计算， 40 帧的总的皮肤剂量为 $4 \sim 12 \mathrm{R}_{\text {。 }}$

DSI 中的曝射是升计算机指令控制的，在计算机发出指令至实施爆射之间会有一些延迟（如 60 ms ），而指令至停上曝射之问地会有更长的延达 （如 $150 / \mathrm{ms}$ ），若指令程店规定的曝射时间为 200 ms ，实际蒋射时间则为 290 ms 。延长的曝射时

问势必也增加辎射剂量。
DSA 检查的视里大小受制干影像增强管的大小及放大率。视野越大，对受检者的剂量越高，轵射剂量的增加为视野直縒的平办。故检查的视野臭尽可能减小到最小。

在当前（1998 年）的最新 DSA 设备没之中，针对检査中降低对病人和检查者的辐射量问题已存了一系列改进，包括：（1）采用低剂量脉冲透视故术代替传统的非脉冲方式透视；等采用自动滤过调整，降低曝射剂量；（3）采用无射线遮光器词整，去除调整光栅过桯中的辐射；（ 4 ）无测试曝射，消除＂实验性嚗射＂环节中的輻射；智能化曝射技术，可根据受照部位的厚度与密度，自动调节暴射剂量； （B）自动曝射测量与显示系统，可随时监测，亚示辐射剂量的报警；（7）采集图像的数字放大，避免了因使视野（FOV）增大而增加照射剂量等等（在设计完善的设备上，已可使检查中的曝光剂量比前述常规 DSA 检查的剂量减少 90% 。

第5节 DSA 的影像处理

常规血管造影时，一旦获取了显影的影像序列，从技术上讲检查即告完成。I2SA检查则不同，获取的影像还将作不同类型的处理，以得到最佳的影像或突出影像的某些特征，

一，减影对的选择与再配准

在每一时间减影序列中，实际上仅选择曲帧影像组成某一期相的最理想的减影对。但是若该序列含有 25 帧影像，从理论上讲则需组合 300 个影像对供选择，这是不现实的。幸好并非所有的帧幅都值得考虑。若将选择范围缩小到具有 50% 最大穥对比（Cmax）以上的帧幅，仍将有 115 对影像供选接；Cmax 限于 80% 以上时将减少到 40 对；Cmax为 100% 时只有 5 对。
…旦在索片与选择的显影帧幅曝射期间病人发生厂移动，则该減影对的影像不能精确重合，产生配准不良。一个简单的补救方法是改变（调换）减影对。为了得到的配准尽叮能理想，通常选择两帧在时间上较接近的影像组成瑊影对，称再配准（rereg－ istation）或再蒙片（remasking），再配准的减影对品能不包含䇛影高峰的帧幅，但可消除移动伪影或减

少移动伙影的十扰，得到有诊断价值的影像：

二，賲元移动

这是通过计算机内推法程序束消除移动伪影的技术：为＂改普㺂影对的配准，可以将蒙片的后部或全部像縈向不同方向移动一定距离，使之矢对应的像素更好地配准。尽管一个影像中可有数十万个潒素，像元移动（pixel shifting）对影像的收善能办似乎是九限的，但是在一个配准良好的部位，几分之一肑像素移动即可产生明业的伪影 此外，病人移动的方式可能很复杂，系多维的，区此像素移动政善伪影的能力是存限的。

三，标 记

DSA 的一个基本效果是在减影影像心消除厂背景结构，突出了血管的显示。但是在诊断 4 可能遇到一个意外的不利闲素，即由于完全消除了解剖学标志而无法对血管结构作准碓定位。一个解决方法是存需要定位时，把减影影像先作亮度放大，再一 一 一个未减影的影像重合。这样得到的影像可以同时显示減影的血管与参考结构，即标记（landmark－ ing）影像。这个处理是相对简单的

四，空 间 滤 过

影像增强电视系统在检测中的敏感性随物体和 （或）密度的大小的减小而降低，这可由调制转换函数（MTF）来定量的表示。为了珎补MTF下降的不利结果，可以选择性地放大高空间频率。当电子束抿描画面时，遇有密度改变陡峭的部位（如显影血管的边缘）即作选择性地增强，空间滤过（spatial filtering）又称边缘增强（edge enbancement）。

空间滤过的缺点是噪声也同时增强，这意味着选择作边缘增強的同时必须容忍较高的噪声，实际工作中，常常是选择两者间适当的折衷。

五，积分㢣片减影

时间减影法在一个潜在的缺点，即每个昹射序列中的十几帧至数十帧都浪费掉了。若将若干帧蒙片积分，并作一个负数加权（如－1），若十顿亚影帧愊积分，并作一个正数加权（如 +1 ），再用这两个积分加权后得到的影像作珹影，则可得到积分蒙ノ法的减影影像。积分䑃片（intcgrated mask subtrac－
tion）法又称察颃（averaging frames），意味若最终们十娍影的影像是若干偾愊总合屏的平均：

积分蒙片法主需的优点具改善捛噪比（SNR）。在使川5n帧影像积分，则娍影受SNR 的政善等丁口的平分根（图3－3－3）。

閣3－3－3 经积分的影像组作为素生或对比剂充怒后影像组成㖪影对，部减影念叮降低噪囘 若将影像如图小组合，SNR师分别改善1．92倍（A）和2．16倍（I1）

六，匹 配 滤 过

『配滤过（matched filtering）ヶ L．学领域的信号处㫜方式类似。即当一组权数系数与兴趣区信号形态对妳域匹配的话，形成的滤过影像将会有高的信薬比：

在采集到⼀段时间的減影影像后，从兴趣区提取时间－视频密度曲线并由最小平方法配合为一光浸的曲线，化配合曲线的诸点减去 一个常数后使曲线各点的半均值为 0 。 将减去该常数后（经加权的）的本线正，负值分别积分，然后形成 帧减影影像 （图3－3－4）。

上述处理川，从组线的诸点减去 一个常数，叮以消除相当比例的残留噪出及背京结构。尽管在个别影像 上：较强的碘信号也会石些减强，保在最终的影像上通洔积分碘信号将增强。匹配滤过过积可使噪卢减少 50% ，这意味着在同等条件ド对比剂的浓度㺫减半，匹配滤过的主要限制仍为移动伪影。

尽管剪辑影像间在一定程度上弥补之。

图3－3－4 显用炕配滤过，给该组影像提供了最佳可能的 SVR，（A）权数系数用于尒部影像。（B）仪用 10
中移动头影可以喊少

七，婵 推 滤 过

递推滤过（recursive filtering）的施行需借助两个递推滤过器。递推的概念是指把正从电视摄像机 I：读出的影像与以前－段规定时间内的帧频积分丽个递推滤过器施行积分的时间付同，比如一个积分以往 2 秒内的帧幅，另一个积分 8 秒内的帧幅。前一个主要积分是血管显影高峰的影像，䏌一个积分的帧滆还包括诉多对比剂到达前者。在每一规定时间把两个㵂过噗输出的影像加杝，使权数的总和为 0 ，而选择的加权系数沿时间轴滑动前移。这样，尽管两个滤过器在同一时问的输出均含背景结构，碘信号，噪声及伪影，但前一个滤过器利分的帧幅碘信号较强，后一个滤过器积分的帧幅碘信号较弱，二者减影后可遗留碘信号。

八，混合减影

以上述及的减影方式均是基于时间变量，事实 J：减影可以基于不止－种变量。目前可以实际広用的是将时间琙影与能量域影结合，称混合堿影（hy－ brid subtraction）。

前面曾经述及能量㺂影的效果，即可有效地消除气体；保留小量的软绀织；保留明显的碘信号与骨佮号。苏将能量减影的影像斗作的间琙影，则可进一步消除骨信号和软组织信号，仅遗留碘信号。

漉合减影的缺点悬在能量减影阶段碘倍号有所丢夫，H最终的影像是由 4 帧而不是 2 帧影像形成的，因此混合减影哀减信噪比。估计混合减影的 SNR 仪为时间减影的 $35 \% \sim 40 \%$ 。这对信号㑑低的小血管显示尤为不利。

第4章 DSA 的临床应用

第1节 DSA 在头颈部的应用

一，检 查 方 法

 －2 小时即可离院。而 IADS 检夺镸为防止穿则部位法血，血肺，感染等并发疟怙规察12－24小时。

术前不需准备，仅造影前及造影结束尼 27 小时大量饮水，日的在丁加速碘对比剂从肾排出－－般不必给于镇静剂。

（一）IVDSA

作IVDSA时，导营一般从肘前的贵否或正巾静脉穿人。可仅」行 $10 . \mathrm{m}$ 以 1 作外周汗射，也可
中心注射 如 f 节所述，中心讨射开比外溒江射产牛更理想的对比剂郭消曲线，即具有较耑的峈值改较育的宽度 山于寺管技术的普及，外周注射的内用抟来越多由巾心注射孔术取代，此外，需要时边叮经股静脉或领静脉穿刺懦管。
遗影导管：导管需有端孔利多个侧霞，相筣作对比

人 20－30m150类的芴徇榶溶液，出于比重轻，葡笣糖溶液浮于刘比剂的 1 力，随刏比剂注入后 $1 十$防对粘稠的对比剂有冲扇作用，并代替存留代导管内的对比剂
巾。要根据欲查部位的循坏的间确定开始曝射的时间，瀑射序列要包括对比刘到达兴趣血管之前的－至数帧傢芹 头颈部检查一般在开始注射对比剂官 2～4．开始曝射 号仅拟观察静脉结构则可在78形始，侃过要利用程序式暴射获取数帖蒙片，曝射的帧频叮为 $1-2$ 颃 么 ，一般 1 颃么即可 苦拟煴客氻静脉瘘或高分流沙静脉渏断则以轮高帧频为宜，如 6 帧 s 。曝射序列的持续时间取决于在垓兴趣厂
病人的辐躬剂量

以为敏个曝射光序列都需要注躬一次对比剂。且㬗射期问代能移办病人，所以必须事先确底兴拽血管的投照位置，为堿少对比剂的汪射次数利总量，条件允许时可使用劝向戊像设备，与常规血管造影不同，IVDSA 检查中打兴趣义内的管均同时昆影，擏照位置的选择必须兼顾使兴趣队け的血空尽问能少地重叒 在颈部检查时，为使主动脉出领致脉和椎动脉埛晰枵示 $\dagger 1$ 彼此分离，可摄一侧或

普遍。神经介人放射学的开展。也是 IADSA「泛应用的促休之一。

IADSA 通常取段动脉进路的 Seldinger 经皮穿刺插管技术。在腹股沟选荘穿刺部位公作常规消䒵及局麻。为了插管方使，可作 $0.5 \sim 1 \mathrm{~cm}$ 左右的小切上及适当扩张。使用6F矣管针穿刺股法脉，－旦穿刺成功即拔出针芯，送人 $0.889 \mathrm{~cm}(0.035$ 英寸）导聯，在透视导向下上行达主动脉ち下水平。拔出套鞘，沿导经送入 5 或 $6 F$ 宁管。若拟同时显示颅内颈动脉梠椎动脉系统，叮将导管顶端推进到主动脉根部，拔出导丝后注射对比剂。为防止高压注射时导管顶部反弹，宜用猪尼导管；专实上，向于希望避免非兴趣血管的重叠，更愿意作选择吽插管，即将导管分别导人每一侧颈内或领外动脉开 I或每一侧椎动脉开口。在熟练者手中，一次检查分别显示双侧颈动脉和椭动脉－基底动脉系统不需很长时问。

选择性插管使用的导管除了相泣较细外，通常使用专门的导管和（或）根据术者的偏爱自制的预成型等管，一般休需要可控导丝守向。在更熟练者手中，其至可将经过适当预成刑的更细的导管送人人脑前，ゆ动脉开口及较大分文一除完成超选择性造影外，还可同时作介人放射学处理，如治疗栓塞，溶栓等。

IADSA 宜用稀释的对比剂，浓度可为 25%－ 30%（以复方泛影葡胺为例）其至更低：对比剂浓度的选择主要依赖于拟观察的血管自行，自管直径越细，选择的浓度宜越高。们是超过需要的以上的浓度会使血管与背京结构间产生过高的对比，反会遮蔽很多有用的信息，比如无法辨认占少射线同一方向的血管前后壁上的动脉粥样硬化斑块产牛的代均匀影像，无法辨认交叉血筼的影像与病变结构等。伐用较低浓度而不是较小容量对比剂的另一个原因是较少的高浓度对比剂在 IADSA 时产生混合不均及流动效应，从而影响影像的分析。由于 IADSA 每次注射的总碘星较低，因此洋射的次数及曝射序列较少受对比剂剂量限制，可以选择廷恰当的投照角度。

由于 IADSA 呫注射对比剂的部位距兴趣血管近，所获对比剂廊清曲线宽度比IADSA 者要窄，故IADSA 中曝射开始时间要提前，其至需要代注射对比剂之前即摄取蒙片，此外，持续曝射的时间

也相应缩短。但 IADSA 的帧频宜适当增加，以在较短的様射时间内犹得必要的供选择的减影对：

二，存 在 问 题

（．）头颈部DSA检合中主要的移动伪影是㤁咽俈影。据信系因离子㓥对比剂㻇达舌背部和咽喉部引起的烧灼感造成的不自主吞咽所致。使用冷却的对比剂及缓慢演射似可故善病人的耐受吽，但相应增加了对比剂的粘溧性及影像质量。造影的含濑 $15 \mathrm{~m}, ~ 12 \%$ 租多卜因极有势助，使用非离子型对比剂则可减少比问题。
（二）顾内其至还有颅外血管的東叠可使病理血管难于分辨，需行多种体隹检查，但血管重㕿仍为诊断中的主要困难之一。
（三）动脉檗 $\mathrm{I}:$ 的粥样斑随搏动而运动，选成的伪影日前尚无法消除。
（四）病人代合作形成的移动伪影常需增加客处理程序，但明显的移动伪影最终不能完企消除。

第2节 DSA 在腹部的应用

一，肾动脉的 DSA

尽管早期认为 IVIJSA 能够很好地多示肾氻永及其较大分支，住至少有两个主要原因限制 IVD－ SA 在肾动脉检查中的应用：一是腹部血管同时显影，可遮蔽或妨碍背动脉的观察；二是大剂量治浓度对比剂的应用受肾功能限制，在肾办能否良者，对比剂可诱发急性肾功能哀渴，其几率听较肾功能正常老多两倍。月前，IVDSA 多用于随访及其他原因不能作 IADSA 的病人。IVDSA 的检査方法和对比剂剂量与头颈部检查相局：

（一）检查方法

IADSA 拟同时泉示双侧肾动脉时，叮将经 Seldinger 法由股动脉进路插入的 5 或 6 F 猪尾导管的顶端置子肾动脉不几上方 $5 \sim 10 \mathrm{~cm}$ 的腹主动脉内。对拟重点观察的肾动脉可酌情调换成适当型号与大小的导管作选择性肾动脉插管。肾动脉狭窄拟行扩张治疗者也可借导丝将调换的球囊扩张导管导人作介人性治疗。

成像期间病人需屏气， $1-2$ 帧 $/ \mathrm{s}$ 的颃频通常可满足大多数需要。一般取新后位和（或）还当斜位
（如 5^{5} ），少数人也可取卧傡投照。肾移植病人宜作过斜位观察，末－肾动脉旁路术后及高丘压病因检查将人则在代同阶段成像时依不同观察目的，包括数宁肾需造影，选择透当体位。22．86－～ 30.48 cm （9或12采寸）的影像噌强符叮在工位投哄时包括双侧肾，似推荷以较小的影像管作进一步观察，这样既有利丁提高影像的坴间分辨率，也口減少病人的轵射剂星，

背动脉及其他腹部的ISS检查山，主要的伪
人动脉或静脉的导管汗人胰岁糖素（glucagon） 0.5 -1 mg ，以堿少肠蠕幼。并随柱用 5% 葡敬糖溶液牫牛理盐水冲刷导管，以防此胧高糖素与对比剂接触产生反应，由于胰高熫糸相对昂贵，可用同样方
 T ，潮红等副反应，及肖光服者禁忌，还吅用前列腺索 E_{1} 。不主张用泻药来驱除肠管内的气体，长为随禹动的增加及泻药对肠管的刺激，吅产实更多的气体。视野内的气体任时闸减影中无法消除，这不仅遮蔽血管影像，向阳随蛧动还可造成严重的移动伪影。除使用㹘动抑制剂外，还需要借助于法推挤及压䦽垫等方式使允气的肳管离开视野。有人主张行俯卧位或坐们观察或有势助；

DSA 检贪的店期，特别是多次汗射对比剂后。可以显示肾荋，椾成管及膀胱：荐拟仔细观察肾而
下䧗部加一下迫带，注射对比剂后 $1 \sim 2$ 分钟充胀犬迫带，原迫输尿管。从向得到清晰的肾盂与输尿管影像。

（二）存在问题

1．問尊电叒：与肾动脉闰时显影步成十扰的主要是肠系膜动脉和腰动脉，即使改进投照力法，有时也不易观察小的肾㓯动脉，多种体位观察势必增加对比剂剂量及病人路射電，

2，成像质量受肠霖动，血管搏动，呼吸及移动仗影的影响：肠蜻动抑制，呼吸汌练及后处理功能可价一定标度卜改善影像质革，伹不能挽救所有的频像。

二，肝 动 脉 DSA

DSA 宣用的早期，由于血管造影对肝疾病定吽沴断的价俏较小，应有并不广泛。门从近午肞肿

瘤的介人放射学治疗广泛开展以来，对肝血管造影的兴殹已大为增加，DS Λ 己成为计疮病检查的常规手段。

由于的能需作介人性处理，通常采田IAI）SA。理论上，只要把导管顶端送人腹腔动脉，就可作肝动脉及其所属分支的造影。当亚作进一步介入放射学处理，如治疗性检寒或局部化为时，或肝动脉存在明显解剖学变异时，则将导管进一步送人肝动脉或作超选抳性抙管。

每次注射的对比剂可从 $25 \% \quad \cdots 38 \%$ 泛影葡胺 20～40ml，或其他相应浓度的剂量的离子型战非离子型对比剂。当守管顶端位于腹主动脉或拟进一，步作户静脉系统的延时观察时需用较大剂量，位于非动脉内时， 20 ml 即可获得满意的影像。泣射速度 $8 \sim 10 \mathrm{ml} / \mathrm{s}$ ，摄影颃频 $1 \sim 2$ 帧 $/ \mathrm{s}$ 。

不推荅使用较高浓度的对比剂，因高浓度可诱发lin．管痉孪，且具有较高的渗透压与粘稠度，不利丁肝实质毛细伯管充监。一些头验证实，以稀释的对比剂注人肠系膜 L动脉时肝实质显影最好，因为桸释的对比剂可以更快，更广泛的称散人肠系膜毛细细管，继而在门静脉内形戊较高的碘浓度，从而使肝实质获得更好的显示。

和肾动脉 DSA — 样，肝动脉的检查地需借助扬蠕边抑制剂，F法推挤肠管，垫压等手法排除或減少含气肠管的于扰。

三，脾 动 脉 DSA

和肝动脉一样，只篅在腹腔动脉洼射对比剂即可显示脾动脉。但单纯业示脾动脉临床意义不人，造影的目的多为显示脾门静脉系统以 了解食管静脉曲张的存在及循不模式，以及在拟行门静脉系统分流前犺实向肝血流的存在及通畅性。近年来随内科性㹸截除，即部分性脾检塞疗法的兴起，脾动脉选择性血管雨管及造影又有了新的意义。

第3节 DSA 在心脏和大血管的应用

一，检 查 方 法

造影前禁食，小儿术前常规给予镇静剂。为保证屏气，可预先训练过度换气或检查前适当吸氧。
\qquad
心肋大血管检查可借助静永的回心血流将对比剂送至心㭌，故多数检が心用IVISA。大多数检査作上，下愘解脉或右心房注射对化剂。姲冠状动脉及一些特殊日的的检查则拥 LADSA。什布心完内或

IVDSA 股初 76% 椣对七剂，江射剂显随观察部位不同而异。如观察动脉可井 $12 \mathrm{ml} /$ 次（ 6 ml ／ s）；主动脉用 $20 \mathrm{ml} /$ 次（ 10 ml ，＇s）；较太全克用 $30 \mathrm{ml} /$次（ $20 \mathrm{ml} / \mathrm{s}$ ）－左心室往射它用稀释的（ 20% ）对比剂，可以 $12-15 \mathrm{ml}$ 今速度法射，正常大小的布心室每次汁射 30 ml ，增大的左心室则需注射 45 mll ，

开始曝射时间根据观察部位决定。开始注射对比剂石覑动曝射开始的时间为：肺动脉 $1-2 s$ ；主动脉 $5-9 \mathrm{~s}$（均为 IVDSA）；共他部位可类推。对
盈像保持相同的屏息状态，以便在诚影中酸情更换。在做心崆现察时曝射的桢频可为 $30-60$ 帧 $/ s$ ，通常需作心电图（ EKG ））门控，曝射持吱 $2-85$ ：主动脉！！帅动脉观察时帧频可降至1－－3婻／s，也官伴 EKG门控，曝射时间需延长至 $5 \sim 15 \mathrm{~s}$ ，但有明显血流动力学异常者宣加快帧频－

为避免与几乎同时显影的賏动脉影像重际。胸主动脉采用 40－60 左前斜位；腹市动脉摄代似即可；心控的观察宣取四徖位，又称放良的宸－锁成角投照．即身体取左前斜位 $50-601^{\circ}$ ，X 线管向㮛侧成角 $30-35^{\circ}$ 。该位稙川满总地河屿品示四个心轻告旗，室间隔；左心窒叮取 30° 右前斜位或 60°左前斜位。

影像增强器的选择可依检香部位调换，听先柰轮大尺寸者覆盖整个区域，再换用较小者重点观察兴趣部位。

二，检查的分类

[^0]
2．质心察射伯分数

左心窒射血分数 $=($ 舒张术期呠积－收缩末眗休积）哔张木期体利
（1）

放射性㤥素心室造影结果间不具有统计学总义的差别．不过对 ff 个较痕的，打张的利经三术政空学心腔结抱者则不够精确。

3．㰤部左心壁附力能 可用几何学方潶或功
壁抎动。儿们学方法足在任前斜位投照け报据轵復
析：功能性：成像则是涌过舒张期和收缩木斯影像减
矛盾送动任动物安验小已见到，在冠将动脉问族及笎全闭塞时。功能性戊像鼠示相应的整个后卜段心室产牛矛骨远动；参数作成像系利用个心客过缘各人像元结舒张戓收缩期的相对振諧值，边心室的部分像九与EKG的（QRS波间相优角测量，有心察收缩的㢄步性测量及利用时间－视颗密度井线作的有关测量

4．心肌体积测量：使用视频密度计则洲心刵的内缘和外嫁轮廊，由计算机讨算．．．．者体积的原即为心肌休积。已证实，此方法认算出的心肌俊积 ${ }^{1} \mathrm{j}$「检测得者高度相关。

5．DSA 在心眼功能性检查中的限度：除病人移位和呼吸运动等因素外，影哬结果精确吽的一个重要因素是心胜收缩期间的复尔运动。他括厷心空的横向与旋转运动，很婎用已知的方法完全矫正只一个图米是离二型对比剂可收变血流动力学，刨括左心室的负荷系数，此外，们哑忌记对心性的场能吽捡寻尚们办一些壮损伤吽或少损伤吽手段。刘趋声学，放射性：核素等 ISA 不是惟 的，们时也不是前诜的检查丁段。

（二）形态学检查

DSA和常规血管造影一样吅用十先天性心肌病，起心病，心脒肿㾸，肺动脉检塞，主动脉灰

第4节 DSA 在外周血管的应用

早年，和其他部位相比，1）SA住外周血管的

一，检 查 方 法

术 新做一一侧下股造影时，从不侧股动脉插管人腹
动脉，相继手人股动脉，幼脉。拟呵时观察败侧下

捅
 il：射速度 $6-12 \mathrm{ml}$ 的，较相大的四管或有轻大流㫣分流者速度开提高军 20 ml 代安使用木经稀释的

剂的高渗透性：带来的炮热感地们时造龙肢体的化自主边幼
影们效果代满意。在外䧓道管疾病病人将出为突

改殔，
外问的管行积长，位置素变，为珹少对比剂㲿

深氻脉扢始涪间肞战像叮取 $45^{\circ}-60^{\circ}$ 斜位；从鮡部的动脉可了任证位 ${ }^{\prime}$ •侧位间时成像，叮使㓝滤线板补
像

二，存在问题

肢体 US．验查的主要问题是检查中肢体不自
型对比剂为莒，除事先行＂好解释争取病人合作外。使件非离一千型对北剂吅减少移氻伪影。

肢䏫［以入检查巾可发牛血管壁的穿透及对比訤外流，还屾付穿入血管内膜形成幼脉夷层－外渗蛙对比剂叮引起组织坏死，宣及时发现及设法防䌷发生。
（祁 吉）

参 考 文 献

 1908 Dec． 25 （4）； 25162
2．Winchester PA．it al．Comparison of wow－dimensional $\triangle \mathrm{MR}$ digitat whtration angiugraphy of tho lower extrennty with X－ray angugraphs．J Vése Interv Radol． 1998 New－Dece， 9 i6） $841-9$
 beatouremt mi with digntel subtraction angwgraphy．Int J Coard Ithaging．1998 Jun， 14 （3） 1.3745
 magt．enis resonance digital sustration angiugraphy ubatg threthmensional TRICKS．Hatorta＇perspectase and com pulat ：muletiosts a revieu．Invesc Radiol． 1998 Stp， 3.3 （9）$+496-505$
5．Kratrer S © ．et ail．Diagnoste value of spiral－CT angougraphy

 \therefore 抽． 49 （8）594－606

angingraphy：26－year experience at the University of Flori－ da．Fur Radiol． 1998.8 （3）： 391402
7．Vogl TJ，et al．Biphaste spiral computed tomography versus digital subtraction aigiography for evaluation of arterial thrombesis after orthotopic liver transplantation．Invest Ra－ diol． 1998 Mas， 33 （3）：136－40
8．İmakatos PB，et al．The serebral effects of carbon dioxide during digital subtracion angiography in the aoric arch and its branches in rabbits．AJNR． 1998 Feb， 19 （2）：261－6
9．Frayne R，et al．MR angiograplly with three－dimensional MR digital subtraction angiography．Top Magn Reson Imagng． $1996 \mathrm{Dec} ; 8$（6）：366－88
10．Hasuo K ，et al．Intra－arteial digital subraction angiograt phy with extra－large fields using a computed tomography system in evaluating periperal valscular disease．Radiat Med． 1996 Sep－Oct， 14 （5） $229-33$
11．Yasud．K，et al．Angiogrephy of extremiticu Nippon Geka Gakkai Zasshi． $1996 \mathrm{Jul}, 97$（7）：515－9
12．Molloi S ．et al．Quantification of volumbtric coronary blexd flow with dualenergy digital subtraction angiography．Cir－ culation．1995 May 15． 93 （10）：1919－2
13．Jacob AI．，et al．Lower extremily angiography：improved amage quality and onflow vessel detecton with bilaterally antegrade selective digital subtrartion angiography．A olinded prospective intraindividual comparison with aortic flush digital subtraction atugiography．Invest Radiol． 1996 Apr， 31 （4）：184－93
14．Perendreu J，et al．Cost－effect．veness of arid morbidity from digıtal subtraction angiography．A study of 5817 cases Ann Radiol（Parra）．1996， 39 （3）：153－60
15．Ealk A，et al．3－T）－TONE magnetic resonance angiugraphy int detection of intracranial aneuryands compared with digi－ tal subtraction angiography．A prospective study Rofo Fortschr Geb Rontgenstr Veuen Bildgeb Verfahr． 1996 Jan， 154 （1）：31．7
16．Koch JA ，et al．Intraaterial digital subtraction angiogra－
phy（i．a．DSA）of the lower limb using finc needle tech－ nique Rofo Fortschr Geb Rontgenstr Veuen Bildgeb Ver． fahr． 1995 Dec． 163 （6）：515－22
17．Oser RF，et al ．Accuracy of DSA in the evaluation of pa－ tency of infrafopliteal vessels．J Vax：Interv Radiol． 1995 Jul－Aug．6（4）：589－94
18．Vogel 1 ，el al．The entanement of he diagnostic vield by 2－plane DSA with the s＇ep－displacement tectanic and oblefike projection．Rofo Forscar（act）Rontgenstr Neuen Bildgets Verfahr． 1995 Jun， 162 （6）：524－6
19．Kerns $5 R$ ，et al．Carbon dioxide digital subtraction angiog－ rapty：expanding applications and technical evolution．Am J Resentgenol． 1995 Me．r， 164 （3）：735－41
20．Krug B，et al．Peripheral occlusive arterial diseases：com－ parison of diagnostic value of MRA and IDSA．Roffr Forschr Geb Rontgenstr Neuerı Bidgeb Verfahr． 1995 Feb． 162 （6）：112－9
21．Krug B，et al．Diagnostic performatice of digital subtracrion ang．ography（DSA）and magnetic rewonarice anglography （MRA）：preliminary results in vaselar ocelusjve disense of the abdominal and lower－extremty arteries．Eur \int Kerdol． 1995 Jan． 19 （2）：77－85
22．Yamada I，et al．Angiography m vaszulitis Vippon Rinsho． 1994 Nug． 52 （8）：2041－6
23．Zwean M ，et al．DSA with mechatncally injected carbon dioxide．Animal experimental resulu．Rofo Forschr Geb Rontgenstr Neuen Bildgeb Verfahr． 1994 Jul， 161 （1）． 75－80
24．Salaman RA，et al．Intravenous digi－al subtraction anglog－ raphy versus computed tonnography in the assessment of ab－ dominal aortic anturysm．Br J Surg． 1994 May， 81 （5）： 661－3
25．Simonetti G ，et al A double－thind comparative study of the safety and effectry of iomeprol in renal intra－arterial digial subuaction angiography．Fur J Radios． 1994 May， 18 Suppl 1：S73－6

第 4 篇

CHINESE MEDICAL IMAGING

主编 陈炽贤 高元桂

1946年Purcell倁 Bloch 各自独立地发现了核磁共桭现象，此后，将这一现象用于研究分子结构，即核磁共振泛普（Nuclear Magnetic Resonance Spectroscopy，NMRS）。20兰纪 50 至 60 年代，揣典的 Erik Odcblad 研究了红细胸，官颈粘液，子宫肌层，人奶，垂液，齿龌粘膜的质子磁共振特性，1972年 Damacian 提出痛组织T1，T2 驰摽时间长于相应的上常组织。在成像技术方面，1973年 P．C．Lauterbur 研究出 M R I 所需的空四成象方法，也就是利用棒度场（gradient field）获得水模的图像，从而暮定了MRI技术的应尻基础。核磁共振检尞是一种无辐忽的安全检查方法，为防止人们对＂核＂的洖解，沉分别称为磁共振成集（Magnetic Resonance Imaging，MRI）和磁共振波谱 （MRS）。由于MR检查和沴断具备一些突出的优点，自1980年应用于临床后，这一新的医学影像技术发展十分讯速，现已广泛用于包括胸部在内的各系统和器官病变的沴断，MRI的物理学基础，諮冲芧列等比较复杂，技术上的日新月异又需要我们不断地掌可和掌握新的知识。本章将系统抢要地介绍包括一些新技术在内的MRI 基本知识，清读者参看拙萕＂磁共症成像诊断学＂的有关部分，可能会更有帮助。

第1章 磁共振成像的基本原理

第1节 核 磁 共 振

一，核 磁

原子核永恒不息地沿其自身轴旋转，这一物理圲象称原子核自旋（spin）：含有奇数的质子，中子或质子和中子的原子核自㳬们产本磁场，此即核磁：大家知道，环非线图中如果有电流，则在线倦周围出现磁场，此为电俯，质子白旋应相当于正电北在环形线媵中流动；中子内有几个仆，负电㐰相五补尝，中子向旋也柏当于电荷在线圈中流动。如原子核含有的质子和中子均为偶数，则共自旋产生的磁场相互低消。

牛：物组织中含有 ${ }^{1} \mathrm{H}, ~ 1{ }^{13} \mathrm{C}, ~{ }^{19} \mathrm{~F}, ~{ }^{23} \mathrm{Na}, ~{ }^{31} \mathrm{P}$ 等元素。但现今 MRI 研究和使用最多的为 ${ }^{2} \mathrm{HI}$ ，这有两个原因，一是＇ H 为磁化最高的原子核，一是因为它与活体组织原子数量的 $2 / 3$ 。形成 MRI的 1 t 原子大部分位于生物组织的水和脂肪中。 1 ml 水的氛源子为 10^{19} 个 因＇II 只有一个质子，故 ${ }^{1} \mathrm{H}$ 的 MR 图像也称为质了像，MR 文献中末特別汗明者，均指的是生物组织的＇ H 图像，氢在三？个同位素，MR 亚到氢原子图像，也是指 ${ }^{1} \mathrm{H}$图像。

二，氢原子在外加磁场中

氟原子核自㬵在其居围产生磁场，磁场井磁矩 (m) 来表示，有其长度（强度或模数），方位利方向 （图 4－1－1）。

无外加磁场时，质子羘巾的各个质子以低意方向自旋，因栭单位体积内生物组织宏观磁矨 $\mathrm{M}=0$ （｜泈＋1－2A）。如将生物组织费于一个大的外加磁场古（又称主磁场或静磁场，用矢军 B_{3} 表示），则质了磁短方向发生：变化，较多质予磁知顺主磁场 B_{n}方向，而较少质子磁知逆主磁场 B_{11} 方向排列，辰者具有较大的位能。在常温下，顺主磁场做列的质千数月较逆主磁场排列的质子利多，因此，H现与

主磁场力王 $\left(\mathrm{B}_{0}\right)$ 一致的净思规磁炬（或称为宏观磁化矢量） M （图 4－1－2B）。

图 4－1－1 以磁知m衣小核磁倓场酸知化长度，力位外存 （ s ），北（ V ），方何如 IF，负
顺逆主磁场排列的偶极分别为低，高能态，唊种状念的能量差（ $\Delta \mathrm{E}$ ）与施加磁场（ B ）及原子核且旋有炎的因丁成正比：

$$
\Delta \mathrm{E}=h \gamma \mathrm{~B}
$$

γ 对每种原子核为常数，称为磁旋比；h 为 Planck 常数，-j 量子札制的频率能量有关。所有原个核能量差（ AE ）显著小于系统的平均热能量 KT （ K 为 Boltzman 常数，「为 Kelvins 绝对温度），这样，净宏观磁矩 $\mathrm{M} \perp_{\mathrm{j}} \Delta \mathrm{E}$ 及 KT 为

$$
\mathrm{M} \propto \Delta \mathrm{E} / \mathrm{KT}
$$

子处子低能态，即磁化质子多，数值大，甽此，高场强使磁共脤图像和磁共振波谱的伿号强，信㮠比高。

在主磁场自族的质子受扭（力）矩的作用。质一个磁矩沿主磁场 B_{0} 方向作圆周运边，称之为近动或旋进（precession），其过动频率f，叮用 Larnor 公式表示：

$$
f-\frac{r^{r}}{2} \pi \cdot B_{4}
$$

公式说明：原子核磁知旋进频率与主磁场强度
场为 1.0 T 时，旋进频率为 42.5 MIH 。
\qquad

$\mathrm{M}=0$

图4－1－2A 各个质子的m为任意取問（ $\mathrm{M}=0$ ）任意方向的质子群，净磁起（踎观磎化矢导）M 为零

三，核磁共振

在主磁场以 Larmor 频率旋进的质子群，受以闰，样频率的射频脉冲激励时，质子群厷规磁化矢量 M不雨与原来主磁场 B_{0} 平行，M 的分位离开原来的平衡状态的发生变化，此即核磁共振。受激励质子群的宏观磁化失量 M 的变化程度取决于施加射频脉冲的强度和时间。施加的射频脉冲越强，持续的问越长，在脉冲停止时， M 离原平衡状态越远。在 MR 成像中常使用的是 90° ， 180° 和小于 90° 的射频脉冲。前已述及，在主磁场以，磁矩顺主磁场方向的质子处于低能态，而逆主磁场方向处子高能态。从微观上讲，共振即诱发两种质子能念的吅迁，射频脉冲提供的能量为质子两种基本能态之差。

第2节 核 磁 弛 豫

施吅符合 Larmor 频率 90° 射频脉冲，共质子群发生共振，宏观磁化矢量 M以縩㱨运动的形式离开其原来的平衡状态。如用以 B_{0} 为 Z 轴方向的直角坐标系表氶 M ，则 90° 脉冲停止时， M 垂直子主磱场，半行于 XY 平面，此时，纵向磁化矢星 $\mathrm{Mz}=0$ ，而横向磁化矢量 M_{XY} 最大，此时，所有质子儿乎以问样的相位旋进：

受射频脉冲激枍的质子群发生共振，宏观磁化

图 4．1－2B $\quad \mathrm{M}$ 顺 B_{11} 方向示意图在强磁场中，顿 $\mathrm{B}_{6} j_{j}$ 向的 m 比逆 B_{0} 方向的多，诲磁知 M 顺 B_{0} 方们

矢晕 M 离开平衡状态，但脉冲停止后，宏观磁化大量 M 又自发地恢复到原来的平衡状态，这个过程称之为＂核磁弛豫＂。 90° 脉冲结束后， M 本端蝃旋上升逐渐靠向 B_{40} 。当恢复到平衡时，纵向部分 Mz 重新出现，而横向部分 M_{XY} 由大变小，直至消失。在驰豫过程中磁化矢量 M 强度的变化，将分为纵问，横向两个部分，因此，讨论驰豫过程可用两个时间值描还，即纵向驰豫时间（T1）和横向驰豫时间（T2）。

一，纵 向 驰 謤

纵向弛像义称自旋—晶格或 T1 弛像， 90° 脉冲停止后，纵向磁化矢晴要逐渐恢复到原来的平衡状态，测量时间歫射频脉冲终止的时间越长，所测得磁化欠量信号幅度就越大。鉴子弛豫过程表现为－－种指数曲线，TI 值规定为 Mz 达到其最终平衡状态 63% 的时间（图4－1－3）。生物各种组织T1弛豫时间约为 500 ms 左右。由图可看出，对于 T1 弛豫时间长短不同的两种组织， 90° 狽频脉冲届的某时问点（如 TE），T1 阤豫时间短的组织 Mz 大，T1他豫时间长的组织 Mz小。

二，栱 向 阤 像

横向驰豫又称自旋－白旋或 T 2 弛豫， 90° 射频永冲的一个作用是激励质子群使之在同一方位，同

图 4－1－3 纵向驰豫时问

步旋进，并且相位一致（in phase），这时横向磁化矢量 Mxy 值最大。但是射频脉冲停止后，由于磁场的不均匀性及质子－质子间相工作用，质子间的闰步旋进，很快变为导步旋进，旋进方位出同而异，相位由聚合一致变为丧失聚合而正异，磁化矢量相互抵消，称之为去相位（out of phase 或 dephas－ ing ）， M_{xy} 很快由大变小终于到零。由于横向磁化矢量衰减也表现为一种指数曲线，T2 值规定为 M_{x} 衰减到其原来值 37% 的时间（终 4－1－4）。生物各种组织 T2 弛橡时问约为 $30 \sim 100 \mathrm{~ms}$ 。由图可看出，对于 T 2 弛橡时间长短不同的两种组织， 90° 射频脉冲后的某时间点（如 TE），T2 弛豫时间长的组织 Mxy 大，T2 弛豫时间短的组织 Mxy小。

图 4－1．4 横向弛像时间
I2驰的时间䓡的维织较快衰域到原桖问硫矢星的 37%

第3节 空 间 定 位

一，梯 度 碚 场

主磁体可使质子群磁化，出现公观磁化矢量 M，射频脉冲可使质子群出现核磁共振暞驰豫。如

在主磁场中再附加一个线性梯度（gradient，G）磁场，根据 Larmer 定律，坚被检体各部位质子群的旋进频率可因磁场强度不同解有区别，这样就可对被检体某一部位进行MR 成像，因此，MR 空问定位靠的是梯度磁场。

布度磁场有三种，Gz，Gx，Gy 分别代表上下，左在，前店兰个轴向不同的梯度磁场；$/ j$ 法是
战半环形线圈，两个对应线图中的电流向相反分向流动，根据右手定律，线圈电磁场方向与主磁场方向一致的使主磁场强一侧增高，沎对寀侧电磁场方向与主磁场方问相及，使相应侧磁场降低，从洏在 $z, ~ x, ~ y$ 轴上出现线形梯度场。梯度磁场技术近年来非步很大，衣现为梯度场幅度已由原来 $6 \sim$ $10 \mathrm{mT} / \mathrm{m}$ 升至 $20 \sim 25 \mathrm{mT} / \mathrm{m}(10 \mathrm{mT} / \mathrm{m}=1 \mathrm{G} / \mathrm{cm}$ 。 G为gauss， $1 \mathrm{~T}=10,000 \mathrm{G}$ ），上升时间已由约 $1000 \mu \mathrm{~s}$缩短至 180 L 左右。梯度场由零 I 升至最大幅度的的间为切换率，用 $\mathrm{T} \cdot \mathrm{m}^{-1} \cdot \mathrm{~s}^{-1}$ 衣示。MRI 很多新技术的问逝与梯度磁场进步息息柏关。

二，层 面 选 择

以横轴方位（Z）断层为例，于主磁场 P_{x} ，再附加一个梯度磁场 $\left(\mathrm{C}_{2}\right)$ ，则磁场强度为 $\mathrm{B}_{0}+\mathrm{B}_{2}$ ，即从 i到下，磁场强度不局。根楛 Larmor 定律，被检查人体质子群在纵轴上被分割成一个个并列的横向断酧，每个断面均涶直于 G_{2} ，每个断面质子群有不同于其上下层面的旋进频率，如以相应频率的射频脉冲激励，就可在人体纵轴 1－选出横轴位层面。

同理可在矢状方位（X），冠状方位（Y）上选出击面。如闸时在 $2 \sim 3$ 个方问选择梯度磁场并相应调整其大小，则可行任意方位的断层。

三，断层平面信号的编码

为区别断层平面上一个点的信号需在选择层面行二维定位，MRI 用的是频率和相位两个编码方添。

（一）频準编码

以横轴位断层为例，启动 G_{Z} 选出被激励的横轴层面后，再启动 G_{X} 梯度磁场。由于人体 X 轴的各质子群相对位置不同，其所经历的磁场 G_{X} 地不同，磁场强度大处的体元，其共振频率比磁场强度
\qquad －－．．－－

小处的体无丳快，从而达到了按部位在 X 轴 E 䢟行频率（或标读出）编码约 H 的，被激㕹层自发出的为多个频率的混合侣号。若用数学方法（傅耍叶变

换）区分出这一混合信号在频率编础梯度上不同频率位置，则可在 X 轴上分出不同频率质了辟的位置（图4－1－5）。

頻率编码

图 4－1－5 $\quad G_{\mathrm{x}}$ 办向行频率编妱示意图
所仔质个群的倍出为一泿合信号，经傅六叶变换使㹉幅按频系分布

（二）相位编码

在施加 G_{Z} 梯度磁场利 90° 射频脉冲居，人体相应的 XY 平面质子群发牛拱振，紧接着又在 Y轴上施吅相位编码梯度磁场 C_{Y} ，过些时问 $\left(\mathrm{T}_{\theta}\right)$ 产，由于 G_{Y} 的作用，磁场强度较高处的体无旦 j 磁场强度较低处的体元相比，前者旋进经历的过桯比扂者略长一些，如问时钟两个指针走一周均为 360° ，如于零点处两个指针同时起步，经过 T_{0}（相位编码梯度施加的吋问）后，快的指钊在 11 点处，河慢的指针则作： 5 点处，即在 360° 圆周卜两指针的相位不

同。质子群旋进 360° 后，沿着相同的力向行两个以上的周期旋进，这样在 Y 轴上的体远按部位进行了相位编码（图4－1－6）。相位编码的空问周期值取决于编码梯度的场强和时间，编码梯度 停止，所有质子又以问样频率旋进，施加 G_{Y} 造成的相位差别一直被＂记录＂和保持着，如同在 500 m 环形跑道上行万米长跑，各运动员速度不同，表现为不同的相位（跑的圈数及其在跑道上的位置），裁判有记录，不会错。

经过频率和相位编码，在 XY 平面上就可确送

各体无的位惪（图4．17）

B

B $\underset{y}{\text { 4 本排 } \mathrm{y} \text { 楾度 }}$
C

0）

图 4－1－6 C，方向行相位编码小意图

图 4．1－7 - 维MRI 图像的形成
其独特的位置，体元的波橧压侷决定以阶值

第4节 核磁共振信号

一，自由感应衰减

化弛豫过程中，近过测迄横向磁化矢量 M_{x} ，叮得刘核磁共挀信号，涉向磁化失量 M_{ky} 再直并周绕主磁场 B_{6} 以 Larmor 频率旋非：按法狩箱定律，磁矢量 M_{x} 的变化，使环绕在人体周国的接收线圈产牛感应电动势。这个叮以被放大的感间分号即 MR 信号。90度脉冲有，出丁受T1， T2的影响，核磁共振信号以指数曲线門式衰城，栋为向由感应衰減（frec induction decay， FII））。磁共振信乒沿测量只能在兵直于主磁场的 XY 平面进行。由于横叫磁化失量转动， M_{4}指向或背向接收线圈，MR 信号或正或负。在接收线圈中心现厝期性振荡电流，这些振荡电流为正弦波，其幅度随时问出大而小，信号的幅度以指数时线形式哀减，由于质子和项兮 （spin－spin）间的相互作成，向用感应衰减的时间为 T2，倠实际上，由于质了，质子间相市作用以及磁场不均约性的影响，自由感应哀减的时间为 $\Gamma 2$＊，$\Gamma 2$＊显著稫于 $T 2$ 。

二，傅立叶变换

在一个磁坏境中，所府质子并非确切地以同样的共振频率旋进。在一个窄频率带范围内， FID 倌号代长叠吅到一起的正弦振荡伿号，用数学力法（傅立叶变换）可把这一掁幅随时间变化的函数变成振幅按频率分布而变化的函数。即 MR 波谱（图 4－1－8）。 间于振幅变化的起始值取决于横问磁矩，而该磁矩又取决于特定组织体元中受激励原子核数，受騉的朳同化合物中自旋，自旋作用以及磁场不均匀性的影响，在频膟域坐标（：表圲为钟形波，莫宽度与 $\mathrm{T} 2^{\wedge}$ 成反比，即钟形波越宽，T2＂越短，波峰高度（信䒓强度）代表氢原子数量即质子密度 $\mathrm{P}(\mathrm{D})$ 。如质子群为纯水且主磁场又很均匀，则质子群共振频率只有一个，钟形波为 直线。

图 4－1－8 FID 信号经块速傅立叶变换 FFT 转换后成为 NMR 波谱

第5节 与 MR 图像对比有关的因素

MRI 的优点之一是成像参数多，影响图像对比的因素多。本章第二节讨论的 T1，T2 驰豫时间是影响图像对比的两个主要成像参数，佂以后有关章节中，还要讨论 MRI 的其他成像参数或影响图像对比的因素，如侌原子数量，水分子的随机运动 （弥散），液体流动，化学位移，出血，对比剂，脉冲序列等。本节讨论 ${ }^{\text {t }}$ MR 图像对比有关的因素是：磁化率，磁化传递对比，组织取向。

一，喽 化 事

若将含有氢质子的物质置于相对均的的外加磁场中，可诱发较小的局部磁场。几平所有物质与磁场相互影响，原子核的影响对 MR 很重要，但最弱，电子的影响则更大些。物质置于外加磁场中后，能够获得磁矩（或磁化），净感应磁化强度（M）是描述物质磁化强度和方向的物理矢量。表示物质的磁化程度为磁化率（magneric susceptibility），用 Xm 表示，它等于磁化强度 M 与外加磁场 B_{0} 之比，即 $\mathrm{X}_{\mathrm{m}}=\mathrm{M} / \mathrm{H}_{0} 0$ 在实践中，常用每摩尔体积呐物质分子或原子的磁化率 X 摩尔分子表示，即 X 摩尔分子 $=X_{m} / V$ 摩系体积。根据磁化率的特点可将物质分为：（D）抗磁质，绝大多数物质属抗磁质，磁化率为负值，且绝对值很小；（2）顺磁质，外层轨道有不成对电子的离子或原子，在外加磁场 B_{0} 作用

下，大多数磁偶子会沿 B_{0} 方向排列，总体上显示净磁矩，磁化率为正值，但较小，如 $\mathrm{Gd}^{3+}, ~ \mathrm{Fe}^{2+}$ ， $\mathrm{Mn}^{2+}, ~ \mathrm{Dy}^{3+}$ 等属顺磁质；（3）铁磁质，是一群结品犾态的原子或分子，可白发产生磁化区域，称之为磁畴（magnetic domain）。不同磁畴，其磁知分向不同，在没有外加磁场时，烀磁矩为零。在外加磁场 B_{0} 作用下，各磁帱的磁矩将与 B_{0} 方向平行排列，有很高的磁化率；当外加磁场强度为零时，铁磁物质仔保留磁化，称为剩余磁化强度。常见的铁磁质是由铁，钴和 $\mathrm{Fe}_{3} \mathrm{O}_{4}$ 组成，铁氧体磁质与铁磁原相似，多见于尖晶石和石榴石结晶炶构者；（4）超顺磁质，当铁磁质或铁氧体磁质多磁畴结晶粒子体积减少至单一磁畴粒子时，将会产生超顺磁性。在外加磁场 B_{0} 的作用下，单磁畴粒子磁化率与铁磁质或铁氧体磁质一样高，面当 $\mathrm{B}_{0}=0$ 时，超顺磁质由于粒子热运动而自由取向，样品不保留净磁矩。含铁血黄素，超顺磁性氧化铁（SPIO）均为超顺磁质。

含水组织磁化率高，而空气和致密骨的磁化率低。如一个体元內磁化率不同，如空气—组织，骨一组织等界面处，就形成磁场不均匀；此外，人体形状自身（空气围绕水）也使磁场不均匀。这些磁场不均匀，造成去相位，使 $\mathrm{T} 2^{*}$ 信号下降。磁化率效应是 MR 似影的一个原因，但对子葉些病理改变，如出血或钙化，可勾画出病理改变，

二，磁化传遇对比

组织中有些水活动白如，称为自由水（质子），所处的周围环境为自由池；组织中另有些水，如被

束缚于人的非活动性蛋白质分子或细胞膜等处的水，其活动受限，称为受束缚水（㶪了），其沽国环境为受束缚池。人体很多组织既含有自山水，义含有受束缚水。自由水项子群其T2长，共振频橧㞣，MR樯示打信号，为＂㞴见＂贡子群；受束缚水其 T 2 很短 $(<0.1 \mathrm{~ms})$ ，共振频䜤莬，用仟何回波时间（TE）均不能显示川信号，MR 不敏感，为 MR＂看不到＂的质子群，或称＂隐藏水＂。在组织中两池之间磁化持续交换，如采用一个远离白由水中心共振频率（＞1 KHz ）的偏共振射频（磁化传递）脉冲激励，受束缚池饱和，降低的磁化可传递给自由池，使自由池质子磁化也下降，这种效必称做磁化传递对比（magnetic transfer contrast，MTC） （㹣 4－1－9）。

图 4－1－9 磁化传递示意图
较长T2的自由质子群和短 T2 受缚质子群持统交换磁化（十图），施力一个偏共振 M 「 䟿冲（下图左黑吉条）使受本㭪池湝和，由丁两池間交换磁化，自由池切变为饱和

组织所含受术缚水量不同，触加MT脉䦿旨其效应意义过不同，常用磁化传递率（Ms／ M_{u} ）表示，Ms $/ \mathrm{M}_{4}$ 大者，MT 效舀小； $\mathrm{Ms} / \mathrm{M}_{0}$ 小者，其效至大：脑，肌肉 MT 效应大，脑肯液，尿，血液等 MT 效㢄小，因为 MT 效应头际上附加于 T1弛豫过程，讨此 MT 永冲对短 T1 的组恒（如脂肪， （ Cd －L）TPA 增强的组织）效需小。

MT脉冲类似丁抑制脂肪的选择性化学位移脉计序列，佃所用偏共㧚频率较大，有较多的射频能量沉积，使用1．5T以上场强，打描范围大，如使用体部线卷时豆慎重。

MY脉冲序列可降低背景组织信号强度，而对于血液，Gd－DTPA 增强组织的信号强度影响较小。使感兴趣区一j肯景组织对比增弜，用于顾脑磁共掁血管造影可显示细小血管。（Gd－T）TPA增强居，一般序列显示不川小的转移疾或多发性硬化斑块等，用 MT 序列可望掣示。

三，组 织 取 向

组织山主磁场所形成的角度对 MR 图像的信号强度可有雪著的影响，主要有两个：水分子弥散运动使 MR 信号减弱和 T2 对角度的依赖，前者将在 MR 功能成像弥散加权像讨论。 T 2 随角度改变即＂魔角＂（mag：c angle）效应。两质子问偶极子相页作利形成的磁波动是 12 驰像的原因，特别足肌腱，炐带，软骨等纤维组织结构与主磁场（ Bo ）形成 55° 角时，偶极于间的相互作用消失，T2 驰豫时间增长：出于T2 长，这部分组织结构俭号高；而 1：述结构与主磁场版度的其他角度，则无＂魔角＂效啇。这种＂魔角＂效应，不要误为病变。
（高元桂 邱本胜）

第2章 脉 冲 序 列

为使磁共振固有成像参数及影响图像对比的有关因䒺巧妙，有机地结合，得到定好的组织对比和信嘆比的 MR 图像，需选用合适的脉冲序列。脉冲序列是 MR 扵萮仪䚲成图像的时序指令，它包括射频脉冲，祶度场及数据采集时间等的设置，近十斥来，脉冲序列投术飞速发展，使 MR 成像速度显著加快，开拓了很多新的诊断领域，本章将介绍各种脉冲序列及其基础理论知识。

第1节 自旋回波脉冲芧列

一，基 本 理 论

自旋四波（spin echo，SE）序列是MR抽描最基木的脉冲序列，为其他各种脉冲序列的金标准 C 其脉冲时宁（图 4－2－1）是，先发射一个 90° 射频脉冲，间隔数至数 •毫秒（以 Ti 衣示），再发射一个 180°射频脉冲， 180° 脉冲尼 $10 \sim 100$ 多 ms ，测量四波信号的强度。 90° 脉冲至测量荎波的时问称回波时间（echo time，TE）， $\mathrm{TE}=2 \mathrm{Ti}, 180$ 脉冲至下一个 90° 脉冲之问的时间为 T ，，重复这一过程，两个 90° 脉冲之閉的时间为重复时间（repetition time， TR）；

图4－2－1 自旋呵波脉冲序列
白旋回波咏冲序列为 90° 脉冲后，问隔时间（ T_{1} ），苒发射 180° 脉冲
第…个 90° 射频脉冲使纵向磁化矢量 M 转到 xy 平面，此瞬间所有质了在同－－方向同步旋进，相位一致（in phase），使宏观磁化矢量 Mxy 最大，但由于磁场的不抣匀性，构成 Mxy 的质子群经受着或

强或的的磁波动，出现质子问旋进频凉快惯的差异， 90° 脉冲后同步旋逃的质子碚很快由闰步变为异步，枯位由 钽变为分散，即去相位（dephasing），Mxy由大变小，最终到零。 180° 射频脉冲使相位离散的质子群绕 x 轴转 $180^{\circ}, 180^{\circ}$ 脉冲后质子群离散的相位又以原速交趋向－致，称为相位重聚（rephasing）， Mxy 由零又逐渐炏复到接近 90° 永冲后的幅度，在 TE 时间，田波达到最大值。如果 90° 脉冲遊 Mxy 的分散（土枯位）仅出磁场不均匀所品起，则同波幅度应䟓原信号－样，但由于热运动质子—质子间相五作用，相位马不 致，使磁知量 Mxy 强（に）度减弱，因此，回波幅度低于原信号，两信号的幅度差反映了受检组织 T2 的影响（图4－2－2）。

白旋四波脉冲序列的表述为：［90＇—Ti－ $\left.180^{\circ}-1^{\prime \prime}\right] . \mathrm{TR}=\mathrm{T}^{\circ}+\mathrm{T}$ ，，决定图像亮度的各问波幅度代仅与受检组织的特殊参数，即 T1，T2 或质子密度有关，而且与操作者选择的参数TR，TE有关。

磁共振成像与 CT 都是人体剖面的数宁图像，所不同的是 MR 为多参数成像，每一个体旧的亮度灰阶值与T1，T2，质子密度以及流动液体等参数有关，向 CT 仪与组织的 X 线衰减有 天，无此， MRI 较 CT 可获得更多的信息。人体不同组织，不论它们是正常的还是异常的，有它们各自的 T1，T2 及质子密度值，这是MR区分止常与异常以及诊断疾病的基础。人们通迉调节 TR，TE，可得到突具某个组织参数的倐像。这种图像被称为加权像（weighted image，WI）．，我们把分别主要反映组织 T1，T2 弛豫时问和氢原子数量的图像，相应称做T1，T2 及 P （D）WI，

二，质子密度 P（D）加权像

如选用比受检组织 T1 显著长的 TR（1500－ 2500 ms ），那么质子群磁化率在下一人周期的 90°脉冲到来时已全部得到恢复，这时回波信号幅度与组织T1 无关，而与质子密度和 T2 有关。如再选

用比受检组织 T2 呵显短的 TE（15 25rns），则则波信号滆度与受检组织氧拣子数量有关（约 4－23），这种泈像被称为 P （ D$) \mathrm{WI}$ 。由于多数牛：物组织氛
以有的文献将 $\mathrm{P}(\mathrm{D}) \mathrm{WI}$ 又称为轻沒 T 2 加权像

三，T2 加权像

如选用比组织㫫滨长的 TR（ $1500 \cdot 2500 \mathrm{~m}=$ ），又选城与生物组织 T2 相似的的闭为 lE（ 90 － 120 ms ），则两个不同 T2 组织的信号强度差别明显， TE 哉长。这种差别越鼠著此期T2WI（图4－23）

在实际工作中，采用双回波法，TR1500～ 2500 ms ，TE $15 \sim 25 \mathrm{~ms}, ~ 90 \sim 120 \mathrm{~ms}$ ，可分别获得 P（D）WI，T2WI。

四，T1 加 权 像

如把 TR 定为 500 ms 左石，则 90° 脉冲后 500 ms 时，长 T 1 的组织能量丢失少，纵向磁矢量 (Mz) 恢复的幅度低，下一个 90° 脉冲时吸收的能量少，其 FID 幅度低，回波的幅度也低；相反，短 T1 的组织能量大部丢失，纵向磁化矢量 Mz 接近完全恢复，幅度高，下一个 90° 脉冲将吸收大部分能量，FID 幅度高，回波幅度也高，信号强（图4－ 2－4）。在 T2 加权像的讨论中曾提到，TE 越长， T 2 对信号的影响越大；如选用 $15 \sim 25 \mathrm{~ms}$ 短的 TE，T2 对信号的影响可以忽略，对信号影响的主要为质子密度和 T1，因为选用 500 ms 左右的短 TR，回波信号反映的是组织不耑 T1 信号强度的差别，即T1WI。

图 4－2－4 TR 为 500 ms 时， T 1 短（脂肪），
中（脑），长（肌肉）的 FID
T1短的组织近乎完全 T 1 弛橡，必然吸收较多的能虽，有大的 FID 曲钱，图像完，白；中等 T1 组织，FID 幽线较小：长 T 1 组织驰橡最少，图像暗，黑

五，信号强度与相关参数的公式

SE 序列图像亮度与相关参数的公式吝下
$\mathrm{I}=\mathrm{KP}$（ D$) \mathrm{f}(\mathrm{V}) \exp (-\mathrm{TE} / \mathrm{T} 2)[1-\exp (-\mathrm{TR} / \mathrm{T} 1)]$式中：I：信号强度，即图像亮度；K：为常数； $P(D): ~$ 扫描层内质子密度，质子越多，信号越强；反之亦然；$f(V)$ ：扫描层内流动质子的函数（如血液，脑脊液等）。对于 SE 序列，流动液体可表现为

低信号或无信号（流空效应），或表现为高信号（流人性增强，偶回波等）；T1：T1 越短，信号越强； T1 越长，信号越弱；T2：T2 越长，信号越强； T2 越短，信号越弱；TR：两个 90° 脉冲周期的重复时间；TE： 90° 脉冲到采样之间的回波时间。

由公式得知，当 $T R \gg T 1$ 时，I 与 $T 1$ 无关，即为 T2WI 或 P （D）WI 当 $T E \ll T 2$ 时，I 与 $T 2$无关，而与 T 1 和氢原子数有关，即为 T 1 或 P （ D$)$ $W I$ 。当 $\mathrm{TR} \gg \mathrm{T} 1$ ， $\mathrm{TE} \ll \mathrm{T} 2$ ，两者同时得到满足时， I 与 $\mathrm{T} 1, ~ \mathrm{~T} 2$ 元关，而为 P （ D$) \mathrm{WI}$ 。

综上所述，长 TR，长TE 为T2WI；长TR，短 TE 为 P （D）WI；短TR，短 TE 为T1WI。固定 TE，变换TR，图像各点信号强度的变化取决于 T1，因此，可用 TE 固定，TR 变化的两个以 F 脉冲序列测量 T1值。如固定TR，变换TE，恩像各点亮度的变化取决于 T 2 ，可用 TR 固定， TE 变换的两个以上脉冲序列，测量 T2 值。自旋回波序列，重复时间 TR，回波时间 TE 与各种加权像的关系如表4－2－1。各种加权像作者们采用的TR， TE 如表4－2－2。

表 4－2－1 SE 序列时 TR，TE 与各种加权像的关系

$\text { ㄴ, } \quad \text {, }, ~ \text {, } \text {, }$	Yi Ms	WYMY
210以！	$2006-800$	15－36
T2WI	$1509-2500$	60－150
P（D）WI	1500－－2500	15－30

第2节 反转恢复脉冲序列

反转恢复（inversion recovery IR）䁬名思义，是用 180° 射频脉冲使㝐观磁化矢量反转， Mz 由正向转为负向。脉冲结束后，质子群驰豫． Mz 逐渐由最大负值，经零达最大正值。同样牠，驰豫表现为指数曲线。

反转恢复与自旋回波序列结合，则为反转恢复 （IR）脉冲序列，其程序为 180° 脉冲后，经反转时

间（inversion t：me TI），再给一个 90° 脉冲： 90° 脉冲后（TE／2），迅速手施加一个使相位重聚的 180° 脉冲， 90° 脉冲至采样的时间为 IE，两个反转磁欠量的 180° 㶹冲的间隔时间为 TR，$I R$ 序列表述为 － $\left.180^{\circ}-\mathrm{TI}-90^{\circ} — \mathrm{TE} / 2-180^{\circ}-\mathrm{TE} / 2\right]$ 。 IR 序列帄显著地突出组织的T1对比，及转磁矢量的 180°椓冲为其后的 SE 序列作磁化准备。使用两个代同 TR 值的 IR 序列可测量 T1值。

短间隔时间）又转恢复（short TI memwion recov－ ery，STIR）序列，对于服睅，孚房，下腹部及骨㵦等段质较多的部位行 T1WI检查，强的脂肪侣号不利于病变虽示，适当的选择反转时间（TI），使脂肪信号为零，这样短 T1 的组织无信步而邻近长 TI 组织虽为负值，但信号高。

第3节 K－空间与 MR 成像速度

MR具有其他影像技术无叮比拟的突出优点，但成像速度慢，检查时间长是最突出的缺点，近来各种快速 MR 成像技术进展神速，使人眼花缭乱。为了学之和运用这些新技术，需了解与 K－space （K－空間）有关的基础知娱。

一，K－空间

（一）K－空间的定义 在形成图像前，空间编码的结果是提供充填 K －空间的信息。为形成一帧 MR 图像，K－䆑问必须用数学力法（傅立叶变换）可处理的信息填满（图4－2－5）。K－空间也可定义为：频率编码和相位编码牰交义的原始数据（raw data）。如本章所述的 SE 序列，启动（ Z 梯度场，在横轴位得出 XY会面：在频率（读出）梯度场（Gx肩动的情况下，広动 Gy 梯度场，于一个 TR 周期．K－空间允填完一条线，扫描程宁向动重复这一过程，每次重复，频率编码梯度场的幅度和极性保持不变，而相位编码梯度场的幅度和极性却不同，如 Gy 步码为 256 ，可为 128 至 -1 ，然痛由 +1 至 +128 ，全部充满 256 条线（图 4－2－6）。在 MR 成像中，为改善图像的信噪比，可增加扫描平均次数（NEX），这样，MR 成像时间 TA 为：

$$
\mathrm{TA}=\mathrm{TR} \times \mathrm{V}_{v} \times \mathrm{NEX}
$$

以 SE T2WI 为例，如 TR 为 $2 \mathrm{~s}(2000 \mathrm{~ms})$ ，相位步码数（N，为 256,2 次平均，则 TA $=2 \times 256$
$\times 2$ ，助 17 分钟。为实现 MR 快速成像，不外可在缩短 TR，或减少 V_{4} 和 VEX I．作文章。

图 4－2－5 K－空间示意图 K－定问需用形成一岾图像的数据

填满。它也恬频率编䄪轴和相们编酖轴的交叉

第256次TR

图 4－2－6 相位编码梯度场（G，）步码为 256 时 K－空间的充填草规的自旋同波脉冲庁列，每活动一次频率㥵位编码梯度场，得到一纠回被采椾的利殊数据，完成 条践
（二）K－空间与图像对比，信号强度等的关系
如在 MR懆作监炠器观察 K－盆间，具上半和下半是对称的，这是国为相誠维酸梯度场土，下牛的度对称一致，而坆吽相反；同样，K空问琼始资料热表现为叁右对称，虽然频率纳矿梯度场在每个了R均保持一致，但 K 空间叶部信号岗，对于图像对北度的作用也较外同大，因为此刻在中心部有最犬的相位一致（图427），中部低幅度的柏位编抿梯度场，使图像信号耍，们度子分辨率低，这足但为低幅度的梯度场。质子旋生的频率受影响较小，因此，质了群去相们较少，图像信宁高，决定今图像对比分辨力（图4－2－8），仕是低幅度的梯度

场，质子旋进频率受影响较小，质子分辨力低：而作外周部分，高幅度相位僱码梯度场，质子阴相位层大，空间分辨方高（图4－2－9），但是相优学增大，便质子间有更多的去体位，产生的信号低，总之，巾间部位低幅度的相位编砵梯度场信号高，决定图像对比分辨力；liij外同部分高幅度的相仿编码梯度场，决定图像空阳分辨率；两者4相结合，形成具有对比利空间分辨力的图像，但要指出，K空间原始资料不是直接和扫描图像怇对应，因为 K 突间每个部位和图像整体对比和空间分㒕 ノ有关

自旋编程前

步码 64 编码启白旋位異
$\longrightarrow \longrightarrow<$

步码32

步码32编码后白旋位置

图＋－2．9 高幅度的 C_{y} 梯度场决定图像的空间分辨方

问分班力变

二，K－空间在快速成像的应用

以上讨论 S K－空间的常规运用，在某些脉冲序列中，通过减少K－空间相位步码数或改变K－空问采集模式，叮缩短成像时间。

（一）半傅立叶成像

该技术使用略过半数相位步码数（如由－128至 +8 ）的数据，其余要充填的 K－空间步码数及其数据有数学引算代替。由于K－空间 t ：半和下半是对称的，下半可理解为上半的镜面像，用共轭数据来代替，完成K－空间的允填。半傅立叶成像可理解为 0.5 半均，可保持对比分辨率，但由于采样数诚少，图像信噪比下降。

（二）矩形观察野

矩形观察野（rectangular field of view RTFOV）用减少相位步码数缩短采集时间，维持所选择的分

为 256 ，柤位编的梯度最大，昆小愊度值保持一
 F()$^{\prime}$ 是 256 的 半（终 $4-210$ ），两者空间分辨力相问，但时了采样娍少，层老的成像时间和信噪比什别为前者的 50% 和 40% ，选閉矩形矩阵时，解
向。

（三）钥孔成像

铎孔成像用丁迠影域关号运动的幼态观察。
个夢位需安连续数次成像的情况下。为缩智成像则间，K－空间条条线作为参药冬像，外誠幅度穹的相方步码线使图像有好的空间分辨力，语射对比剂参，制幅度低的相位步码快速连续扫描，将巾部为对比分礕率和外周穹空间分辨力相结合。就山車建出动态图像（图 4－2－11）。

（四）螵旋扫描

［豖＋2－10 秆形观察野与正々形观察野的比较

在橴旋扵描中，肉个梯度场交义振荡兴生撚旋

快，通合于心肳等的快速成像，此外，计于橴颉轧

陵效果，在 MRA具有优势：然而，螺旋扵描不静
显著的模糊，这里，运动佒影将以振玲力式监小肉此，撚旋打揣还需要吏进…步地研究。

（五）幅向扫描

心乘集而来，这些数据对政进洛像的信噪比和义：让变有好处。低足导致空问分辨率的下降：这种奴术对运动和伯流不敏感，呵时，其在较小 TF，这起因为这种打描应法需要较少的相位编矽数 事实

图＋21］钊扎或像还拽

上，这种技术是一种投射重建技术，它需要较长的计算的间和较高运算速度的计算机。

图 4－2－12 螺旋轨迹频率和柏位编码两个梯度均出联振荡，形戍䗋旋轨迹

第4节 梯度回波脉冲序列

一，梯度回波脉冲序列的机制

梯度回波（gradient recalled echo GRE）脉冲接列使用 $<90^{\circ}$ 的射频脉冲激励，纵问磁化矢量可快速恢复到原来的平衡状态（图4－2－13），使重复时间 TR 明昆缩短：施加梯度磁场后造成质子群旋进频率的互异，很快丧失相位的一致，MR 信号逐渐消失，如再施加一个强度一样，时间相同，方向相反的梯度磁场，可使分散的相位因重聚而趋一致，原 ப消头的MR信号义复出现，在回波达到最高值时奀样。用一个方向相反的梯度磁场代替 SE 序列使相位重聚的 180° 脉冲产生回波将之称为 GRE（图

图 4－2．13 30° 脉冲后的纵，横向磁矢量 30° 脉冲 $5 \mathrm{rc}, \mathrm{Mxy}$ 相当于 90° 脉冲原的 50% 。

而 M_{2} 为平衡状态的 87%

4－2－14），用梯度磁场诱发去相位有两点值得注意，一是沿 $X, ~ Y, ~ Z$ 轴的去相位彼此独立；二是具有相位的记忆吽，再施加使相位一致的梯度磁场可使原梯度磁场诱发的相立离散再聚合。GRE的主要优点是成像时间短又有较高的信噪比，与 SE 序列相比，射频脉冲引起的能量沉积叮减少 5 倍，对被检者更有利。

图4－2－14 梯度回波脉冲序列原埋
启动一定幅度的频率编码梯度场，于启动期间（ τ ）质子群进行性去相位，再启动幅度相同，方向相反的频率编码梯度场，于 2τ时质子群离散的相位又因重聚，而趋向一致，出现回波

二，基本的梯度回波脉冲序列

基本的 GRE 脉冲序列有扰相位和稳定进动脉冲序列。GRE 脉冲序列使用的 TR 较短，每一次小角度脉冲激励采样后，仍保留相当的横向磁化矢量，在下一个脉冲激励前，在层面选择方向施加扰相位梯度场或用扰相位的射频脉冲，去除横向磁化矢量：这样，每次 RF 脉冲激励前，横向磁化矢量均去相位，可阻止 T 2 ＊稳定状态蓄积，仅纵向磁化矢量达到稳定状态，这种稳定状态信号取决于 T1，可获得 T1 加权对比的图像（图 4－2－15）。这种

A

B

C

图 4－2－15 扰相位 GRE 脉冲序列
A．RF 脉冲使磁化矢虫倾倒：B．磁化矢量分解为纵（垂直），横（水平）两部分，并为资料采集期；C．示 T1 饭复，纵向磁化矢量生长，相位离散（I＇2）进展使横向部分衰减，D．示意在下一个个獥故（E）前，施加扰相位脉䦿，除掉任们横向磁化

GRE 序列各厂家的各称不同，如 FLASH，SPGR等。SE序列T2WI 反映的主要是组织T2的不同，对于（GRE 脉冲序列，山波幅度降低医映的是磁场代均匀及 T2 所引起的去相位，这种综合作用所引起的信号減弱称做 $\mathrm{I} 2^{*}$ ， I 2＊显著短于 T 2 ，

稳定进动脉冲宁列，广家称为FISP，GRASS

等。该序列整个成像梯度的净效果在各个 TR 周期是怕突的，纵，横向嗞化长量均达到稳定状态并形成稳䈕的伿号：这个序列的结构使每个周期开始前横向柆化大量均不为零（图4－2－16），如所用 TR 比战像组织 T 2 短，稳定状态成分 M_{x} ，常较人，增加了图像对比中 T2 ${ }^{*}$ 的作用成分。

A

B

图 4－2－16 稳定状态 GRE 脉冲手列

对比增强（GRE 序列，备厂家名妳代－，如 PSIF，CE－FFE 等，其特点是第一个射频脉冲产生回波，与稳定进动 GRE相比，足 IE 接近两个 TR，为重T2＊WI 其优点是该序列作 MR 胆管造影时，扩张的胆管表现为高信号；但缺点是对运动敏感，血流表现为低侱号：

稳定进动双回波（double echo in the steady statc DESS），该序列合并了SF 店列 FID 吅波及 PSIF序列的射频四波，可得出出信号的真头 T2WI

三，快速梯度回波脉冲序列

（一）快速梯度回波脉冲序列的技术及问题

在使用快速扰相位及稳定进动 GRE 序列的，显著缩短 TR 和 TE（如 $<10 \mathrm{~m}$ ），增加接收策宽，可缩短频率编码启动时问，如过 +16 kHz 增为 + 32 kHz ，可使启动时间由 8 ms 降至 4 ms ，由于 TR ， TE 的缩短，成像吋间也相应缩短，成像速度较快，但缺点是信噪比减少 40% 。然向间，为观察对比剂初期增强，憋气行多层陌多时相或单云面多时相扫描，或者了解关节的运动情况等，成像速度有时比信噪比近重要：当然，使用 $2 \cdots 4$ 个衣泊线圈相连的相控阵表面线圈。问提高信嗓比。在同样磁场下，一个体元内水和脂肪的诨原了存不间的共振

频率。在 1.5 T 场强下，水正脂质氢原了共振频率差为 $220 \mathrm{H} \%$ ，如同钟表的时针和分针，如在回波采样时两个夫量相位一攻，信号则强；两个矢量相位不－一攺时，佮号则积。在1．5T场强下，两者间隔的时间为 $2.1-2.3 \mathrm{~ms}$（图4－2－17）。终像上在脂肪

图4－2－17 相位变化对体几
信告的影响
快速梯变以波仙开稫［E゙时，1．5］
和分离间票约2．1－2．3ms

兑去大

（二）多时相，多层面快速 CRE 疗列

影 延长TR，加大倾例角，叮提嵒 SNR 和（＂，VR，

角

（三）磁化准备快速（；RF 序列

矛次像对比，可先行磁化准备，如挂 180° 射频脉

 IF）磁化准备；又如肋90＂射頻昹冲，使 Ma倾倒到 XY半西，Mxy材相位分散油人逐渐到察。用 180° RF 优相倍重聚，产 $4-个$ 个较人的 $\mathrm{NI}_{\mathrm{x}} \mathrm{y}$ ，再施加

 11． $1 .+2,-2,+3, ~ 3$ 等，然仿行外成高㠺度相位步码声丁描

（四）分段快速 GRE

该畐列为㥵位少码采样时分组或分段，如相们少的数为128，分作 4 组（段）采样，等段 32 条线；

的法动伪影，使其边缘锐利，

第 5 卢 快速白旋叫波脉冲序列

快速（sRE，子列产生：的对比除TI，T2，员一千综度和流动效悩外，还包括不同倾倒角对抱和 T2 等的效应。这此对比效应使矤生们有些不适市，天家迆足偏爱反映 MR 成像参数特点的究规故作波序列。

常规SE 序列， 90° 脉冲有 1 ，叮连续施加 2 ＋个 180° 脉冲（产升：2－4个回波）。以四凹波为例，TE 可为 $15,30, ~ 60, ~ 90 \mathrm{~m}$ ，（多回波，茤公泊或可变回波，考会面），乍等个 TR 泃期，需在 4 个K－空用叶各完成一条幅值相閉的相位步码线（终 42 18），如 TR 为 2000 ms ，相位步的为 256 ，1 次平均，则 TA $=2 \times 256 \wedge 1=8$ 分 53秒，如 4 个回波用不同幅度值的相们步码在个 K 空间完成 4 条线（图4－2－19），其他参数们变， $256 / 4=64$ ，则 $\mathrm{TA}=2 \times 64 \times 12$ 分 1.3 秒。成像时间缩知 4 倍，此即 FSE，对于 FSE：学列，

图4－2－18 常规 SF：永冲序列4 回波K空间充填
度场绊码数决定 TK 的而复次数
90^{5} 眿冲左，听有 $2-64$ 个问波采样，止波数 H称同波链长（echorain length ETL），各屾波之间的时问标为回波问弥（echo space），FSE 序列有时间不同的劲个回波，如前所述K空问中部线信号高，决定图像对比分敃力：如操作者将 90 ms 「E 䈯于中部相位步䄪线，则图像对比受构成该四波的T2衰減最之，则有效TE 为 90 ms ，其图像对比与TE 为 90 ms 的常规 SE 相似。FSF还叮行車T2WI，是其主要肬点。如有效TE为 15－25ms，FSE 也可得到P（D）WI．但短TF吋。T2 衰减剧倠，图像模糊，加上受其他长向波采样的影响，P（D）WI 有较多 T2 影响，如脑脊液信号较空；而常规 SE P（D）WI 脑胙液为低信告；此外，脂肪信号奌，射频能量沉积较大，亦为 FSE 的一－个缺点，

图 4－2－19 FSE 4 个回波链K－空间充槙 FSE：用 4 个幅度俏似同的相位编吗镇度场各产生一个回波，K空间每次充 4 条线，收像时间墔短 4 倍

半傅立叶单次激发快速的旋回波（half－F curier single shot turbo spin echo IIASTE）或单次激发快速的旋回波（single shot fast spin echo SSFSE）为一次 $90^{\circ} \mathrm{RF}$ 激放后，连续有 $128-600$ 个 180° 重藂焦龱波。只需 K－空间步码数略过半数，用半傅立叶变换成像，可在 1 秒肉形成 TF 为 $200-600 \mathrm{~ms}$ 约重 T2WI 该序列可用下胆道，渎管，泌尿系统及脊髓成像。

第6节 快速梯度自旋回波脉冲序列

FSE 用数个 180° 重聚焦脉冲，济生回波，然而。每个 $180^{\circ} \mathrm{RF}$ 有限定时间，约 $3-5 \mathrm{~ms}$ ，且 5 AR 较集中，如问波时间过短，特別是用体线圈，SAR可能超量；如用梯度磁场正，负极吽反转，任卜述 FSE \boldsymbol{r}^{2} 生回波的前居，再条添加一梯度回波，即快速梯度门觓叮波：将 ESE 以波线置于K．空间中部，而将梯度回波线置十K－空间外围，这样图像既有 FSE的对比，又有快的战像速度，还可避免 SAR过量，但由于 $\mathrm{T} 2 *$ 的作用，对磁化率利化学位移更敏感。

第7节 回波平面成像脉冲序列

団波平侐成像（echo planar imaging EPI）为 1977 年 Mansficld 所提出，为现今临床应用技快的 MR 成像力法。激煘脉冲可为 $90^{\circ}, ~ 180^{\circ} \mathrm{RF}$ 或为小角度激励的 RF ，也句为区转恢复 RF ，分别称为 SE－EPI，GRE－EPI，IR－EPI，RF 激励㞕（泈4－2－ 20），在一个1R周期内读出梯度（频率方向）以正，负振幅快速桭荡，形成一个梯度回波链，每个四波在相位维码力向上由＂闪现＂的相位梯度分别行相位编码，频率方向 I 的梯度场每次振荡，不论止负，对应于 K－空间的一条线；从一条线向另一条线过渡时，为条个＂闪现＂的报立编码。除肉现编码方法外，也叮用连续的相位编码。采样从 K－空间左 f ：角起始，如箭头所示，来问扫到左下终止

单次激发（single shot 或 snapshot）EPI 产牛一帧高质量 MR 图像，必须在 $50 \sim 80 \mathrm{~mm}$ 内完成一个可波链，由单个回波链收案全部相位编础，形成一帧图像。如收集相位步码数为 128 的图像，读H梯度则必须振荡 128 次。

多次激发（multipe shot）EPI 在一个 TR 周期。比能完成全部 K－空间数楛的采集，如只能完贱 8条线采集（即 8 个回波），此时，若相位步码为 128 ，则充填全部 K －空问需激发 16 次（128（相位步码）$/ 8$（回波数）$=16$ ，亦即 16 个 TR 洁期．或 16次激发），同样地，知道相位步码数，又知道激发次数，相位步码数／激发数＝回波数。即每个 TR

周期．K－空间充填线数。
在 EPI 图像中。可出现－些伪影，主要的有：

图像模糊；（2）该序列对磁化率敏感，使磁场不均匀，偏共振效后（off resonarce cffects）使图像扭曲，变形：两种伙影均见于相位编码方向。

（B）

图4－2－20 单次激发 SE－EPI 脉冲疗列

为抑制或减轻这些伪影。要了解大产生的机制。了解其对MR装备和成像技术 1 ：的要求。假走所朋 MR 装备磁场是枃打的，观察野（FOV）内磁化率也相万。一致，这样，MR 信号衷减完全取决于 12 。这种哀减在枟位编码厅河使图像边缘伸出或各个点被抹掉，从陑使终像模糊，各个点伸出的范围为点扩散系数（point spread function，PSF）。为减轻这种作用，PSF 必须小于一个像元宽。为满足这个要求，单次激发 EPI 间波链时間T 应小于 $\pi \mathrm{T} 2 / 2$ ，如 $\Gamma 2$ 为 $60 \mathrm{~ms}, ~ \pi \Gamma 2 / 2=94 \mathrm{mss}$ ，该相位步码数为 128 ，定义两个读出棣度脉冲中部之间的时所为回波问隙（echo space ESP），则 ESP 应 $\leqslant 700 \mu \mathrm{~s}$ $(94 \mathrm{~nm} \div 128=700 \mu \mathrm{~s})$ 。衡量图像质量的分一个重要指标是空间分辨力，EPI 空菂分赤力取决于读出

碰度辩叹的面积；决定瓣叶面积的为梯度场幅度，面积越大，空间分辨引越高；为使 ESP 缩短，对梯度场切换率（Slew rate）有一定的要求。为避免卷褶伪影，减轻几何畸变，须有足够大的接收 RF 带宽。设 $\mathrm{ESP} \leqslant 700 \mu \mathrm{~s}$ ，空间分辨力为 3 mm ，梯度场湢度 $22 \mathrm{mT} / \mathrm{m}$ ，切换率 $65 \mathrm{~T} / \mathrm{m} / \mathrm{s}$ ，最大接收 RF 带宽 375 kHz 。

荷磁场显著不均匀或在不同磁化率的界面（如组织一个界面），EPI 的偏共振效应可出现严重的化学位移或几何畸形。常规和快速自旋回波脉冲序列，使用 180° 再聚焦脉冲可纠正这种伪影；而 EPI必使用 180° 脉冲，无法去除这种偏共振效应。读出梯度启动时，偏共振的原子群积累，增加相位移动，错误的相位移动与用于成像的相位编码无法区

别，积累得越来越多相位错误的原子羘，在图像上被置于锴误的位罢，如头滴皮下脂肋，因化学位移，在相位编码方向，位䁌错误可达观察野的 $1 / 4$ 。为纠正脂肪原了群的偏共振效应，EPI 字列㙂应用脂肪抑制技术。 L_{j} 脂朌相比，水原子群的偏共振效应更难纠正，在颎底部，垴组织，号质，鼻窦气休等不问磁化率的组织处造成磁场不均氺，国此，靠近颅底部位，在相位㻢码方向，EPI 图像有严重内几何畸形。几何畸形的程度仅取决于读出梯度的 ESP，ESP 越小，儿何渏形越轻。为減轻这种伙影，单次激发EPI读出梯度须进一步缩短 5 SP ，但由于周围神经刺激閾值的限㑬，月前难以实现。缩知回波链的另一个方法为采用多次激发 EPI，此外，改变相位编码方向，如颅脑 MR 扫描时，将相位编码方向由左左改为前后，也可减轻这种伪影。

EPI 的透疾证与特点：1，由于 EPI 检查速度显著快于 FSE及 FGRE，对于儿童，老人，危重

不能合作的病人，可行顾脑，脊髓等的T2WI的快速筛选检查，2，慗气 $(12 s-14 s)$ 行胸，腹部器官的 T 2 检查。3，作意选洋 T 2 或 12 ＊对比，SE－ EPI T2WI 的图像对比与SE序列相似，而 GRE－ EPI 为 T $2 *$ WI＝4，不用 180° 重聚焦脉冲，对检東组织的能量沉积小，5，叮行 BOLD，perfusion， diffusion 等的功能成像。

EPI 的安全性：EPI 快速改变的梯度场可在人体诱发快速改变的感应电流，这种电流对人体有潜在的危险，可出圲神经肌肉刺激，在梯度场变化最大的线圈端缘，可出现轻度的抽痹和终痛。颅脑的冠状位或失状位打描，$G z$ 为读出梯度场，上述症状位于躯下或臀肌，而腹部检查时鼻根可受䒺。虽然心胜刺激閾值至少比骨骼肌高 10 倍，较安全，但心率失常或低血钻易诱发抽搐的患者，EPI 检査的安全性仍需要继续研究。
（高元桂 邱本胜）

第3章 质 量 控 制

第1节 质量控制参数

优质的MR图像能矽清晰准确地鼠示解剖和病理结构。提供足够的诊断信息。道让对图像的数据检测分析，可定量的评价图像质量，MRI 属数字影像技术之••，影唽 MR 终像质量的因学多 1复杂，如磁体，表南线圈，梯度磁场等，加之多参数多力位成像的特点，这就使得它不同于共他影像技术。因而，泣该通过调控一些参数达到图像质晕控制的月的。

控制和评价 MRI 图像质旱主要有三种参数：信只噪声比（signai－to－noise ratio S S R），空间分辨力（spatial remolution），冬像对比度及对比噪声比 （contrast－t）－noise ratio）．

一，信号㗚声比

信号噪声比简标信㰒比，是指组织信㝋与随机背景噪点的比值，晌号是指某－感兴骤风内像元的平均值，噪声是指问一感兴趣区等量像元的标准庄。信㖟比恩衡量图像质電的最重要的指标。图像质量的关键取决于信噪比，通常信槑比高的图像质量好，信噪比高的图像表现为图像清晰，轮鄭鲜明，赖粘细微 。人眼的分辨能力有－定限度，信㰒比的增加超过一定彴娍信吋，亚茬增加抽指时间，但不能岄显地改善信唤比；因此，成像肞问病人能接受，叮作诊断用的信噪比越高越任。

信㰒比受诸多内素的影响，当运动伪影被抑制后，场强越高产生的伿噪比越舀；带宽窄的脉冲序列比带宽宽的脉冲序列信噪比高：各种噪声都会使信噪比下降：接收线婘的敏感吽及检柰部位上线圈的距离都会影响信噪比。空间分辨厅增加，信噪比会下降一体元越大俗噪比越亮，两䓃呈止比。提高俗噪比的方法主要是提高信号强度或？和）降低噪占。

二，空间分辨力

空间分辨广是指影像设备系统对细机解剖结构

的显小能ノ，它用可辨的线对（LP）／cm 或最小圆孔直洤（ mm ）数表示，它也是控㑬 MR 图像原虫的主要参数。决定空间分辨力大小除了MR 系统的磁场虽度，梯度磁场等以外，主要有两个因素即体元和信噪上。 在图像平而内像元是由观察野与知阵的比值确定的，体 尤被视为像元的立应，层面厚度代表了像无的应度，也即方方的深度。因此。体元的大小是由 3 个基本的成像参数即层面厚度，观察野和知阵确定的；县陧越险，体元越大，图像越趋于模楜，空间分辨力ト隆酎信墖比升高，观察野越大，像元的面积也增加，空间分辨力越下降，但提高厂信檪比，知阵增大，像元数地增加，像元越小空间分辨引越高，俧信噪比下降，打搭时问延长。所以，当提高图像的空间分辨力时，泈像的信噪比会下降：分辨力叮分为互种：一般空间分辨力大于 1 mm ：呂分辨 ノ 为 $0.5-\mathrm{Imm}$ ；超高分辨力小下 0.5 mm 。所谓高分辩力的图像，选择层厚要在。 3 mm 以下。近期的 MR 系统三维抖描层厚可以薄到 0.1 mm 。

三，图像对比度

MR 图像对比度是指两个柏邻的仆同组织结构信号强度的差异。也即是能够区分最小伿号强度的能少，信宂强度的差异越大，图像对比度越好。组织的对比度叮通过选择脉冲序列和扫描参数加以控制，这些参数是重复时间，可波时问，倾斜角，矩阵，信号平均次数，芸面厚度和定位的方位以及射频脉冲带宽。通过选择适当的扛描参数，可最大限度的突出不可组织的 T1 和 T2 的对比。磁场强度和接收线倦也是影恦图像对比度的因素，操作者应根据磁场強度，每次检查所用接收线圈，及选择扫渵参数。

在考虑对比度时，尤要注意噪声对图像质量的影响，对比䇿声比同样足影响图像质量的重要因素，这是状为信号噪声比与图像对比度密切相关，不考虑噪声是代能评价对比度的，问样对比度的图像，如果重叠在图像I：的噪声们同，图像质量也会

有很大区别。因为对比度仅仅是信号强度的关异：
 נ，图像对比变以及对比幧声比来评定外。还要用信号的均匀度水让定。所以以约度辿思 个质昜控制的评价参数，俭号均纣度不仪受在影像中心部分，而下要在整个观察哩进行检杏测试。在实际 1 ：作中，均匀度通常创括位出均匀度，作噪比均匀度以及对比噪声比的均匀度

第2节 其他成像技术参数

一，漖 励 次 数

激励次数或采集次数代衣各脉神店列相位编码步码数的倍数 增加激励次数可增加泈像估号，提高信噪比，增加激励次数还可使向液，脑奄液流动以及呼吸运动的伪影信号减少。伪影伿号的減少大约等于激励次数的石今栯，例如激励次数从 1 增办
倍。在二维傅立叶变换战像抆术巾，打描时间＝ $\mathrm{TR} \times$ 相位编码步功数 x 激励次数。

二，层 面 厚 度

理想的层皕厚度当然是越溥越好。层向越薄不
倬实际上选择层西區度时应该考塂泎多因素，如 MR 抽描解剖区域的人小，战像组结络构的人小，所选择脉冲序列允许的抖描层数，理想的店噪比和空间分辨力。当感兴趣风的解剖结构较小时，选择罢面的厚度要薄，尼百情度越溥，图像的信噪比越低。由于层岶薄信号弱。所以只能道过增加激励次数束提高信噪比，感兴趣以较人时，叫选择较厚层解厚度。11 加权纣短 TR 限制了打描么数，叮在 T1 加权时增加 TR 值，增驯 TR 值，增加层厚可以提高信噪比和对比噪占比：梯度场幅度，比换率种 RF 脉冲带宽决定某个 MR 系统最溥）层原。

三，层 间 距

理想的MR图像単该是连续元问邗的图像。但实际1：在层面问要留有间昨；其搉山是当射频脉冲激励一个层面时。即使使用计算机优化的 \sin C「射频脉冲山接近产：4，直角断层侧百，但很难调整到

产生完美的直角断去侧面。断层面要 RF 脉冲波形 トケ和ド降波的影响，出现重叠和交义，使树邻压伯边缘要例RF脉冲十扰而产牛：交义对话，使有效 TR小丁确定的 TR ，造成保噪上下降和图像对比
弇合理的层间距：一般为层血唇变的 20%－ 50% ）是減少交义对话的最存效少法。当病变较小设置䦓间距会漏掉微小病变时，保采用尤云问距抿描或用交叉采集方式消除交叉对话，以提高终像的对比度和信噪比

四，观 察 野

观察野（ficld of view，FOV）定义为 帧图像的水半和垂直长度，最小规察哩土要取诀于梯度场的幅度峰值和持续屾问，增玔频率和相住编码梯度场场强可缩小观察業，观察野除以知阵为空问分粼力。使用小观察剘可得出高分辨力图像，似图像的信噪比迅速下降，侶噪比下降正比丁观察野線小的平方。例如观察哩从 24 cm 減少到 12 cm 时，将导致佮噪比減少到 75% ：操作者根据检查解到部位的大小和使用的表面线淃来选择观察野っ小的观察野并周大的矩阵叮清晰的显小゙内录，听神经域疑领关节等微细的解剖结构，胸部，腹部，盆腔等部位用大的观察野，为达到㤩的空间分辨分可用 512 矩阵采样。

操作吕通过选择观察旰，知阵，层厚得到理想的空间分辨力和信噪线的图像。

五，矩 阵

观察野桷定居，矩阵的夫小便决定 「＂像元的大小和空间分转力的高低，知阵越大，像元越小，空间分辨力就越高；但信噪比下降，扫描时间延长：将疑阵 256×256 改为 $128<128$ 时，空间分辨力要減少 50 \％。

图像的知阵伦表沿频率编码和相位编码轴的像元数。在频率编码方问增加像元数，不会增加打描时问；侣在相位编吗方向增加像元数，会增加扫描时问。无论是频率或相们编码都会因像尤的变小向使信噪比下降，选洋 256×128 的矩形矩陏，可保

第3节 伪 影

与其他医学影像技术相比，MRI 是出现伪影最多的一种影像技术。所谓你影是指在磁共振扫描或信息处理过程中，由于某种或几利原因出现了一些人体本身不存在的图潒信息，致使图像质量下降的影像。也称假影或鬼影。MR 出现伪影的原因与其扫描序列以及成像参数多，成像过程复杂有关。由于原因不同，所产生的伪影表现和形状也各异。只有正确了解伪影产生的原因以及各种伪影的图像特征，方能有效地限制，抑制以至消除伙影，提高图像质量。

根据伪影产生的原因，可分为装备伪影，运动伪影和金属异物伪影。

一，殔备为影

装备伪影是指机器设备系统本身产生的伪影。它包括机器主磁场强度，磁场均匀度，软件质量，电子元件，电子线路以及机器的附属设备等所产生的伪影。装备伪影主要取决于生产厂家设计生产的产品质量以及某些人为因索，如机器设备的安装，调试以及扫描参数的选择，相互匹配不当等。与机器设备有关但主要由操作者掌握的各种参数，如 TR，TE，矩阵，观察野等出现偏差，也可出现伪影。

（一）化学位移伪影

化学位移伪影是化学位移所产生的伪影。化学位移的定义及产生的鿌因在本篇第7章第1节已有叙述。磁共振成像是通过施加梯度磁场造成不同部位共振频率的差异，米反映人体组织的不同位置和解剖结构。脂肪质子群比水质于群的共振频率低 $3 \sim 4 \mathrm{ppm}$ ，MR 图像一般以水峰值作为参考频率，因此频率等同于 2 D TOF 图像位置，所以低频率的脂肪质子群在频率编码方向向图像的低梯度场方向移位，而水质子群不发生移位，这种移位在一侧使两种质子群在图像上相互分离而无信号，而另一侧因相互重叠表现为高信号。

在沿含水组织和脂肪组织界面处，出现无信号的黑色和高信号的白色条状或月牙状影像。例如肾和肾周围脂肪之间一侧为黑色，而另一侧为白色的化学位移伪影（图4－3－1）。任何磁共振系统都能产

生化学位移伪影，但高场强比低场强的MR机明显。化学位移伪影易于识别，并且可通过改变相位和频率编码方向加以控制。

图 4－3－1 化学位移伪影：肾脏 SE 序列 T2WI 横轴位，两肾和肾周围脂肪之间左侧为黑色低信号（＊），而右侧为白色高信号 (Δ) 的化学位移伪影

（二）卷褶伪影

被检査的解剖部位的大小超出了观察野范围表明选择规察野过小，观察野范围以外部分的解剖部位的影像移位或卷褶到图像的另一侧去。相位编码方向不同，卷褶伪影的位置也不同。下表所示为扫描方位与梯度场的关系。

表 4－3－1 扫描方位与梯度场的关系

$\text { x } 10$			
機数哖	GZ	6x	Cr^{y}
矢犾倍	\％X	GY	C．2
篗酸倍	（x）	C2	\％

在相位编码方向上，相位移动超出了相位周期，观察野外信号频率高子观察野内信号频率。由于数据采集的间断性，计算机将观察野外高频率信号误认为低频率信号，被置于下゙一张图像的一端，从而在相位编码方向上出现伪影（图4－3－2）。消除卷褶伪影的办法是将被检査部位的最小直径，撰到相位编码方向上或增加观察野范围，便可得到满意的解决。

（三）裁断伪影

截断伪影是指当MR信号发生突然跃迁，傅立叶变换时，在两个环境的界而，如颅骨与脑表面，脂肪与肌肉界面等会产生信号振荡，在频率编码方向上出现的环形黑白条纹。为了抑制或消除伪

图 4－3－2 卷褶伪影
颅脑 SE 序列TI 加权像矢状位，ه愉查部立的大小梚出 FOV 范围，前一层面 FOV 以外部分的图像（ \uparrow ）卷裍到此图像上 1 万下部）

影。帄增加矩阵或在傅立叶变换前对信号滤过来解决，但后者会导致空间分辨力下降。

（四）部分容积效应

当选择的扫描层面较厚或病变较小月，又骑跨于扫描切层之间时，周围高信号组织掩盖小的病变或出现假影，这种现象称为部分容积效应。

目前，MR 是以三维切层，二维成像的，所以图像的基本单位为像元。每一像元再加上层厚即为体元。实际上，任何一个像元的信号强弱都是通过体元内包括的不同组织成分的平均信号强度反映出来的。因此，如果低信号的病变位于高信号的组织中，由于周围组织的影响，病变信号比原有的信号强度高。反之，高信号的病变如果位于低信号的组织中，其病变的信号比病变原有的信号强度低。由此可见，部分容积效应的存在，可能漏掉小的病变或产生假象。这种假象在 B 超或 CT 扫描时也常見到。

部分容积效应可以通过选用薄层扫描或改变选层位置得以消除。减薄层厚而不是减小观察野是克服部分容积效应的有效方法。在可疑是部分效应容积原因造成的病灶边缘作垂直方向定位扫描，也可消除部分容积效应造成的假象。

（五）交叉对称信号伪影

交叉对称信号伪影也是一种设备伪影。常出现于自旋回波脉冲序列T2 加权像或质子密度加权像，主要因磁场的不均匀性引起，表现为图像在对角线方向呈对称性低信号（图4－3－3）。因为 T2 加权

像对磁场的不均匀性，反应特别敏感，如卜午刚开机易发生这种伪影，随着开机的问的延长，磁体内匀场线圈逐渐恢复，随着磁休均匀度的提高此类伪影即可消除：

图 4－3－3 交 叉对称信号伪影：颅脑 SEP（D）WI 横轴位，所示对角线方向呈对称忖低信号

二，运 动 伪 影

运动伪影包括人体生理性运动和自主性运动所产生的伪影。

（一）生理性运动伪影

生理性运动伪影是指因 MR 成像时间较长，在 MR 成像时间内心脏收缩，大血管搏动，呼吸运动，血流以及脑脊液流动等司起的伿影，是降低 MR 图像质量最常见的原因。生理性运动伪影是生理性周期性运动的频率和相位编码频率一致，叠加的信号在傅立叶变换时使数据发生空间错位，导致在相位编码方向上产生间断的条形或半弧形阴影。这种伪影与运动方向无关，而影像的模糊程度取决于运动频率，运动幅度，重复时间和激励次数。

心脏收缩，大血管搏动伪影可采用心电门控加以控制，其机制主要是道过心电图的 R 波控制扫描系统，从而狭得心动周期不同阶段的心脏影像，使心淚收缩，大血管搏动所产生的伪影得以控制。

呼吸运动伪影在高磁场设备显得更加明显。使用呼吸门控及快速成像技术，能够有效地控制伪影。在无快速成像的低磁场设备，因呼吸运动频率较慢，通过呼吸门控阘值 MR 成像时间过长而限制了这种技术的使用价值 c 低场强设备应尽可能缩

短检查时间，以便減少产生伪影的几率。如改变矩阵，减少激施次数以及通过吁吸补偿技术去除呼吸时腹壁运动产生的伪影。

流动血液产牛的伪影信号强度取决于血流方向与切层平面之间的相互关系，血流速度以及使用的 TR，TE 等参数。当扫描层面与血管走行分向平行时，在相位编码方向 F 会产生与血管形状类似的条状阴影（血流伪影）。动脉血流伪影多因血管搏动引起，类似运动产生的伪影。预饱和技术可消除来自扫描层上下方的血流搏动产生的伪影。另外梯度变换（相位，频率交换）可使伪影方向变换 90° 。例如扫描肝脏时，主动脉血流伪影下扰对肝左叶的观察，交换相位／频率方向，使門左叶泉示清楚。

脑脊液流动伪影与血流形成的佖影原因相同。脑倦液同血流均受心脏同步搏动影响，在脑脊液处出现模糊伪影，最常见于胸段脊髓含方类似占位性病变样改变（图4－3－4）。甚至在脊髓中央出现空洞样伪影，血流补偿（flow compensation）技术是减少和抑制脑滕液搏动伪影的最有效方法，必要时与心电门控同时使用会取得抑制伪影的更好效果。变换梯度也可消除脑脊液搏动伪影。

图 4－3－4 脑脊液搏动伪影：胸髄 SE 序列T2WI 横轴位。示脊髄后方脏券液搏动伪影（ \uparrow ）

（二）自主性运动伪影

在 MR 扫描过程中，由于患者运动，如颙部检查时吞咽运动，咀嚼运动，头部检查时病人躁动，眼眶检查时眼球运动等均可在图像上造成各种不同形状的伪影，致使图像模糊，质量下降。图像模糊的原因与生理性运动伪影相似。克服自主性运

动伪影的最有效的办法是改变扫描参数，尽量缩短检查时间，如快速成像技术，减少信号激励次数，改变矩阵等。另外，周定思者及检查部位，如眼球运动，嘱患者在扫描时闭目，颈部检查时固定下领等，也是减少自主性运动伪影的有效方法。

三，金属异物伪影

全属异物包括抗磁性物质及铁磁性物质。只要它们仅使磁场均匀性改变几个 ppm，就足以造成图像变形。抗磁性物质可见于体内。本节讲的金属异物主要是指铁磁性物质，如发夹，钮扣，别针，胸罩钩（图 4－3－5），各种含铁物质的睫毛膏，山红，外科用金属夹，周定用钢板及含有金属物质的各种标记物以及避孕环等。在实际工作中强调要思者不把体内或体表的金属异物带入磁场，其原因之一是会使图像产生金属异物伪影而影响诊断，一是对患者有潜在的危险。例如，外科手术夹叮能会受磁性吸引脱落造成再出血；刀片等锐利物在磁场飞动时，会刺伤思者或损坏机器。

图4－3－5 金属异物伤影
腰推 SE 序列 12 加权像矢状位。因金属吕物胸罩钩引起伪影（4），造成解剖站构失真变形（ Δ ）

不慎将金属异物带入磁场时，在 MR 成像过程中易产生涡流，在金属异物的局部形成强磁场，从面干扰主磁场的均匀性，甬部强磁场可使周围旋
\qquad
\qquad
\qquad第3章 质 量 控 制 119

进的质子很快葠失朋侻，向在金屚物体周围出现圈低信号＂盲区＂。其边缘叮见法䡛组织呈现的高伿只环常，以及图像县现空间锖位而严重大兵变形

金属异物伪影是很容易避免的。首光安作好必
杳，杜绝将余属异物带人机器房

（粱 燕 高元桂）

第4章 MR 对 比 剂

自MR问世以来，作为一种成像工具，它显示出良好的软组织对比，表明它能反映川人体组织问的物理，化学上的差异。早期人们认为是否有必要再使用对比剂，T1，T2WI像似要足以证实或排除诊断。然而，实践证明，未经增强的组织所固有的 MRI对比，无论对疾病的敏感性和特异忡方面均不能满足人们的需要：在诊断上作中，评价某－组织的功能，代表着影像诊断的另一个側囬，有助于发现疾病并可作出定性，而这些是不能单独从彬

态学的改变得出结论的。因此，在临床上应用 MRI 不久，就若手研究 MRI 所用的对比剂。

20 世纪80年代早期，人们开发的 MRI 对比剂，就是二乙烯三胺代乙酸钝（gadolinium diethyl triamine－pentoacctic acid，（rd－DTPA），这是一种顺磁吽物质（paramagnetic marerial），得到广泛应用。它显小出确定人体某些组织功能的特性，如中枢神经系统的血脑屏障的完整性，在某些疾病中尚可发现 MR 平朕所见不到的病变（见图 4－4－1），

图 4－4－1 乳腺癌脑转移，Gd－DTPA 增强

A．T1 加权像 B．T2 加权像均未见明显病灶

C．用 Gd 增强屋于左枕部可贮三个病灯

以 Gd 为基础的顺磁性对比剂在脑和脊膸的检查中，儿乎成为必不可少。从其他器官的检查也积累了一些资料，说明 Gd－DTPA 是一种很有意义的对比剂。除 Gd－DTPA 这类顺磁性物质以外，还有一些 MR 对比剂，如含 Fe 的超顺磁性物质（super－ paramgnetic agent），和以 Mn 为基础的细胞内对比剂（intracellular agent），近年来相继问世。它们的开发和利用，使 MRI满足了临床医生的诊断要求，从而显示出 MR 是一种非常强有力的成像手段。对比增强的 MRI 不仅广泛用子常规检杳，而日也用于研究组织灌注（tissue perfusion），组织生活力 （tissue viability）和血脑屏障的完整性等。在欧美，所有 MR 检查中，有将近 $25 \% \sim 30 \%$ 辅以对比剂增强扫描。目前，在国内应用尚较少，这是由于价格昂贵所致，寻求开发国内产品以迼应临床需要乃当务之急。

第1节 对比增强的机制

MR 对比剂和常规 X 线检查所用的含磺的对比剂之间，虽然二者应用的目的是相同的，但其作用机制和功能则完全不同。MR 对比剂不同于 X 线检查的对比剂之处在子：它本身不显示 MR 信号，而其所显示的，只是对其邻近质子的影响和效应。这一影响是间接的，它所致的MR 信号强度变化是由于多因素互相作用的结果。这些因素包括对比剂的浓度，对比剂积聚处的组织驰豫性，对比剂在组织内的相对驰豫性以及所用的 MR 扫描序列参数。

在 MR 成像时，组织对比取决于许多内在及外在的因素，其中质子密度，T1 和 T2 弛像时间为最重要的参数。也就是质子所产生的MR 信号和它的弛豫时间 T1 和 T2，决定不同组织在 MR图像上的对比。为了要取得强化对比，所有MR对比剂必须与质子相互作用，并不是改变质子的数目，而是影响质子的 T 1 和 T 2 弛豫时间。总的说来， T 1 和 T 2 时间都减少，但不是减少到同等程度。在某些情况下，或者 T1 缩短或者 T2 缩短，二，者中必有一种为主。

某些金属离子或跃迁化合物（compound of tran－ sition）或镧金属化合物族（lanthanide metal group），如铁（ Fe ），钟（ Gd ），及锤（ Mn ）具有顺磁性特性。

这些物质的原子具有几个不成对的电子，驰豫时间长，具有较大的磁知（见表 4－4－1）。在外加静磁场巾，均与外加磁场呈平行方向排列，在去掉外加磁场后，又回到其原有的代意方向排列。在磁共振过程中，这些顺磁性物质有利干在所激励的质子之间或从质子向其周围环境传递能量，从而使质子驰像时间减少；应用这些含有顺磁性化合物时，在其浓度和临床剂量的使用上主要是利用其 T1 效应：

表 4－4－1 几种重要顺磁性元素及其性质

14		
新（6）${ }^{\text {a }}$ ）	7	10 幺．．．1！${ }^{\text {a }}$
	\leqslant	$13^{*}-10{ }^{3}$
	5	10 \＃2．．．｜3）
詄（Fer＊）	4	（0）${ }^{26}-10{ }^{\text {a }}$

另一组 MR 对比剂，即铁磁性物质（ferro－ magetic substances），也是与外加静磁场排列一致，而且即使在外加磁场去除以后仍保持这种顺磁场方向排列。铁磁性物质，如大的氧化铁晶体含有不成对的电子，产生磁坏境。当置于外加磁场时，相邻的磁环境互相作用，从而明显强化。这样就产生所谓磁化率效应（susceptibility effect），并且加速共振质子的灰相位。T2弛像缩短，这是由于局部环境均匀性降低的结果。因为铁磁吽：物质粒子较大，难以使质子达到其内部而受不成对电子的影响，因此，这些物质的 T1 效应相对较弱一些。

良好的对比剂的前提是：安全性，有效的磁特性，在活体内分布的特异性，可借以区分正常组织和病变。实际上，这些要求常难以满足：组织间摄取对比剂的差异取决于摄取的程度或清除率 （washout rate）或其分布形式。

第2节 MR 对比剂的分类

MR 对比剂的分类，在文献中叙述的有多种，分类的根据是：它在活体内的分布；磁特性；对组织T1 或 T2 的主要影响和所产生的信号强度使 MR 信号强度的变化（即阴性或阴性对比剂）。月前常用者为前两种分类。

一，生物分布性分类

根据生物分布（biodistribution），可将对比剂分

为细胞外（extracellular）和细胞内（intracel．ular）对比
 （id－IDTPA即属于细胞外对比剂，它们住体内的分布足非特异性的，泣入体内后，可在血管内乐与细胞外间质之问自出通过，以此，只有在打揇时正确甞握时间，j 可数得身体内组织的强化对比，

细胞内对比剂主要足以体内㭉一组织或器官的 －些细胞作为她米强化，如网织内皮系统的对比剤及肝组胞的对比剂，这些对比剂在经静脉引人体内后，立即从血液中廊洁并且与相关的细织结合。因此，细胞内对比剂的优点是掫取它的组织（如正常肝组织）和其他不撮取对比剂的组织（如较移病叶）之间产牛对比强化。

二，磁特性分类

根据磁特性（nlagnctic property），MR 对比剂可以分为云类：即顺磁性，超顺磁性利铁磁性对比剂。顺磁性对比剂是出倾磁性金属元素组成，如钝 （ Gd ）和铔（ Mn ）为常用者，当使用低浓度时，顺磁性对比剂主要是使 T1 缩知影 4 ．使信号增强；向使用高浓度时，则组织 T2 的缩短超过对 T1 的效位，因此。使 MR 借号減低。使用中，顺磁性化合物对上剂常是利用其 T 1 效底，作义 T 1 加权成像中的阳性对比剂。

铁磁性及超顺磁吽：对比剂为不同大小微晶金属精子（crystallite metal particulate），实际！均为氧化铁组成：铁磁嫁粒子在常温下具存永磁性，而超顺磁性核子则较小，失去其磁忆（magnctic memory），然而，当两者被用来作为 MR 对比剂时，均具有司 效应：即影响扄部磁场均约性而月．${ }^{\text {米尘磁化率 }}$吽效磁。井此淅致的结果是，质子的失相位加速， T 2 驰豫时问业著缩短。这类对比剂的 T1 效应相对较弱，但倣叮作 T2 加权成像的补允：

第3节 钝 慗 合 物

Gd－DTPA是当先被批准的MR对比剂，与以后相继开发的 Gd 㛑合物一起，作为以（rd 为悬础的 MR 对比剂例足临床所常井的。它们基仆 1 是顺磁性化合物，产牛，T1 驰殐缩知，使 MR 信号增离，临床上，常规使用作为非特异性细胞外对比剂。如果与亲脂性载休基团（lipophilic L．gands）结

合，那么钝慗合物也可用作细胞内，组织特异性对上剂，以后将専作讨论。

—，钝螯合物药代动力学

钝（Gd）是一种桸土金属，在周期表排列第 64的儿素：尽酋不存在丁人体。但存在于自然界中，自由的（Gd离f（Gd＇1）在 pH 值 7.4 （生理状态下），难溶于水，而且对其生物耐受吽很低。要想减少此金属离子的曹性，并H，可以调节其在休内的生物学分布，它必须与只一载体化学基因形成熬合物分可。这种金属䖝合复合物改善厂Gd在体内的溶解度，使其分们干细胞外，允许它通过肾小球而从肾排泄。

所有细胞外的 Gd 对比剂均为案水性，低分子星复合物，因为粒丁小，经静脉引入休内后，很快地从细胞内弥散全细胞外问质腔。其生物学分布为非特萛性，一县它在细胞内利细胞外之间达到迅速半衡应，则很快地尖去组织间的对比，

Gd 鏊合物不能通过完整的血脑屏障（BBBB）进人脑组织，些脑组织包括垂体，脉络丛和静脉空均无血脑屏障，病理情况下，如炎症，肿疽则可致个同程度的 BBB 损伤。此时，对比剂叮漏出到末受到 BBB 保护的组织，产生对比强化，从而有利于研究中枢神经系统疾病。

临床应用的 Gd 复合物在休内不分解为自由金属离子和载体化学基团（筡合体）。有札敏合体（or ganic chelator）存多种：除 DTPA 外，尚有 DTPA－ BMA，DOTA和 HP－DO3 A 均为常用者（见图4．4－ 2），它们之间的区别包括基团位置的数目和安排，与Gd 阳离子结合的部位。DTPA 和 DTPA－BMA为线形多按捘化物基团，而BOTA 和 IIP－DOBA \％ E环，含有人的环形结构（见图4－4－2），（dd－DTPA－ BMA 和 Gd－HP－I）O3A 为非离子刑，电荷中性，低渗对比剂，在大剂量和快速引入体队时，具有更好的安全怍和耐受性。一般说来，所有这些 Gd 对址剂均具有高稳定性，并且快速通过肾䁍排泄出去，而不与生物结构产生朴 4 ．作用。

二，钆螯合物的临床应用

钝类对比剂又称细胞外非特昨性对比剂，主要应用于中枢神经系统的 MR 成像，如垂体，静脉窦等。在病埋情况下，例如肿瘤，梗寨，感染以及

急性脱旗鞘病变等。血脑屏障遭到砤环，此时，对比刘即可通过不完整的 BEBB 进人细胞外间隙，引起䛗部增强效应，
（rd 类对比剂可捉高脑内小的原发及转移瘤的检出率，可用于父分和鉴别活的肺塯组织 ${ }^{\circ} \mathrm{j}$ 巾央坏

DO「 F

助 -f 肿瘤的良恶怍鉴别和特其性诊断。此类对比剂应用的亡要适应证是：脑膜拫，听神经瘤，券索瘤，垂体微腺瘤，颈动脉梂㾍和表度样肿瘤，有时无强化效兴地有鉴别意义，如区分位于波层表面低级庫阩细胞瘤与脑膜瘤，此种对比剂尚可用来评价屾物术复查，决定有尤复发。

图4－4－2 四种常用Gd贅合物的结构式

背髓肿瘤，炎性病变在增强后会更为清晰，可显示病变范围；椎间盘脱出手术后的增强抖措可以鉴別硬脱外纤维组织和再发脱讨或残留间盛组织。纤维组织可以强化，而间盘供号则不强化：

肝的不同类制病变巾动态掝戙共有特征悱：表现，可以鉴别原发性肝癌 j 局灶性结节状增生。

乳腺 MR 成像，骨肌肉系统中均可用（id 增强抿描提高检出率，定位和定性诊断，且可用于术庿追踪疗效，心脏的MRI应用 Gd 增强可以区分正常党急性心梗。

Gd 类对比剂用量为 $0.1 \mathrm{mmol} / \mathrm{kg}$ 休重。萝发硬化症使用加倍剂量 $0.2-0.3 \mathrm{mmol} / \mathrm{kg}$ 可找出曳多病灶。

Gd 类对比剂引起不良反话者很少，约为 1% 。主要为岸肠道刺激症状和皮肤粘膜反应，一般无需处理，严重反应被为帘见，孕妇及肾功能不良者呙慎用。

第4节 超顺磁性氧化铁对比剂

一，超顺磁性氧化铁药代动力学

超顺磁性氧化铁（sup）erparamagnctic iron oxide．

SPIO ）为 炎颗粒物质，经静脉注入体内后，被主要位与服脏的 Kupfer 细胞的网状内皮系统（reticu－ lo－cndothelial system，RES）从l血液中清除。这些 Kupfer 细胞组成 RES 的巨哮细胞的 $80 \% \sim 90 \%$ ，具有从血流中清除人量颗粒物质的能力。 SPIO是由旵体氧化铁作为颗粒核心，用㴔定剂如右旋糖酐 （又名葡聚糖）或舜葡聚糖膜所仓裹－根据其颗粒大小分为小 $\mathrm{SPIO}(50-150 \mathrm{~nm}$ 直径）及超微 SPIO （LSPIO）（ $<50 \mathrm{~mm}$ 自径）两类，但其磁特异吽：是同样的。但是在生物分布上多少有些区别，SIPI）颗数很快为肝的 RES 所摄取，其在血管内的半哀期 （half life）只有 $8 \sim 10$ 分钟，而 USPI（）颗粒则可在血管内循环较长时间，其半衰期达 200 分饤，不易为 RES 所吞筑。此外，USPIO不仅被肝脾所清除，而且尚可被骨髓相淋巴结所清除。SPIO 为 RES 摄取后则降解，铁游离。

二，超顺磁性氧化铁的临床应用

因为它们刘肝的亲和力，SIIO 制剂如AMI－25或SHU－555 主要用作为 RES 定向的㸝庥对比剂。所用剂量为 $0.015 \mathrm{mmol} \mathrm{Fe} / \mathrm{kg}$ 体重，必需用 100 ml 5% 葡第糖稀䉽后。在代得少 50 分钟内缓慢滴人，则河娍少常见副在应，背痛，MR扵描可在对

比剂输人末期进行，但是最好延迟 30～60分钟。 SE T2WI 像上及 GRET2＊WI像上可见到肝实质有明显信号减低。SPIO还有可見到的T1效应，可结合T1WI 像观察。

肝脏恶性肿瘤包括转移瘤均缺ट Kupfer 细胞，在对比剂增强后仍然保持其原有信号强度，从而产生正常肝与肿瘤之间对比，应用 SPIO 可以改善转移瘤的检出率。Kupfer 细胞存在于良性肝肿瘤，

图 4－4－3 肝局灶性结节增生（FNH）（用 SPIO 增强）病人经超声检查发现肝内肿物
A．CT增强扫描图像显示病变强化 B．木强化的T2加权像 C．用 SPIO 㟋化的T2 加权像（Tu：bosE）显示肝内病灶信号降低与正常肝实质䏹似，诊断为 FNH

可以摄取 SPIO 而呈现信号減低，与正常肝实质一样，不产生对比。然而，如果已知肝内有一肿物存在，SPIO 增强后即可为肿物定性（见图 4－4－3）。必须注意的是：有一些分化良好的肝细胞癌也可摄取 SPIO ，而一些腺瘤又可不摄取。

第5节 其他 MR 对比剂

一，肝细胞特异性对比剂

肝脏容量的 80% 是由肝细胞组成，而肝细胞靶对比剂就会比SPIO 产生更为有效的对比。一种产生肝细胞特异性对比剂的方法，就是在细胞外 Gd 对比剂中加人芳香环（aromatic ring），以增加其亲脂性以便与肝细胞结合。应用此法，Gd－EOB－ DTPA 和 Gd－BOPTA 就是从 Gd－DTPA 演变来的。 Mn DPDP 是另一种肝胆特异性对比剂，锰的摄取原在肝脏，但也在其他器官如胰和肾中被摄取。这些肝细胞特异性对比剂基本上是小分子量 TI 加权对比剂，经静脉注射后，在与肝细胞结合前，首先通过细胞外间质间隙。在所有这些对比剂中，仅有一定百分数的有效成分（ Gd 或 Mn ）是从胆系排除，监用此类肝细胞特异性对比剂确实改善了非肝细胞肿瘤的检出（见图 4－4－4）。肝细胞起源的病变，尤其是 HCC ，可以不同程度地摄取对比剂而且保留它们， 8 小时后延迟扫描能更好地显示肿瘤。此外，其另一特性就是输人对比剂 24 小时后延迟成像上，能见到肿瘤周围的环行强化。

肝细胞特异性 MR 对比剂的商品自1997年以来即已问世，如 Teslascan（Mn DPDP，挪威 Ny－ comed 公司出品）和 Multihance（Gd－BOPIA，意大利 Bracco 公司出品）。

二，血池对比剂

在 MR 中，细胞外 Gd 对比剂经历广泛的研究，Gd 增强的 MRA 优于常规的 MRA之处在于改进身体大部分动脉的显示。然而，它迅速从血管内外渗使其应用受到限制，因为此对比剂通过血管系统时的成像只能在首次通过（first pass）进行。从而精确定时采集感兴趣区的对比剂到达时问至为重要。这个问题只有在血流T1缩短，对比剂总注射

图 4－4－4 结肠癌肝转移 Mn DPIJP 增强 A．TII加权像仅显示肝左计有一病灶 E．T2加权像亦仅显示肝左叶有一病灴 C．井 M M DPDP 㘿強后T1加权像则可见另一－较小病灶（箭头所示）

量，注射速度和图像质量之问束进行权衡。
欰池对比剂（bleod pool agents）是那些缩短 T1对比剂，由于血流循环有一个相对长的时间，可从稳念中获取高分辨力和较高的信相比。因此，对比剂的早期到达时间及定时采集就不再是所要特别考虑的。早期开发此对比剂为 Gd 的巨分子复合物，然而，进展不大，原因是其毒性作用。近期的开发则是利用USPIO 粒子，其结果颇令人乐观。在经静脉注人后，USPIO 隹能进人间质而留于血池中，在为 RES 清除前，可停留达数小时之久，因此持续使 Tl 缩短而啇用于 MRA。除 MRA 之外，LSPIO的 T2＊效应（T2 star effeci）也可用于脑灌注成像（perfusion imaging），决定毛细血管的通透性。

血池对比剂增強的 MRA 的主要障碍是动静永均强化。近年来，有儿种血池对比剂经过临床试用，可预示不久将有商品问世。

三，口服对比効

以服对比剂的开发是逗循两个常用路线进行的，即阳性或阴性对比剂。前者即 Gd－DTPA 与甘露醇（mannitol）配合，服用后肠道呈高信号；応者为 SPIO 对比剂，以口服剂型配制，如 Abdosacan （Nycomed 公司出品）和 Lumirem（法国 Guerbet 公司山品），它们均使肠道内对比剂集聚处信号消失。上述各种口服对比剂均有商品市俉。

应用口服 MR 对比剂的诊断目的，是在腹内或盆腔内使肠道与周围正常或病理器官或组织区别开来，它们还可以使胃肠道的肠壁显示清晰。

（王 震 陈炽贤）

第5章 磁共振血管造影

在磁共振研究的早期，学者们就已经注意到 MR 信号对流动的敏感性：1959年J．R．Singer 提出使用飞越时间效应（time of flight effects）能够估计流动速度，并在鼠尾士非行了试验；1960年 E．Hahn 论证了自旋楳位移动公式。同时用自旋回波（SE）法测量了海水的流动。随着磁共振成像技术的发展，1983年以后便可以通过上述两种技术在图像上直接显示流动的的液，即磁坴挀血管造影，到目前为止，根据血流在磁场中的效应，即飞越时问效应和附加相位效应，（血流成像的力法也被分为两大类，即相位对比法（PC：phase contrast）和飞越时间法（TOF：Time of Flight），这两种方法同样叮以用来测量血液流速。

第1节 血流的特性

流动可以分为定常流和非定常流：定常流是指在刚性管道中流速不随时间变化的液体流动，这是一种理想状态，通常用作研究模梨；流速随时间变化的为非定常流。在定常流情况下，液体流动又可分为三种：塞流，层流和湍流：店两利将影响 MRA；

1．层流（laminar）由丁液体有粘滞性，各层间有内磨擦，假设液体是均动的，粘性术随空间和速度改变，在刚性圆管中流动，则表现为平行 f：管壁的／速度不同的薄层流动，不同平径上的薄层流速本同，中央快，越近血管壁越慢。公沉属子缓慢流动，主要见于正常静脉血管内。

2．湍流（turbulence）是指液体随杓的快速流动，即同时存在 $\mathrm{X}, ~ \mathrm{Y}, ~ Z$ 三个方向上的运动。湍流可以用需诺氏数粗略地预测：Rc－Density \times Diameter／ Viscosily 雷诺氏数是无昱纲的，Re 数增至 2400 时，层流变为湍流，Re数减少至 2100 时满流变为击流，这是个粗糙的预测值。任何管壁的不规则，血管赃现分支或搏动都将导致湍流，如心耻收缩期，小血管瘤，迁曲的血管及显著狭窄的运端。

3．脉动流 循环系统中大部分动脉血管，尤其是大动脉中血液流动随心搏周期吴明显搏动性，

属非足常流。动脉血流流涑随吋间变化，Womers－ ley方称可准确地表达脉动流的速度缡的图，表达方或复杂，可粗略地歨示为：$V(r, r)=f(1) V(r)$ 。 1 ：屿间，v ：速度，r ：血管半径，$f(t)$ ：波幅随吋间的政变，

4．涡流（vortex）是指旋转的任流，由于剪」的作用，血流在一个固定涖冝上旋转，停滞代沶：经常发牛在血兽分义处和狭窄处远端。

5．流动分离（flow sparetion）体何分叉角度过大都将导致流动分离。随着管腔的增宽，流速减低，沿管壁压力增加，由于放ノ美的存在，沿管壁边缘以以出现不隐分流动，涡流，反流或流速进一步減慢。

了解血液流动模式对诊断是非常存意义的，在磁共振成像过程中信号奉失主要来自湍流，涡流利脉动流等不稳定的流动，但遗憾的是紊乱流动经常发生在血管病安好发部位，例如领动脉分义处常发生粥样动脉硬化和流动案乱，造成鉴别困难。

第2节 飞越时间效应和相位移动

一，飞越时间效应

指自旋质子流出激发平自的现象，乍某一时间将一III流闭标记，而于岁一时间检出，标记和检出之间流动血流团的位置已发牛变化，这种现象称飞越时间。

二，相位移动（phase shift）

在梯度场下流动的质了相们将发生偏移。根据 Larmor 频率公式，流动的血液质了在起始位俎上的进动频率是 $\mathrm{f}_{1}=\mathrm{E}_{1} \cdot 2 \mathrm{r} / 2 \mathrm{n}_{\text {。 }}$ 。当它运动到第二点时进劤频率 $\mathrm{f}_{2}-\mathrm{H}_{2} \cdot 2 \mathrm{r} / 2 \mathrm{n}, \mathrm{r}$ 是磁旋比， B 是静磁场强度。如果是线性梯度场并且匀速运动，相位移动的角度或出公式计第得出，$\phi=r \cdot v \cdot T \cdot A$（如图＋－5－ 1）；当流动存在加速度时，相移角与吋间（ T ）的平

图 4－5－1 相位移功原理图
力成正比。 φ 相位移动角度， r 磁旋比， y 速度， T时间， A 梯度场面积。

第3节 磁共振成像中血流信号

一，SE 序列血流呈现低信号的原因

1．当血流垂直于扫描／異面时，在成像时，信号単由两部分组成；－－足由激发区外注人的恤液，二是激发区内尚未流出的血液；如果选层很薄，或血流速度很快，而 TE 时问间隔又足够长，第二部分将不存在，即相同拍流不能既接受 90 度又接受 180 度脉冲激励，形成回波，不产生侣号，故呈流空现象。杏则信号为两部分的平均渎，血流妟低信号。

2．如果血流平行于扫描层面，在 90° 和 180° 脉冲间（TE／2）。流动的血液团进入梯度磁场的一个新区域，这一团血液在接受 90° 脉冲后，如前所述，以 f 2 频率去相位，在接受 180° 脉冲底又以 f 2 频率相位重聚，因此这些质子不能被 180° 翻转脉冲取得 致相位回聚，从而MR信号明监减弱：如果流动方向斜行穿过扫描层面，叮以将欠量分解成平行和垂直等县面的两部分，分别考虑，

3．流速不司的质子在同 时间内发牛的相位移动是不可的，它们相开抵消，进一步引起相位弥散，信号降低，这种现象也称作流空。

4．复杂流动引起低信多，像湍流，永动流和涡流等在流速发生变化的同时血流方向也发生变化，产：生附加相位移动，不能实现相位重聚，形成低信号；因流动的血液表现为低信号，血管队的血

二，血流呈现高信号

1．流人增强 当血液流人采样平面时，该层

面的质子已经接受厂一定的能量，不能再接受新的能量，处于预饱和状态时，只有流入的新鲜血液能够受到新的激发，产生MR信号。利用流入增强效应进行血流成像，即TOF 法 MRA。

2．舒张期门控致血流高信号 动脉血管中的近流呈脉动性，流速随心动周期快慢不一，收缩期血流快，舒张期流速减慢，在舒张期成像受血液流动影响较小，吴顶的主要是血液木身的信号；如果使用心电门控在舒张期成像，动脉血液呈现高信号；䒴不使用心中门控，当受检者的心动成期与采样的 TR 间期相同时，过可以产生同样的效果。这柞现象称伪’控（diastolic pseudogating）。这种增强是因血液的不流动，不属于真止的流动增强，

3．偶回波的流呈现高佮号 已知在梯度场中流动质子的位置变化总是伴随着相位的变化，第一个 180° 翻转脉冲不能实现相住回归，但是如果质子沿梯度场方向保持匀速运幼，第二个 180° 翻转脉冲产生的相位偏移将与欮一次等量，则恰好弥补前一次的相位偏移。以此类推，凡在偶数回波上进行的采样，血流都应呈现高信号。这便是偶回波相位重聚。这种现象也可以用来鉴别缓慢流动的血液和血栓。

4．梯度回波血流叧现高信号 在梯度回波下血流呈现高信号主要有两个原因，一是梯度回波成像不需要 180° 翻转脉冲，质子流出采样层面后只要在表面线圈可接收信号的范围闪，仍可实现相位重聚，产牛：MR 信号；二是梯度四波序列的回波时间（TE）短，平行子采样层面的血流去相位术显菪，与 SE 序列相比，信号也较强。

第 4 卢 与 MRA 有关的实用技术

1．梯度运动相位重聚和流动补偿技术 如同前面提到运动的质子可以诱导相位偏移，在SE 序列，偶回波成像可以使运动的质子相位重聚，同样在梯度回波成像序列 1：也可以通过改变梯度场作用的时间和强度实现相位重聚，这种技术称为梯度运动相位重聚技术（gradient motion rephasing，（GMR）。

2．预饱和技术 这一技术足指在某一选定区域，在采样脉冲之前预先施加射频脉冲，使这个区域内的质子接受能量，达到饱和状态，化能够再接受用于成像的射频脉冲的能量，优此地不产生 MR 信号，

TOF 法MR 是这一技术应用的典范。并H在 2 D TOF MRA扫描时，还可以在采样层面卜或下方施加预饱带，选择性地去除动脉或静脉血流信号。在－般 MRI成像时可以用来抑制一些来源于采样范闱以外的伪影；如心脏，大血管搏动或呼吸运动等：

3．最大强度投影法 在 MRA 投影取值上最常采用的是最大强度投影，简称为 MIP（maximum intensity projection）。为了方使观察血管形态，将多幅图像堆积起来向任何方向投影，在投影图上反映出连续走行的血管树，优点是增加血流与静止组织的对比度，并可以从不同角度观察血管树。缺点是在增大对比度的同时也轻度缩小与血管的八寸，易对血管狭害估计过度；使显影的血管比实际的更细一些。

4．Ramp Pulse 在 3D TOF 尔用多层块（slab）进行血管成像时，射频脉冲的翻转角度将随着采样块向前移动，在下一个层块采用的成像脉冲将以更大的倾倒角度对血流成像，避免因不断激发血液渐趋饱和。 Ramp 脉冲从四个方面改善成像质量： （1）改善迒离中心的板埃成像质量。（3）减少血流饱和，增加动脉的能见度。（3）减少对静脉信号的敏感度，（4）缩短 TE 时间。

5．磁化传递对比成像 见本篇第 1 章第 5 节：
6．心电门控 在流人速率最大时（收缩期）进行血管成像，能提高TOF MRA 的对比，并消除由于收缩期和舒张期间信号的差别引起的搏动性相位编码伪影，尤其在腹部和下肢 2 D TOF MRA 成像中具有较高的临床价值（如图4－5－2）＝

图 4－5－2 心电门控 2D TOF MR Λ ，欮应位 MIP 图像，动脉硬化病人，腹主动脉及双侧管总动脉显示良好

第5节 飞越时间法血管造影（TOF 法）

飞越时间流入增强和相位移动两种效应是同时发牛的，在设佰脉冲字列时可以选择性地突出一种效应而抑制另一种效应。用梯度运动相位重聚技术 （GMR）可以突出流人增强作用，减少相位移动对图像的影响，由此进行的血管造影称流入性血管造影（inflow angiography）或飞越时间血管造影（TOF法 MRA）；结合 2 D 和 3D 成像技术又可分为 2 D TOF 法和 3D TOF 法。如果突出相位成像，抑制流人增强的影响，称作基于相位的血管造影（phase based MRA），这种方法又可进一步分为强度对比血管造影（magnitude contrast angiography）和相位对比血管造影（phase contrast angiography）。

一，二维飞越时间血管造影

2D TOF 是指在一选定区域内，根据流入增强效应，对血管进行连续的二维（2D）成像，然后经 MIP后处理程序重建各角度的血管投影图。

（一）2D TOF 的临床应用

（1）四肢动脉及有严重狭窄的动脉；（2）检查顾外颈动脉系统；（3）对盆腔和下肢静脉成像；（1）对皮层静脉成像；（3）帮助判断颅内静脉血栓。

（ニ）2D TOF 血管造影的优点

（1）对较慢血流敏感；（2）对正常沇速的血液饱和效应最小；（3）扫描时间短，可大容积成像。

（三）2D TOF 血管造影的缺点

（1）对断面内快速血流和弯曲血流获取信号不敏感；（2）在薄层扫描时，需要更大的梯度幅度，对流动补偿更需要，限制了用最小 TE 时间；（3）由于最小 TE 时间的限制，容易夸大血管狭窄程度；（4）短 TE 物质，如亚急性出血期的正铁血红蛋白，易类似血流增强，形成干就。

二，三维时间を超血管造影的应用

在成像原理上与 2 D TOF一样都采用了流入增强，流为补偿技术和最大强度投影后处理程序（MIP），不同之处是采用了体积成像技术。一般来说它较 2 D TOF 更优越；首先体积采样技术具有更高的信噪比，其次允许更薄的切层，因此减小了体犬，也减少了体宅内

流动质子的去相位。这些优点使其在显示 Willis 环，动脉瘤，动静脉畸形和颅内血管阻赛性疾病方面优于 2 D TOF 血管造影。

由于受知TR，激励角度和速度的影响，血液流动一定距离后可能因不能充分驰豫而变成饱和，流动慢的质子饱和得快，流动快的质子可以在饱利前流川采样区域。因此采样层厚，方向等的选择非常重要。

（一）3D TOF 血管造影的临床应用

（1）检查动脉梗阻性疾病（图 4－5－3）；（2）判断动静脉畸形的供血动脉和瘤巢（图 4－5－4）；（3）诊断颅内动脉瘤；（1）通过使用造影剂可显示静脉血管瘤。

图 4－5－3 左侧颂内动脉起始部狭厏 35 TOF MRA穊头示左颈内动脉起始部长 2.5 cm 狭夋，边缘不规则

图 4－5－4 3D TOF MRA 亚示脑动静脉畸形，箭头示供血动脉来白左大脑中动脉（ \uparrow ）及灰大脑后动脉（ $\mathbf{\Delta}$ ）
（ニ）3D TOF 血管造影的优点
（1）空间分辨率高；（2扛描时间比 2D TOF 短； （3）对快和中等流速敏感；（4）高信噪比和高对比噪声

比；（5）允许使用非常短的TE忮间。
（三）3D TOF 的缺点
（1）对缓慢的流动不敏感，不能完全显示动静脉畸形中的引流静脉；（2）不使用造影剂对静脉成像不理想；（3）短T1 组织呈高信号，易与流动增强发生混淆：（4）易夸大动脉狭窄。

第6节 相位对比法血管造影（PC 法）

梯度［回波技术是相位对比血流成像的基础；流动诱导相位移动原理是其核心。

如流动的血液，因为位置发生变化，偶极梯度脉冲的两个梯度对它的作用是不等量的，最终不能恢复到初始相位。如果我们顺序施加两对偶极梯度脉冲，并分别两次采样，这两对梯度脉冲施加顺序是相反的，叠加后，固定的质子因经历两次相位移动，信号抵消，剩下的只有流动质子的信号。

混淆现象（aliasing）；在相位对比血管成像时， aliasing 是指快速流动的血流在图像上反映成缓慢流动或反向血流，当流速编码小于测量血管血流的峰速度时发生这种现象。

流速编码（venc：velocity encoding）：从运动诱导相位移动公式看到：$\varphi=r \cdot v \cdot T \cdot A$ ，反映梯度场的物理量有 T 和 A ，这里引人一个物理量，初矩 $\mathrm{M} 1=\mathrm{TA}$ ，用微积分表示，即 $\mathrm{M} 1=\int_{0}^{\mathrm{TE}} \mathrm{G}(\mathrm{t}) \cdot$ $\mathrm{t} \cdot \mathrm{dt}$ ，代人相移公式，即 $\varphi=\mathrm{v}(\mathrm{r} \cdot \mathrm{M} 1)$ ，流动编码 $\mathrm{VE} . \mathrm{VC}=\pi /(\mathrm{r} \cdot \mathrm{M} 1)$ ，即设定一个产生 180° 相位移动速度限制。VENC 能够控制速度范围，并对信噪比影呴很大。选择 VENC 应尽量接近血管中血流峰速度，而不低于它。

—，二维相位对比

2D PC 血管造影使用相位对比流动增强技术显示血流，然后经 MIP 重建血管图像。它的主要优点是扫描时间短，并可以依靠流速编码选择性地显示某一段血管。这一点对观察病变血管是很有帮助的：扫描参数应选择最小的 TR 时间，和尽可能多的激励次数。

（一）2D PC 血管造影的临床应用

（1）用子3D PC 血管定位；（2）检查流动缓慢的动静脉畸形和动脉瘤；（3）评价顾内血管病变（图 4－ 5－5）；（4）检查门静脉系统。

图 4－5－5 在大脑中动脉闭塞
A T2 加权像 B 21）PC MRA 箭头示右大脑 ${ }^{\prime} \ddagger$

（二）2D PC 法的优点和缺点

（1）成像时间短；（2）可选择不同血流速度成像； （3）缺点是不能再提供不同角度的成像，采样体元大，增大了体元内失相位。

二，三维相位对比法

3D PC 采样时系统将等同地获得来自三个方向上的三套原始数据，然后将其结合形成最后的血流成像。

（一）3D PC 血管造影的临床应用

（1）检查颅内动脉痛；（2）诊断静脉阻塞和琦形； （3）检查具有血管成分的先天碕形；（4）评估顾内血管损伤；（5）动静脉畸形术前术后检查现察治疗效果。

（二）3D PC 的优点

（1）能对各种流速进行编码，显示动脉与静脉； （2）减少体元内的失相位；（3）优良的背景抑制效果； （1）与 2D PC 比较有更好的信噪比：（5）与 3D TOF比较饱和效应更小 c

（三）3D PC 的缺点

（1）成像时间长；（2）需要先行 2D PC 造影以确定最佳流速编；（3）对湍流引起的信号丢失较TOF法更敏感。

第7节3D 动态增强 MRA

常规 MRA 依赖于跟流速相关的流人效应或相

位移动效应，但由于平面内血流的失相位效应或血流的异常流动（如湍流），造成高估或低估病变程度。同时，常规 MRA 扫描时间长，对病人配合要求高。所以，常规 MRA 存在难以克服的缺点。

近年来，3D 动态增强 MRA 成像成为 MRA 领域的热点。通过具有高梯度场系统的梯度回波序列，可在单次屏气时获得 3D 容积数据。这将明显提高 3D MRA 检查的图像质量，尤其是胸腹部。而且后处理系统使任意角度显示非常方便，有利于病变的判断。顺磁性对比剂（如钝一二乙烯无胺乙酸，（rd－DTPA）缩短了顺磁分子周围自旋质子的 T1驰豫时间，通过增加信噪比，消除流动伪影大幅度提高 MR 血管对比图像质量。通过缩短血的 T 1 驰豫，获得的 MRA 图像对比将基于动脉血，静脉血和周围组织 T1 驰豫的不同，而且可显示成像平面内的血管，这样，可减少显示较大血管范围的成像层而。同时也缩短了采样时间。

3D 动态增强 MRA 已用于主动眿，肾动脉，四肢血管及肺动脉等病变的诊断（如图 4－5－6）。它与 CTA 比较有以下特点：（1）与碩对比剂比较，顺磁性对比剂具有非常大的安全范围。过敏反应非常少见。另外，顺磁性对比剂是非肾毒性的，常规用于肾衰病人，这在评价肾动脉疾病（常常伴有肾功能损害）非常有利。即使用到较高剂量（ $0.3 \mathrm{mmol} /$ kg ），对比剂总量仍然低于 CTA 所需碘对比剂量的一半；（2）任意层面采样的能力能在较少层面下获得

较大血管覆盖的高分辨图像。这在评价主动脉疾病 （如夹层，检出胸腹主动脉受累的程度）特别有用； （3 MRA 无需放射线。这对年轻病人尤其有利。为了显示血管解剖，成像云面需要很薄，这时 CTA所需放射量就值得考虑，特别是在关键部位（如颈部或盆腔），而3D MRA 采样可以在对比剂注入前，中，后重复多次以评价增强的动念情况而不用考虑放射剂量；（4）采用35）MR ISSA 技术，可每 5－10秒采集一次35 数据 。这样，可以区分动脉期和静脉期，进行数字減影处理，通过评价器官灌注判断动脉性病灶的生理意义。有希望代替常规血管浩影并为介人 MR 的发展服务。

图 4－5－6 31）增强 MRA 图像清晰显办腹主动脉瘤内空的形态和大小，以及与双肾动脉的关系

第8节 血流速度的测定

与磁共振血管造影相同，血流速度测量技术也恨据时间飞跃效应和相移效应被分成两大类，即 TOF 法和 PC 法。

一，TOF 法血流速度测量

标记少量流动液体，一段时间宁追踪检测它的位置。也可以固定标记检测点，然后计量液体流经这段距离所花费的时间，假设匀速运动，那么速度可由公式求得：$V=d / t, V:$ 速度，d ：距离，t ：时间。有人设计该成像的方法计算流速，由于设计万法的不同又分别被称之为预夗利团注追踪法（bo－
lus tracking methods）和激励团注追踪法（excitation bolus tracking methods）。

1．预饱和团注迎踪法 是指在兵直于血流方向上先施加一个预饱和脉冲带，然后平行于该血管成像，显小血管内被饱和的流体团移动的距离：

2．激励代注追踪法 即垂直于血流方向施加标记脉冲，然后在平行于向流方何上进行相位和频率编码采样，其疒妙之处在于将选层脉冲方向与成像平面垂肖，结果不建立完整的MR图像，战像时间快。

3．TOF 法流动测量的准确性 两杉方法均在模型和活体上进行过研究，尤其在人体测速应用上与超声测速比较有很好的相关性，测量腹主动脉峰速度上超声测量结果比较相关系数 $r=0.85$ 。预饱和团注追踪技术已显小在稳定流动下能准确测量高达 $35 \mathrm{~cm} / \mathrm{s}$ 的流速。其他团注追踪技术能准确检测 $5 \mathrm{~cm} / \mathrm{s}$ 至 $3 \mathrm{~m} / \mathrm{s}$ 范围的模型流速。流动方向能在图像，上自观地表达。另外流动补偿技术对TOF 法流动测量也有帮助，它叮以减少因流动引起的血液信号云失，使标记的血液团注信号模糊或预饱和的团注边界变得不清楚。

二，相位对比法血流速测量

根据相位移动原理，我们可以从采样得到的原始数据中的相位因素直接算流速。成像方法主要分 －大类。

1．相位图法（phase mapping methods）
2．傅立叶流动成像法（Fourier flow imaging methods）

3．变更办法（alternative methods）。上述几种方法的理论基础均是相位移动原理。

目前相位对比法（PC 法）已有开发出的软件包可直接应用于临宋。流速编码的意义和选择与相位对比血管造影一节中所提到的相同。

（一）定量分析

流动方向和流为编码方向之间的误差角度獂响流动的测量。真实流动与测量流动之间的关系是： Fmeans $=$ Ftrue $\mathrm{X} \cos \mathrm{A}$ 。Fmeans 和 Ftrue 是测量和真实流动，夹角 A ，这个余弦关系可导致一个较小的错误，例如 20 度的夹角产生 6% 的错误，如果夹角不超过 5 度则错误不超过 1% 。在计算流量时，这一错误可由血管雔面积的错误增大而得到弥补。

（二）部分容积效应

人为选定的测量范围内可能包含一些固定的组织，这样所得的测量结果将是流动和固定组织的平均值，我们称之为部分容积效应。它对测最结果的影响可以根据平行四边形法则分两种情况讨论。一种情况是如果运动的质子信号强度较小，宏观磁化矢量受影响较大；另一种情况是流动质子的信号强

度较大则宏观磁化矢量受影响较小。薄层，小像元，低翻转角和尽可能垂直血管成像有助于减小部分容积效应的影响。

（三）相位对比电影

前面已经提到这种分法可以将心动周期等分成若干份，然后定量测量每个时相上的血流速，动态观察血流速变化，时间分辨率是 2 TR（图4－5－7）。

图 4－5－7 电影相位对比法测量门静脉血流
A．黑白橉色代表血流不同方向性，门静脉（Porlal），腔静脉（V）及腹主动脉（A）
B．门婙脉流速糊举结果。最下引的曲线是最大流速；中間和曲线
是平均流速；上方较平直的线是最小流速

（四）实际应用

有人在稳定流动的模型中测得平均流速误差不超赴 $\pm 10 \%$ 。并对健康志愿者进行了颈动脉干和颈内动脉的流速测量，并与超声测量结果进行了比较，认为对稳定流速模式下的血流可以使用 PC 测速，仅在一些必要的情况下才需采用心电门控电影技术。有人用相位移动技术测量了左右心室的排出量，与超声测量比较相关系数分别为 0.98 和 0.95 。很多试验已显方相移技术的准确性㠪府置疑。流量的计算：假定血管内的流动为定常流，则流量可由公式计算得出：流量 $=$ 流速 \times 血管截面

（武生平 王占立 蔡剑鸣）

第6章 磁共振功能成像

第1节 磁共振功能成像的概况

通常将磁共振弥散加权或像（diffusion－weighted imaging，DWI），灌汗成像（perfusion imaging，PI）及磁共振波谱（magnedic ressuathe spectroscopy， MRS）称为磁共振次能成像。枆对丁畄通的 MRI米讲，功能成像可以昆示人体微观水平的影像或数据，因此具有很大的应用价伯和发展潜力。弥散肺权成像能反映分子的随机微观运动，濩江波像能反映玉细血管床的血流状况，根据其机制分同又可分为三种：（1）注人顼磁性物质（如（id－T）TPA）的灌注成像，也标动态对比增础磁化率川川权灌汗成像（dy－ namic contrast－c：uhanced uscepnbility weighted per－ fusion imaging）：（放内源性顺磁性物质灌淓成像，即依靠血瓿合水平（blood oxvgen level dependent． $\mathrm{B}(\mathrm{LDD}$ ）磁共诚成像；雬非损伤动脉磁标记戊像。

本辛主要对 DWI 和 PI 过行介织，磁共振波谱将号章介绍。

第2节 弥散加权成像

一，弥散加权成像的基本原理

弥散（diffusion）或称办朗（Brownian！运动是一利基本的生理运办対程，表现为分个沿浓度高的以域向浓度低的区域产牛的随机运动，如氧和煿荡䆂分子都是通过液休媒介以弥敬的 库式由 毛细血管边人细胞的，弥敏沿浓度梯度逃行，其速度决定丁粒子的能量，并受环境温度影咿，对水分子来说，即使在没有浓度梯度存在时。它本身仍然存在随机运幼，称为水分子的H弥数（sclf－tiffusion）－在生物体内。由于组织絬构（如生物嗼）的限制，少分子孙散并代真正处于随机状态。可扵其你散还受到其他大分子化学作用的影响，因此，将水在特定组织环境中（如人体内）良圲出承的口洂散称为表观弥散 （apparent diffusion），弥散加权像（diffusion－weight．
（dimeging，DWI）能够显小水分子的弥散，从而能够评价水分一子随机运动的动态分布状态。

二，弥散加权成像的方法

在标准 MRI序列 180° 脉冲两侧对称地加上一对强度和持续时间均相同的称散敏感梯度脉冲（dif－ fushon－urnsituzing gradient pulse，I）S（iP），第一个梯度脉沖使质 f自颁去相位，第二个梯度脉油使所有静忖的质子向旋相信曹聚，而该梯度分向上运动的瘲子由于在两个梯度脉冲之间们分子移动（如弥散），故不能产生㥵位寻聚川出现信号改变，通过下述于描序列，能够得到 过于组织弥散状态的图像，标为 DWI 保号改变的程度与两个因素有关，即分子移动的幅度和弥散强度系数（ b 值）， b 值的大小決定落散战像的权重程度，高 b 值的 DWI 对珎散更敏感，b值与氢质厅旋磁比（ γ ），弞散梯度场强 （G），弥散梯度脉冲持续时间（ δ ）以及弥散测量时闻（ Δ ）等相关连，b 值计算公式为：

$$
\mathrm{b}=\gamma^{2}\left(\mathrm{G}^{2} \hat{\delta}^{2}(\Delta-\delta, 3)\right.
$$

组织的弥散系数（diffusion cuefficient．T）更准确地说应称为表观弥散系数（apparent diffusion co． efficient，ADC），ADC 值的测量尚要至少两次以不闰 b 值作 DWI f－描，其计㑭公式为：

$$
\mathrm{ADC}-\ln \left(\mathrm{SI}_{2} / \mathrm{SI}_{1}\right) /\left(\mathrm{b}_{1}-\mathrm{B}_{2}\right) \quad \text { (其中 } \mathrm{SI} \text { 为信号强度) }
$$

通过对各像元 AIX的计算可以重建 ADC 泈像，它近 LWI 图像信号相反。在 ADC 图像 L ， ADC高的区域尘现高信号，ADC 低的区域置现低
号， ADC 高的区域呈现低信号，如在急性脑梗塞时，DWI 衣现为（当 b 值较高吋）㳏塞区信号最高 （低 ADC ），止常脑组织古等信号（中等 ADC ），而脑符液为低信号（高 ADC）。

生物体内的弥散会受刲周围结构的影响，如脑
来的水弥散肉敷鞋的阶挡而受到限制，这种现象称为各向异性（anisutropy），为与消除各向异性效应的干扰，将三个标互弯南平血的孙散梯度脉冲所得

DWI 加以综合得到＂追踪图画＂（trace mapping）．以减少各向异性效应对 DWI 图像的影响，

由于 DWI 的目的是检出组织中的微小运动，所以对运动极为敏感。要保证 DWI 图像的质量及 ADC 值测量的准确性，必须最大程度地减少被检查者的运动伪影。采用同波平面成像（echo planar imaging．EPI）技术可大大地缩短扫描时间，减少运动伪影并获得更多的图像层面。b 值越大，其所选范围越宽， ADC 值计算越准确。实际工作中往往采用一个最高 b 值（一般大于 $1000 \mathrm{~s} / \mathrm{mm}^{2}$ ）和一个最低 b（可用0）值。

三，弥数加权成像的临床应用

1984年 Wesbey 等首先报道了 DWI 的动物实验研究，随后 DWI 在中枢神经系统的应用研究逐渐有所报道，如多发性硬化斑块与正常白质的区分，肿㿑内部各成分之间的区分，表皮样囊肿与蛛网膜囊肿的鉴别，应用各向异性对人类髓鞘发育的研究等。但研究最主要的领域还是缺血性脑卒中， 1990年 Moseley 发现 ADC 在缺血的几分钟内即下降，DWI 呈明显高信号，1992年 Warach 等报道 DWI 在超急性期脑梗塞（ $0 \sim 6$ 小时）即可显示病灶，明显早于 T_{2} 加权像。一般普遍认为，急性缺血梗塞到一定程度时，出现细胞毒性水肿，细胞外间隙变窄且含水量下降，导致细胞外ADC下降，DWI 呈高信号，此时病灶区含水量尚未增加到足以使 T_{2}加权像显示信号变化的程度（图 4－6－1，4－6－2）。目

图 4－6－1 男， 34 岁。突发右侧肢体活动障碍 2 小时，T2 加权像无异常发现

前研究表明，脑缺血梗塞是唯一使 ADC下降的疾病。梗塞部位 ADC 在 12 小时之内较非梗塞区 ADC下降约 $34 \%, 12 \sim 24$ 小时下降约 49% ， $24 \sim$ 48 小时下降约 42% ，结合 DWI，ADC 及 T_{2} 加权像可以对梗塞演变的全过程进行分析。

图 4－6－2 同一病例，DWI 可见左侧侧脑室旁高䇾号（ \uparrow ）

第3节 灌 注 成 像

一，㴖注成像的基本原理

灌注是毛细血管床水平微观运动过程。灌注成像（perfusion imaging，PI）的几个基本概念如下（以脑组织为例）：

灌注率（perfusion，f）定义为单位时间单位体积组织的动脉血流量，

$$
\mathrm{f}=\mathrm{ml} \text { 血流 } / \mathrm{min} / \mathrm{ml} \text { 组织 }
$$

血流（cerebral blood flow，CBF）定义为单位时间单位质量组织的动脉血流量，

$$
\mathrm{CBF}=\mathrm{ml} \text { 血流 } / \mathrm{min} / 100 \mathrm{~g} \text { 组织 }
$$

血容积（blood volume，V_{b} ）定义为单位体积组织的动脉血流量，

$$
\mathrm{V}_{\mathrm{b}}=\mathrm{ml} \text { 血流 } / \text { 每 } \mathrm{ml} \text { 组织 }
$$

血流速度（blood velocity，u ）定义为单位时间内血流的距离，

$$
\mathrm{u}=\mathrm{cm} / \mathrm{s}
$$

通常 $f, ~ V_{b}$ 及 u 是相关连的，但在病理状态下则不一定相关，V_{b} 和 u 不能完全决定 f 的大小。

氧耗分数（oxygen extraction fraction，E）定义为组织实际耗氧量的比例，如脑组织可能只消耗了

脑血供的 $30 \%-50 \%$ ，E 叮能随着f的改变而发生变化，E还与动脉和静脉的氧浓度有关，
$\mathrm{E}=$ 幼脉 O_{2} 浓度 - 静脉 O_{2} 浓度／动脉 O_{2} 浓度
（上述公式还足 BOLD法成像的基础）组织－而液比例系数（11souc－bleod partition coer－ fici＝nt，p）起义为对某种物质（如对比剂）在血液和组织之间平衡分标＂青見的测量。

平均转移时间（mean transit time，MTT 或 τ ）定义为某种物质通过组织的平均时可，对代向血管外弥散的物质（如（Gd－DTPA）米说，MTT 只有几秒钟，而向组织外弥散的物质，具 MTT 则较长：

注人顺磁性物质（如（rd－I）TPA）的篧注成像和 BOLD 法（炠第四节）均属于磁敏感性技术，磁敏感性物质通过的区域可造成邻近质了弥散云相位，导致信号衰减，即血管周讳组织信号下降。

非损伤动脉磁标记成像是一种无创性（不需泙人对比剂）主更直接的血流灌注评价方法，具有很大发展前景。

二，灌注成像的方法

（一）注入顺磁性物质的灌注成像

梯度同波 $\mathrm{T}_{2}{ }^{*}$ 加权像可以进行灌活成像，但日前多应用 EPI 技术成像，EPI 具有运动伙影少，时间分辨力高，时间浓度井线更准确及扫描层面多等优点。单次激发的梯度回波 EPI 和自旋回波 EPI均叮使用。对某一层或儿县进行动态抖捎，在扫描到若下帧时，平离压泣射器泣入或手推 $0.1 \mathrm{mmol} /$ kg 对比剂（如 Gd－ITPA）完成团注并继续宏成扫描，应用枩处理方法可对结果近行分析。

自旋回波 F．PI 的优点在于：对小血管周團的信号变化敏感，因此能更好地泉必与小动脉和渠细 If．自管关系密切的脑实质信号变化。其缺点在丁信号变化的幅度较小，区而组织问信号着异小，可雨降低空间分辨力或注人更多对比剂米补借。

（二）非损伤动脉磁标记成像

通过对动脉血质子自旋进行连续反转脉冲标记后，追踪此标记在人体（如脑）小的走行，将标儿的图像减去未标记的图像即叮得到血流的定量结果。如果用 EPI 技术只需用单次友转脉冲标记，将标记图像与术标比的图像相減即叮得到血流的定性图像，目前已研究出许多序列，如 EPISTAR，FAIR等，

非损伤动脉磁标记成像无创伤，对血流的评价史直接，肯景橾声小，信号更强，有可能实现㑑流的绝对定旱测量，

三，灌注成像的临床应用

动物买验表明在急吽脑缺迫的儿分钟内，与正常脑区相比，缺尖任区由于低濩注，IIIL 容量减少，其信步下降幅度明步低于W常脑区。在脑梗塞的研究中叮将PI 与 DWI 结合使用，DWI 显小病灶敏感，可指导 PI 的定位；而PI业示的病灶范围大于 DWI，可据此对缺血灶核心（core）周围可逆性低灌沛缺血区——半暲义（penumbra）的宛围进行区分 （当脑血流＜15～20ml／ $100 \mathrm{~g} / \mathrm{min}$ 时，DWI 可显示缺血核心——细胞毒㤢水肿区，当血流低于正常洏 $>20 \mathrm{ml} / 100 \mathrm{~g} / \mathrm{min}$ 时，组织处于低灌注状态而末达到细胞毒性水肺。此时 DWI 不能㯡小゙病灯，PI 则可显示低灌注区的范围），对可逆吽低灌注区再灌注或药物治疗的时限和阀值尚有待进一步研究，研究表明脑㳏塞时 PI ${ }^{1} \mathrm{j}$ MRA殸果的相 X 吽较好。对肿瘤的研究表明，PI 对肿瘤血管分文及血供的评价优丁常规 T_{2} 加权像和增强 T_{1} 加权像，$P I$ 对癫癎叶的定位也有报道。另外，PI 在心肌代谢，心肌活力评价等万面也有极大的科研和应用价值。

第4节 依靠血氧合水平的磁共振成像（BOLD）

一，BOLD 法的基本原理

依靠血氧合水平（blood oxygen level dependent， BOLT））的磁共振成像是目前较通用的脑叻能成像研究方法，对其原理简介如下：当人体进行感觉，运动，认知或其他各种活动时，相应大脑皮层区域被激活，有关的神经元兴侖，代谢加快，导致局部血管扩张，从瞄引起局部血流量和血容积增加，局部血中氧合而红虫向含量亦增加；一个值得注意的事实足，兴奋区动脉血中氧合血红蛋白的供应晕大于神经无兴奋时对氧合血红蛋白的实际消耗量。因此，就静脉血中氧合血纪蛋白的含量而言，兴夲区的含量宂于周围非兴奋区的含量，这样就形成了兴奋风渄兴奋区之间血氧合状态的差别。由于去氧而红蛋白是顺磁性：物质，可以增加红细胞内的磁敏

感性，使红细胞周围产生局部的梯度磁场，进而使邻近质子去相位，在 $\mathrm{T}_{2}{ }^{*}$ 加权像导致侣号降低，肉此，氧合血红蛋壬含量相对较高的兴奋区表现为尚信䒓：

二，BOLD 法的成像方法

（一）扫描方法

首先应用常规白旋區波（SE）序列 T_{1} 吅秘像扫描，获得分辨力较高的解剖图像；BOLD 法最为理想的打描序列为单次激发同波平面成像（single－shot EPI）结合梯度回波或自旋四波序列扫描，开以以每秒若干帧图像的速度获得功能成像，以提高时间分辨力。络处理后将功能图像与拜悋图像相融合。在扫描时被试者保持头部固定不动是至关垂要的。

（二）实验刺激方法

为使神经元兴奋，需根据实验设计监采用不同的刺激方法。刺激设定合理与食对实验的成工煺很大作用，在扫描前对被试者或忠者进行必姴的调练是十分重要的。刺激的与法包括：各种主劫或被动运动刺激，对各感受器的刺激（如光学：刺激，听觉刺激，体感觉刺邀）以及各种诱发鬲级鿑经系统认知社动的刺激等，由于种类较多，在此代一列举：在刺激时还应该根据需要，记求被试者的反应和配合情况。为保证刺激与扫描可步，所通过磁共赈控制触发。

（三）数据的后处理

在所得到的原始为能图像 I ：，除神经无兴夺区有捡号密化之外，还伴有各种伪影和噪声，所以 BOLD 法能够检测到神经元兴奔所可起的信号变化幅度很小（ 1.5 T 时信号增加幅度约 $2 \%-5 \%$ ，在 4.0 T 时约 $20 \%-30 \%$ ）。因此，要爰用后处理技

术对图像进行统计学处理，其中最常用的方法为 t检验和相关检验，后都通讨设计出参考波形（refer－ cnce wave f（rm）并卉所得图像进行比较，显示有效的信号变化。较常用的片处理软件有 AFNI，Stim ulate 等：

三，BOLD 法的应用

使用 BOLD 法进行脑功能成像是一种较新的技术，已用于许多基础和临床研究，包括运动，视
的研究中，不仅证实了大脑初级㳎动区与运动的火系，还研究了复杂运动与前额邤及补充运动区之间的关系，对脑痽患者大脑没荗的代学等也有报道；在视觉度层的砰究方通，退小了光刺激的枕叶皮层的盆号变化，进一步的研究表明，视网膜感受時与视皮层有相对应的关系，运动视觉相对痗的感受区位于疑中凶，对物体的辨认，空问关系的判断以及视觉打导下的学向运动等与视觉皮层的关系也府报道；划语高和记忙等高级认知功能的研究已经有许多报道，神经科学家对此怀有很大兴趣；在恰床研究方诲，BOLD 法脑功能成像应用于包括制定外科手术计划，疗效观察，願痫的检测和定位， Alzheimer 病的研究，药物成瘾机制的研究及中压针刺迳经感传机制的砋究等，摂然很多工：作还处子初始阶段，但研穴前景很可观。

在脑功能影像学研究方面，磁其振 BOILD 法与 PET 相比，具有扫描时间短，空间及时间分挴力高，费用相对低以及无放射性损伤等优点，因而在加深对脑功能的认识，揭示脑生理和病理机制等方面具有很大的潜ノ。
（马 林 安宁豫）

第7章 磁共振波谱分析（MRS）

 1973年 Moon 和 Richard 对完整红细胞和 1974 什。
了MRS在区学领域研究的度搂，特別足近午米随着高场强磁共报仪在人体的商出，以及各种相炎技
剪惟 • 的九损伤性检测活休器它和组织代谢，生化变化，化合物定垩分析的技术 1995 年美妵食品和约物管理局（FDA）已通过该为法为临林的－种特殊检查方法，标忩着MRs技术作惟東问用㡰自已相对成熟，并 1 有差 ${ }^{2}$＂泛的为开前前。

第1节 磁共振波谱技术的原理

磁共振波谱和磁共振成像所采用的原理们很茗
有关原个核共幏和弛橡原埋在前向比有说明，这雨重点对化学伩移原埋和波橧的形成加以介绍。

一，化学位移原理

根据Bloch 力程，当同 种原子核所处的外加磁场 I_{1} 强度－定时，其共振频率比应是一定的然而分了中的原子核并不是＂裸核＂，其四周被电了 二所包围。这些性子在与外即磁场方向毛直的平血了：作语环运动，形成环电流，环电流所产生磁汤
核的作用轮度娍弱，这 一规象称为屏蔽效应 （screcning or shielding effect），凶此化合物中某一特定核的共旅频率应为：

$$
v=\frac{\pi}{2} \quad B_{0}(1-\sigma)
$$

（ σ ：并蔽常数，体现特定核的化学环境）
由此可见，什化合物山即使是同一种原子核 （如 ${ }^{1} \mathrm{H}$ ），由于它在化合物中所处的化学环境不同，Larmor频率就不司。使得在 MR 波谱上产生垬振峰的伦置不同，这种现象称为化学位移 （图4－7－1），

图47－1 乙酸川酯的高分辨1 II－MRS

实际测旱时，不同磁场绌度下化位移的绝对值各不相同，缺之吅交流怍，逝常选HJ一个标准化合物故参照：

$$
\text { 化学低移 }-\frac{V_{i}}{V_{6}}-V_{\text {t. }}-10^{n}
$$

其悩，$V_{\text {测为被测物质原子核的共振频率，}}$ $V_{\text {际 }}$ 为参照物原子核的共振频率，化学位移的单位为户万分之一，即 ppm（parts per million）。

质个磁共振波椪检测时多将四甲基硅中甲基
（一CH3）的化学位移定义为 0.0 ppm ，其他化合物与之对应；磷谱测量时．采用磷酸肌酸（ $\mathrm{P}(\mathrm{r} \mathrm{r})$ 为参照物，化学位移为 0.0 ppm 。

由于不同化合物中原于核的化学位移不同，可以根据其在 MR 波谱中共振峰的位置加以鉴别，共振峰的积分面积与共振核的数目成正比，反映化合物的浓度，可进一步进行定量分析。

二，信号采集与分析

共振原子核在驰豫过程山由于能量和相位的变化被感应线圈接收形成的侣号是一种京指数衰减的信号，如本篇第 1 章第 4 节所述，称为自由感应衰减（FID），经傅利叶变换为波谱，它是出不同共振频率原子核产牛的多个共振峰组成。每一波谱订反映许多信息：
（1）化学位移：反映原子核任化合物中的微环境，在体测量时代表不同的化合物；
（2）波峰高度或面积：与共振质子的数日成正比，代表化合物的浓度：
（3）波峰的米高全宽（FWHM）：反映驰豫时间，因为 FWHM 与 T2 他豫或负相关；
（4）其他：如 $\mathrm{p} \ddagger \mathrm{I}$ 值，温度等。

第2节 活体磁共振波谱检测技术

目前可用于生物体检测的原子核有 ${ }^{1} \mathrm{H}, ~{ }^{31} \mathrm{P}$ ， ${ }^{13} \mathrm{C}, ~{ }^{19} \mathrm{~F}, ~{ }^{23} \mathrm{Na}, ~{ }^{17} \mathrm{O}$ 等，其中以前两者最常用。与化学分析中对单一纯净化合物的检测不同，活体（In rivo）MRS 所检测的是体内化合物中所含原子核的分子基团，如 ${ }^{1} \mathrm{H}-\mathrm{MRS}$ 波谱主要为休内含 CH_{3} —， CH_{2} —基团的化合物，因此检测更复杂，影响因素也较多。

—，活体磁共振波谱检测的影响因素

原子核的自然丰度和固有敏感性及其在生物体内的浓度是影响 MRS 检测敏感性的主要生物学区素，硬件环境上要求高场强，高均匀度。MRS 检测的敏感性与磁场强度的 $2 / 3$ 次方成正比，场强越高，敏感性和分辨力越高；均匀的磁场是犾得高分辨波谱的必要条件，要求比MRI更严格，在进行 MRS 检测前必须进行匀场，射频信号发射和接收

线圈的大小也影响磁场的约分了性和信噪比。测量参数的选择包抧所采用的检测序列，脉冲的倾角及 TR 和 TE 时间等。不同的序列对波谱中代谢物的信号强度有一定影响。例如，点分辨波谱（point resolved spectroscopy，PRESS）序列所得到的信号强度约为激励回波探测（stimulated echo acquisition。 STEAM）序列的 2 倍，脉冲的倾角和TE 时间直挼影唎信号的强度，大倾角和短 TR 时，原子核的弛豫少，信号强度低，这与代谢物的 T1 时间密切相火。缩短 TE 可有助于对体内某些代谢物的检测，如在较短 TE时，脑内的谷氨酸和谷氨酰胺，肌醇等短T2化合物易于检出，当 TE $\geqslant 3$ 倍的 $T 2$ 时，这些化合物的信号就有损失，长TE 时由于复杂信号的相互作用，导致共振信号的反向去相位，比可使某些化合物难以检测，但长TE时波谱的的场较容易。

二，体磁共振波橎检测的空间定位技术

在体 MRS 检测时一个重要技术就是将被检测范围局限在一定容量的感兴趣区（ROI）内，即空间定位技术。这样才能对病变区域的改变进行分析，并且与MRI 检查结果相络合进行综合分析，以提高 ROI 区域内化合物检测的敏感性，减少部分容私效应。日前研究人体 ${ }^{1} \mathrm{H}$ 波谱最小 ROI 可哒到 1 ml 。有许多方法可完成空间定位，常用并且较为成熟的定位技术包括：简单表面线圈法，静磁场变化法规梯度磁场法，前两者目前已经很少使用，后者技术发展较为成熟，且前应用最广＂泛。包括深部分辩表面线圈波谱分析法（depth resolved surface coil speciroscopy，DRESS），单体无选择法（single voxel selection）．

1．DRESS 法 为较为简单的定位方法，在简单表面线圈法的基础上，选择一个梯度脉冲激发 $\underline{l}_{\mathrm{j}}$体表面间隔一定距离并平行于表面线圈的单一层面，使 $\mathrm{RO1}$ 信䒓来源于该层面。即在 90° 脉冲发射的同时，施加一Gy 梯度场，所采集的层面深度由梯度场和脉冲频率而决定，层囬的厚度与脉冲的带宽有关。（图4－7－2）

2．单体元选择法 包括活体图像选择波谱分析法（image selected in vive，spectroscopy，ISIS），激励回波探测法（STEAM），点分辨波谱法（PRESS）等，射频激发时利用梯度来选择激发某一层厚内的

图 4－7－2 DRESS 序列示意图

原子核，层外原子核不受影响，如利用脉冲橾度磁

场 $\left(B_{1}\right)$ 激发三个垂直半面 $(x, y, ~<)$ 的原子核，则可达到三维空栵定位。非ROI区域的信号通过相位循环（phase cycling）而消除，该方法的定位准确，并可直接与 MRI 相对虽。

1）ISIS 法：在施加梯度场立同时施加一选择性的区转射频脉冲。通过多次射顷脉冲或开或关的作用，对所采集的数据进行加减，最辰叮得到二维或二维某－区域（ROI）内的信号。二维定位需激发和采集 4 次，而一维定位则需 8 次。（图 4－7－3）。该方法的优点为可以从常规 MRI 选择测量的 ROI区域，缺点为所采集的信号含有较多的 ROI 以外的信号。

图 4－7－3 2．）－1SIS 方法 ROI 选择示意图

2）STEAM 和PRESS 是－－次激发时在三个垂直层面可时施加选择性 RF 脉冲，最后的信号来源于三个层画相交部的立方体内，两者不闲的是： STEAM 为 二个 90° RF 脉冲，而PRESS 为自旋回

波脉冲，动 $90^{\circ}, 180^{\circ}, 180^{\circ}$ 脉冲（图4－7－4）， STEAM な列的优点为定位好，ROI 区域外的信号少，但俭噪比较 PRESS 低。这两种方法为目前最常用 MRS 定位方法。

图 4－7．4 STEAM 序列和 PRFSS 序列示意图及所测 ROI 区城的波谱在 MRI 1 ：的定位

3．化学位移成像波谱法（chemical shift imag－ ing，CSI）该方法所采用的定位技术与 MRI一样，即用相位编码对检测区域内的每个体元进行编码，在一次测量中可对一定数量的体元同时检测，得到一定区域的波谱（图4－7－5）。每个体元的大小由所选择的矩阵和显示野大小决定。该方法的优越性是

图 4－7－5 CSI 序列示意图

可以进行二维和三维定位，而且每次检测包括多个体元，使得正常和离变波橧容易比较。但是，由于每个体元的容积较小，信号强度较低，采集时间长。

4．波谱成像（spectroscopic imaging，SI）是指采用特殊的化学位移区域内所得某种化合物的共振信号转换为可视图像的方法，该方法是常规 MRI成像方法的延伸，可视性强，乌标准成像方法的区别在于收集数据时不用频率编码来保存波谱的信息，而利用梯度对空间信息进行相位编码。由于在二维及二维中必须用相位编码及信噪比的限制，矩阵数总是很低。相位编码涉骤㢣琐，采集时间长，一次检查只能采集一种化合物。

三，活体碚共振波谱检测中化合物浓度的定量测定

对化合物进行定量是临床 MRS 应用的一个重要要求，由于波谱中共振峰的面积与化合物中质子的数量成 代比，所以理论上完全可以达到这一要
 MR 设备（如射频场的不均动恢而导致反转角的变化，接要线圈稳定吽的变化等）利午物组织本第的因系（如 T1，T2 和涼子㤥之间的稆合等），导饮必际测昆困难。白前利县波谱进行化合物念量分析的方汰主要有相对值利绝对伯浓应分析：相对值剈对波谱的不同化合物的信号强度（用积分自积表小゙）进行比较，如 $\mathrm{NAA} /(\mathrm{Ch}), ~ N / \mathrm{Mr}$ ，（ho／Cr 等：该方法筩单，易行，叮以排除MR 设备因素的十扰，价孩方法得到的只是相对值，对分析含显的变化有

宇的困难和复杂吽，如化合物 A 和 B 的比俏为 1／2，在两者同时下降 50% 叔，A迫 仿为 $1 / 2$ 。早期波谱分析曻采用该法：绝对化浓度（absolute con－ certration）计算方法有网种：其一为外标准法（ex－ ternal standards）：即在 MRS 测邁时，将已知浓度

的化合物体模置于被检查部位的一侧，同时扫藟，然反将测量炶果与其相比较得到化合物的绝对浓变。该方法受 MR 设备终萦和生物因素影响较大。其二发内标准法（imernal slandards），利用体内己知农废的化合物作为参照（如水，肌酸）进行化合物浓变的认算，该方法受MR没备利牛物学因素影响较小，但正求化合物浓度必须匹知，并且在生理变化过栓中保持怛座，日前多采用该方法。

第3节 MRS 的临床应用

一，质子磁共振波诸（ ${ }^{1} \mathrm{H}-\mathrm{MRS}$ ）

${ }^{1} \mathrm{H}$ 的口然声度和敏感性在所有应用的核中最高，检测的敏感性出最高，是 MRI 的基础。 ${ }^{1} \mathrm{H}$－

图 4－7－6 正常人䝶质与波谱

MRS 可检测与脂肪代谢，氨基酸代谢以及神经递质有关的化合物，如肌酸（Cr），胆碱（Cho），肌醇 （ mI ），γ－氨基丁酸（ GABA ），谷氨酸和谷氨酰胺 （Glu＋Gln），乳酸（Lac）和 $\mathrm{N}-$ 乙酰门冬氨酸 （NAA）等。 ${ }^{1} \mathrm{H}$ 波谱的化学储移范围窄（ $8 \sim 10 \mathrm{ppm}$ ），许多化合物的波峰相互重叠，影响波谱的显示和分析。临床应用时还需要特殊的水抑制技术，人体组织中水的浓度约为 $80-90 \mathrm{M}$ ，而其他化合物的浓度不到 $10 \mathrm{mmol} / \mathrm{L}$ ，如不采用水抑制，或水抑制效果差，强大的水信号可以影响其他化合物的探测以及掩盖波谱中与水相邻近的许多浓度较低的化合物，并且促使基线上移。与 ${ }^{3 l} \mathrm{P}$ 波谱比较，氢质子的敏感性和空间分辨力较磷－31波谱高：如在脑组织对

体积为 $8 \mathrm{~cm}^{3}$ 的 ROI 区检测可以在 10 分钟内完成， $\pi_{1}{ }^{31} \mathrm{P}$ 波谱在 10 分钟内需要对 $50 \mathrm{~cm}^{3}$ 体积的 ROI进行检测，方能得到较好的信噪比；临床 ${ }^{1} \mathrm{H}$ 波谱检测不需要另增加磁共振仪硬件设备；MRS 和 MRI可以在一次检查中完成，不需要病人重新定立和调换线圈。
（一）质子磁共振波谱（ ${ }^{1} \mathrm{H}-\mathrm{MRS}$ ）在脑的应用：
人脑磁共振波谱检测最常用的是质子波谱。图 4－7－6示正常人脑质子波谱，正常人脑内化合物的分布存在差异，这种分布差异与神经生物学和神经化学研究的分析结果基本一致。活体脑质子波谱所检测的主要化合物及改变的意义如下：

NAA：人脑中含有大量 $\mathrm{V}-$ 乙酰氨基酸，其

图 4－7－7 星形细胞瘤（II 级）MRI 和 ${ }^{1}$ H－MRS
A．T1 加权像示俩变及 MRS测量区域 B．朋瘤区 ${ }^{1}$ H－MRS，显示 NAA 含量下降，Cho 信号增高，异右乳酸含量升高 C，D．病变对侧半球相应部促及其 ${ }^{1} \mathrm{H}-\mathrm{MRS}$

胆碱（Cho）的化合物中流动性较强的能被磁共振检测到的成分（MR visible），如磷酸胆碱，磷脂酰胆碱等，这些物质主要存在于细胞膜卜，信号强度改变反映细胞膜构成和联结的变化，在膜合成旺盛和降解活跃时均吕现上升趋势。随着脑的发育成熟， Cho 逐渐下降至稳定。在脑朋瘤中，由于 Cho 含量

质高和 NAA 下降，导致 NAA／Cho 比值下降，在恶性肿瘤中该比值下降较良性肿瘤为著，两者有显著性差别；在多发吽硬化，肾 E 腺营养不良性脑病和感染吽疾病如艾滋病（AIDS）中，Cho 的㰢高提示活动性脱隨鞘的发生。

图 4－7－9 脑膜瘤 MRI 和 ${ }^{1}$ H－MRS
A，B．TI 和 T2 觔权像示病灶和MRS测量区 C．病变区＇H－MRS，泉示VAA含里明显下降，几乎消失，Cho 含

Lac：乳酸为䅯酵解的终产物，化学位移在 1.32 ppm ，由于耦合效应（J－coupling）可形成双峰 （图4－7－8）。化学位移4．1ppm 处世可有乳酸信号，但是由于接近水信号而一起被抑制和掩盖。止常情况下细胞能量代谢以有氧氧化为主，所以在 ${ }^{1} \mathrm{H}$ 波谱上往往检测不到乳酸。而在缺血／缺氧或者高代谢状态如恶性肿瘤时，糖酵解过程加强，乳酸生成增多，使得乳酸信号强度增加。有报道 Lac 含量与肿瘤的恶性程度有关，佔多数研究显示乳酸含量与肿瘤的病理分类无明显相关性，乳酸含量的增加反

映肿瘤组织无氧代谢增加或肿瘤出现坏死。乳酸信号有时和脂质信号相重叠，采用不同的 TE 可加以鉴别，如 TE 为 270 ms 时波峰向上，TE 为 135 ms时波峰向下。

Lip：细胞膜上的脂质（Lip）弛豫时间很短，正常测量条件时难以检测到该峰，出现时往往是由于 ROI 接近顾骨而混合有颅骨和头皮内的脂肪。来用短 TE 可在 $1.0 \sim 1.5 \mathrm{ppm}$ 处检测到脂质峰，包括不饱和脂肪酸中的甲基，亚甲基。这些化合物可在高度星形细胞瘤和脑膜瘤中升高，也可反映环死过程
\qquad

中磁脂形成过多
ml ：肌醇是 种蚽し醇，采用较短㑑 TE时出现作 3.56 pmm 处，在的内的共体作用月前常ボ十分明确，叮能卡胶贡潧生有关。在䊀水病利透析病

的特异性
分关和化含物，如 GiABA，Gin 等，有助一丁活体勚究这毕化合物任体以代谢时敳变。（ A ABA是…种兴奋州氨基酸，在 Naheinner 病下路，庄攧挶中
化
（二）质子磁共振波谱（：H－MRS）在其他器官的应用：

受来集技术条件利强大的水年指肪俭多的影
查上亚用输少，直肠线圈利相控线淃的hi用使质 f^{-}波

谙用十前列腺的检查。构㭬酸存在于在前列腺的腺体山，前列腺增生时圤高，而在前列腺癌导下降，具有鉴别诊断总义。

二，磷－31 磁共振波谱（ $\left.{ }^{31} \mathrm{P}-\mathrm{MRS}\right)$

${ }^{31} \mathrm{P}$－MRS 在临沐中的府用也很广泛，${ }^{31} \mathrm{I}$ 的自然六度为 100% ，其谱需较质子窥（约 50 ppm ）。但其敏感性只有䅁质孔的 6.65% ，生物体内论多庁 ？都含有 ${ }^{3!} \rho$ ，而且诈罗含磷化含物参 -5 细胞的能
被厂泛应用于研究组惧能翼代谢和生化政变。活体生物组织 ${ }^{3} \mathrm{P}$ 波谱通常可以检测出 7 种不同的化合物，虾磷酸单脂（PME，6．8ppm），磷酸二脂（PT） C ， 2.9 ppm ），橉酸肌酸（ $\mathrm{PCr}, 0 \mathrm{ppm}$ ），天机磷（ Pi ，

 7－10）。不间器官其磷谱也代尽相网，如肝脏的 ${ }^{2 \ell} \mathrm{P}$谱中九磷酸肌酸信号。

1993 年：Moon 和 Richards 提出应用磷测量细胞内的 pH 佔 。无机磷（ Pi ）位活体内主恶以 $\mathrm{HPO}_{4}{ }^{2}$和 $\mathrm{H}_{2} \mathrm{P}^{\mathrm{P}} \mathrm{O}_{4}$ 的形式存在，化无化学反应时两种离子存有两个共报峰，其化学位移相差 2.3 ppm ，但化活体情况下两种离子相万，转换排常迅速，因此只刊产生：－个共振峰，化学位移是由两种离厂的相对含黾所决是。1 FH 低可由下列方程计算

$$
p H A=\mathrm{pKa} \mid \log \left[(\sigma-\sigma) /\left(\sigma_{2} \sigma\right)^{-}\right.
$$

pK 为 $\mathrm{HPO}_{4}{ }^{2}$ 和 $\mathrm{H}_{2} \mathrm{PO}_{4}$ 平衡状态旷的 HH

值，$\sigma_{1}, ~ \sigma_{2}$ 为两离子放化学位移。 σ 为实际測量到的化学位移，在体测量时，只需测量 P1 的化学们移，根据标准滴定曲线，即可得到细胞内的 II佔，计算公式为

$$
\nRightarrow H=6.77+\log \left[\frac{(\Delta P i}{(\Delta .29)}\left(\begin{array}{ll}
(5.68-\Delta P i)
\end{array}\right]\right.
$$

（一）磷－31 磁共振波谱（ ${ }^{31}$ P－MRS）在脑的应用脑的 ${ }^{31} \mathrm{P}$ 波谱可检测到的化合物有磷酸单脂 （ P ME ），磷酸二脂（ PDE ），磷酸肌酸（ PCr ），无机

磷（ Pi ）和一磷酸腺薄中的 α－ATP（ 7.6 ppm ），β
要用于研究謪组织的能量代谢和脑磷脂代谢，以及 pH 值的测星。

活体研究显示，新生儿利成年人脑组织的波谱不同。Laptook 对新生儿至 8 个半月的赑幼儿进行 ${ }^{31} \mathrm{P}$ 波谱观察发现， $\mathrm{PCr} / \beta-A T P, \mathrm{P} \mathrm{Cr} / \mathrm{Pi}$ 的比值随年龄增大而尿高，另有研究显示随着午龄的增大， $\mathrm{PME} / \beta-\mathrm{ATP}$ 和 $\mathrm{PME} / \mathrm{PCr}$ 下降，向 PDE / β $\mathrm{ATP}, \mathrm{PCr} / \mathrm{P}_{1}$ 升膏，这种政变士荌发生在 3 岁以前。脑肿瘤表现在 ${ }^{31} \mathrm{P}$ 波谱上表现为 $\mathrm{PCr} / \mathrm{T}_{1}$ ト降， PME 升高， pH 值呈止常或碱性。PME 卆要存在于细胞膜上，在生长快的组织和细胞膜合成增加时，含量可以增高。肿痛组织巾 PME 增高提小゙肿瘤细胞膜成分和细胞联结增加，可能与肿溜细胞磷脂合成增多有关，这方面与 ${ }^{1} \mathrm{H}-\mathrm{MRS}$ \＆Cho 的改变相对应。Sanuki 还将 ${ }^{31} \mathrm{P}$ 波谱用来观察脑肿瘤的治疗效果。发现 PME／B－$\Lambda T P$ 比值于放疗䛇下降，并且与疗效有火。在脑缺自／缺氧状态，MRS听用以观察脑梗塞不同的期能星代谢，氨基酸代谢以及 pH 值的变化，${ }^{31} \mathrm{P}$ 波谱可在 30 分钟内发现无机磷 （Pi）信号增高， pH 值在一小时从闭塞前的 7.11下降到 7.04 ，因此 MRS 可以更古地作出诊断，新生儿空息可以发生不同程度的 $\mathrm{PC} 2 / \mathrm{Pi}$ 敌变，并与其严重程度有关，有人认为 $\mathrm{PCr} / \mathrm{Pi}$ 低于 0.8 者预后较差，随着病情船好转， $\mathrm{P} \mathrm{Cr} / \mathrm{Pi}$ 可以升杗 Alzheimer 病颖顶区的 PME 和 PME／PDF 升高， P 。在额颞顶叶才高，而多发性皮层下梗塞 $\mathrm{PCr} / \mathrm{Pi}$ 升高，两者任 ${ }^{31}$ P波谱表现上们差异。
（二）磷－31 磁共振波谱（ ${ }^{31}$ P－MRS）在肝脏的应用

肝遮是人体中最大的器官，由于其位置接近体表，成为 MRS 研究的一个重点领域。可采用的定位测量技术有表面线圈结合预饱和以消除表面肌肉的信号，DRESS，ISIS，和三维波普成像（SI）法。

正常肝脏 ${ }^{31} \mathrm{P}$ 波谱可检测到六个（图4－7－11），从右到左分别为 $\beta-\Lambda T P, ~ \alpha-\Lambda T P, \gamma-A T P$ ，磷酸双脂 （ PDE ），无机磷（ Pi ）和僯酸单脂（ PME ）。一般病无磷酸肌酸，如果出现则说明测量区域内含有殷肉成分。PME 信号至少用 10 种化合物组成，其中主要的有磷酸胆碱类和磷酸乙醇胺（PE）。这些物质为脂质膜形成的前驱物，参与细胞膜的生淢代谢，有

图 4－7－11 正常月－脏 ${ }^{31}$ P－MRS
时可有来源丁掹池 二，僯酸は油酯（2，3－DP（ $)$ ）信号约 PME 信只的重叠 PI）E 信号主要来源 a 水溶吽脂质化合物磷酸甘油继碱（GTP），二匚。磷酸尿药 （LTP）和磷酸丙的司烯酸（PEP）等，（G1P 和 UTP 为磷脂代谢的中间产物。在目前临沐使用的场强下，这些化合物难以区分，而㳖现为较宽的波峰， P \vdash^{1} ATP 和ADI 相结合可反映细胞能量代谢状况。它的化学位移受细胞内 pII 值的影晌，正常肝脏的 $\mu \mathrm{H}$ 伹为 7．2－7．4．

在肝炎，肝硬化的研究中，不同研究单位的结果存在差舁，这一所采用的定位方法和测量参数有天，选代化合物比值进行比较时，可衣现为 - 止常对照无明䁔差异；值如测量化合物的绝对浓度时，除 PME 外，其他各化合物的浓度降低 13%～ 50% ，但肝炎和肝硬化之問 反显著差异。 1 型糖原积病人过夜禁食后 PME 利高， Pi 下降， $\mathrm{Pi} / \mathrm{PME}$明显降低，PME 井高是出于糖磔酸盐（主要的糖代谢中间产物）积聚所致，正常对照组口股糖后 PME和 Pi 无变化。高 PME 含晕说明残余的六磔酸果糖酶活性：增强，增扣了筩黎糖的牛成，降低禁食后高脂血症的程度。Pi 的明显波动与水酸产生直接付关。肝癌的 ${ }^{31} \mathrm{P}$ 波谱衣现火 PME ， PDE 和 Pi 含量升高，以 PME 和 PME／ATP 歼高为特征。PME 升高代表肿瘤组织细胞膜合成代谢增多。 另外叮内哏 ${ }^{31}$ P波橧观察肿瘤的治疗效果知判断预后，治疗后磷酸化合物和 Pi 信号下降时预后较好；在检塞治疗早期，如果 ATP，PME 下降，提示预后较好，肿瘤缩小。多数研究显示不可的恶性肿瘤其波谱的差别不明显。
（三）磷－31 磁共振波谱（ ${ }^{31}$ P－MRS）在心脏的

应用

止常代谢心肌主要采非何氧氧化途洤产生 磷酸腺型（ATP）提供心肌细胞收缩和维持细胞稳定状态的能星，游离脂牥酸和利葡糖火主要供能物原，分别提供 $40 \%-60 \%$ 和 $20 \% \cdots+0 \%$ 的能源。平时

体和乳酸多。心肌缺血忖。 二羧酸循环过程受阴，无至醏解过程戊为主要的产能途径生成 NTP，引起乳酸堆积，pII值卜降：此过积所产生的ATP少，仅为心服需要的 $10 \%-20 \%$ ，迈不能维持心脏的收缩功能，磁共振波谱提倛一种尤创性检测心眀能量代谢变化的支术，在活体动圽和离体心脏大
射性同伦素技术如PEY和SPECT 方法的补允。但是二前发限来看仍有许多因素限制其在惟林的应用 而敏感性 在月前常闰的磁场强度情况下，要得到足够的信噪比要求所测组织的＇本积人。渂量的间长，一般为 $25-50 \mathrm{ml}$ 䉼要 $20-30$ 分钟：盆精确的疋位技术 日前常用于心脏 MRS 测量的定位 J法臽 DRFSSS，ISIS，（S1，化学位移成像（SI），仍有待改进。Bot1omley曾列举了心脏 P－31 波谱检测时以能出现的不同波谱，其原因为测量以域内含有不忊程度的脂䟙，肌肉和心控血液所致，由于定位技术的缺陷，使得心腔内血液中2．3－2 磷酸甘油酯的信号与j肌酸倍号相混合。鉴别林难：（今心㖢门控技术。

让常人心肌 P－31 波潽叫检测到的化合物创括： PME，PIOE，Pi，PCr，$\alpha-\Lambda I P, ~ \beta-A T P, ~ \gamma, A T P$ 。 （图4－7－12）各化合物的含革在不同的研究组中有一定的差异，国内研究划正党人测量结果为： $\mathrm{P}(\mathrm{Cr} /$ $\mathrm{ATP}=1.58 \div 0.19, \mathrm{Pi} / \mathrm{PCr}=0.36 \leq 0.17, \mathrm{Pi} / \mathrm{ATP}$ $=0.59 \therefore 0.17, \mathrm{PCr} / \mathrm{Pi}-2.86-1.32 . \mathrm{pI}[=7.19=$ 0.09 ，

当冠脉发生部分狭㝘时，冠脉血流晕与心肌的代谢物存在着线性相关，PCr／Pi 在冠眿衁流下降 20 名吋即可出观降低改变，血 $\mathrm{PCr} / \mathrm{ATP}$ 比值只有下降 50% 应有下降政变。大茸的动物实验研究显小：当冠快动脉完全阴塞时，PCr 抆速下降，伴随
时间的延た，ATP 开始下降，心肌内 pH 值它酸中毒表顶（逄4．7－13）。如果此时冠脉再道，心肌得到

图4－7－12 上常心朗＂P－MRS
再灌汗，在一定时间后，上述改变可恢复到止常水 F．肙心肌细胞为不汀逆颃伤时。ATP进 步下降，Pi 维持奝浓度状态 因此根据能显改变的特

約4－7－13 心郥使死荷人 ${ }^{31}$ P－MRS

点叮区分正常心肌，缺血心肌租䅡死心肌。P－31波谱还可用于某些药物对心肌保护作用的观察，存重度扩张性心肌病人 P（rr／ATP 比值朋鼠低于下常，此时射血分数（EF）也明鼠降怟：而在轮度扩张性心肌病波谱表现与正常人相似，肥字性心肌病时 $\mathrm{PCr} / \mathrm{ATP}$ 的比佰可正常或降低，同时发现磷酸双脂（PDE）信号增离，PDE 参 $\ln ^{1}$ 细胞膜的代谢，其含量改变与细胞职的合成与分裂有关。心肌病人在静态测量时波谱可无异常改变，但在运动后其波潽往往显小゙其常，表现为 PCr ト降和 pH 的酸性化。
（四）磷－31磁共振波谱（ ${ }^{31} \mathrm{I}^{3}-\mathrm{MRS}$ ）在骨骼肌的应用

人体MRS研究首先位肌肉组织进行，这是因为骨骼肌位于体表部位，定位方法简单：臽然有少数采用质子波谱，叮检测出肌肉组织内的肌酸，肌碱类化合物，肌肽和脂肪酸，但绝大多数仍以磷谱为主要方法，可直接观察肌肉组织的生物能量代谢㕲测量肌细胞内的 pH 值，静止状态时肌肉 ${ }^{51} \mathrm{P}^{1}$ 波谱的特点为 PCr 含量较高， PME 种 PDE 的含量较低（图4－7－10）． pH 值为 $7.10=0.04{ }^{31} \mathrm{P}$ 主要 会用在三个方阴：（1）肌肉收缩和工作过程中的牛物能量代谢变化；（2）肌肉疲劳病因学和发展；（3）肌病的代谢和功能变化。

肌肉收缩的直接能源来源丁ATP 的水解，然的肌肉内 ATP 的含量较少，只能维持肌肉短时间的活动。在脊椎动物的肌肉内存在着只一利高能物质，即 PCr ，它是肌肉高磷酸根的储存库。肌酸激酶叮催化 PCr 释放出高磷键，并可转移给ADP，生成 ATP：

$$
\mathrm{ADP}+\mathrm{PCr}+\mathrm{H} \rightarrow \mathrm{ATP}-\mathrm{Cr}
$$

当肌肉收缩时ATP 分解䓝放能量：

$$
\mathrm{ATP} \rightarrow \mathrm{ADP}+\mathrm{P} .+ \text { 能量 }
$$

利用 ${ }^{31} \mathrm{P}$ 波谱中所测得的 PCr 和 Pi 的含量变化可以分析氧化磷酸化的调节作用，并可利用 $\mathrm{Pi} /$ PCr 比值分析肌酸激酶的活性， $\mathrm{Pi} / \mathrm{PCr}$ 比值义称为＂能量消耗率＂，其比值与正常吹肉上作状况水平存在着线性相关性，而线性曲线变化的斜率及业线粒体维持细胞能量供缩的能力：经过训练和非训练者之间仔在着显著差异。

随着 MRS 和运动设备的发展，可直接观察肌肉在不同运动状态下 ATP，Cr，Pi 等的变化，从

丽探讨能量代谢变化在肌次疲劳时所起的作用．．．各种吸病如磷酸果糖激酶症（PFK），McArdle’ $=$ 肌病的波谱研究在近来也在较大的进展。不珂状态下其 ${ }^{31}$ P波谱均有相益的变化特胙，引起组织氧化代谢受损的次病，如心衰，呼吸衰踢，和周围血管性䛈病。运动时肌肉 PCr 和 pH 的下降较止：常人明出。出然这些炇病所引起的肌肉波谱改变相似，仵原因确不尽相同。

对软组织内肿㨨的仾究品心肿瘤㹍位的 PME， PDE，和 Pi 信号增高，PCr降低，PME 和PDE信号增高反应肿瘤细胞膜的脂质代谢增强，与肿瘤细胞膜合成和转换加快有关。PMF，和 PDE 含量的增高的肿瘤的分化程度有…定相天怍。肿瘤组织经放疗或化疗后，其波罚也有柏应的收变。不同组织类型肿熘波谱的特异性不明显，訨高场强的药验条作下，肿瘤及其治疗前后的 ${ }^{\text {¹ }} \mathrm{P}$ 波谱均有相的的变化

三，碳－13 磁共振波谱（ ${ }^{13}$ C－MRS）

${ }^{12} \mathrm{C}$ 的敏感性只有氛的 1.6% 。自然非度也很低，${ }^{13} \mathrm{C}$ 的信号强度只有 ${ }^{1} \mathrm{II}$ 的 $1 / 5600$ 。这就限制 $5^{13} \mathrm{C}$ 波谱在生物体中的应用：${ }^{13}$（ ${ }^{1}$ 波谱的伦学位移观察范围宽（约 200 ppm ），它的共振峰不易重叠，分辡力高。牛物体内大量存在的为 ${ }^{12} \mathrm{C}$（自然专度为
如果注人 ${ }^{13} \mathrm{C}$ 标记的化合物，置换体内的 ${ }^{12} \mathrm{C}$ 。就可使葉些特定化合物中的 ${ }^{13} \mathrm{C}$ 含喱增多，进而加强其信号强度，用这些＂磁化＂标记的化合物作为示踪物（labeled ：ndicator），可以研究某些生化代谢途径，如用 ${ }^{13} \mathrm{C}$ 标记的乳酸，缬氨酸，兑氨酸等，研究，碜酸循环代谢和糖原代谢，

四，钠－23 磁共振波谱（ ${ }^{13} \mathrm{Na}$－MRS）

${ }^{23} \mathrm{Na}$ 的白然丰度为 100% ，敏感㤢为 ${ }^{1} \mathrm{H}$ 的 92% ，体内含量较高，是细胞外的主要阳离了。但足在波谱中只能观察到一个共振峰，不能区分细胞内，外的钠离子，对完整的红细胞，组惧和整注器空进行研究时，嗞用一些顺磁吽物质（如三聚合磷酸镝），使细胞外钠的共振频率发生位移，这样可以加以区分，应用该方法可以研究钠离子转运和细胞膜钠－钾泉的功能。＂3a－NMR 㳀像还可用来研究肿瘤的水肿。

五，氧－19磁共振波㫪（ ${ }^{19} \mathrm{~F}$－MRS）

${ }^{14} \mathrm{~F}$ 的即然平度为 100 鼒，敏感性也较高，为头的 83% 。但生物休内儿平休含有 ${ }^{14} \mathrm{~F}$ 。活体 MRS研究时皬佔助人1．注射含氟化合物。观察其

在体内代谢的变化，如静脉注躲扰癌约物 5 －氟赇嘧啶（5－Fu）合，观察肝脡中该药的药代动力学和代谢变化：

第 8 章 MR 信号异常的分析与诊断

第1节 信号异常的病理牛理基础

MRI作为 种行之有效的检查庐法，质方兴末艾。由丁 MRI的信号强度是多利组织特沚：参数，扫描时间参数的焐变函数，刚此，它所反歎的病理生理过程较 CT 更具体，更深人，只而次定了这种检査方法更具有开拓性 MRI 们号强废与组织的弛豫时间，弥散系数，氢质了密度，III液（或眩脊液）流动，化学位移以及磁化率效应有关，其中弛稳时间 即 I1 和 T2 对图像对比起了車要作男，它是区分不同正常组织，区分止常与先常组织的主要 MRI 诊断基础：

在．T1 加权图像（weighted imaging WI）中，低信号通常说明组织的 Ml 时间长，如骨䯘肌；含脑脊液的炶构呈低信号，高保号常常表朋组织的 T1吋间知，如皮下脂肋，由静脉汗射 Grd－DTPA 「茫。一些止常组织由丁 11 肘间缩短而成高信号，如脑垂体。病变造成 Tl 时间延长时，病变 r 吉低傏 号，如脑软化，习惯上称其为长 TI 㾈变。病变引起 T1时间缩短时，病变呈高信号，被称为知 T1 病变。如亚急性血肿一些病变由丁含有较特殊的物质，其信号也发牛变化。正铁血细虫向呈育信号，墨色素也呈高信专。绝大多数钙化宁低信号。但也有呈高信号的。病变由于脑血垪垶破坏或高血供时，化做增强扫描时信岁明品增高，标之为异常对比增强。

在 T2 WI 小，低信资通常说朋组织的T2 刑问短，如骨骼肌。高拈号常常表明组织们T2时时发，如含脑漛液的结构，病变造淢 T 2 时间延长时，病变字高信号，如水肿，神经胶质增牛，坏
变。病变引起 T2 时间缩短时，病变㖛低信号，被称为短T2病穻，如急性血肺，脱诵血红蛋向，含铁血黄素等呈低信号，一些病变由下含有较特殊的成分，信号也有改变：黑色条古低信号 绝大多数钻化也呈低信号：由于顼磁性效应，铁，铜等均衣

沉为低信号。
夜 P （D）WI．某些瘳变侌质子数量多．如昨㨨细胞排例致密的髓的细胞㨨，龺高估号 昘气的
道等无気质子，致密呰含（闪动性）氡压子少，九论是TIWI或T2WI上述部偏无保号或低信号

血液 MR 信号复杂—伿号多变的原因师于血液本身的属性，的流动与学以及 MRI 是 种对信克强度与相信都很敏感的检杰力法，血液品一种休牛顿液体，随着流速的增快共粘性下降，由于含水多，殈液具有當质厂密度以及长 T1 时间（任 1.5 T设备中为 1200 ms ），脱䍵血红蝉向是强顺嗞吽物质，所以岶液的磁化状态有賴于氧化的利淀，有： 1.5 T 中，芺迫氧饱和度由 30% 增加到 96% 时，其 T2从 30 ms 延长至 250 ms ，动脉血 T2 约 200 mis ，静脉血钅2值要小得多：如果不步虑血液的流动效
高信毞：血液流涑，血液有向以及血波性质（层流，湍流）均可对血淮 MR 信可的肜城施加影咃

磁化率，化学位移，弥㪚系数，流动效府对 MR 信号的影响亦本篇其他亭有较详细的论述；

由于 MRI率先閉于品示中枢神玲系统疾总。所以，对此类病变信号异常的病理基础已分较好认识，下面，拟以中枢神经系统为車点展开论论，其基本原理也适用于其他系统。

一，水

化正常人体组织中，MR 倍号的 80% 来自细脃内，20\％\％源于细胞外间隙。内于水在细胞内抑或细胞外是广为分何的，人体豽水对造成 MR 倌号贡献最大，水的 T1，T2 时间长，质子密度较低。它在 MR 图像 1 。其有一定的持征－鉴丁 MRI对下组织内水含量的软微增减在明显的敏感性，研究水与 MR 信号强度的相关性一直是 MRI不可缺少一门课题，

局部组织水含量稍有改变，不管是自同水还是结合水，MR 信号均吅发生程而易见的变化，相比

之下，前者较易影小 水分子非常小，它们术停地处于中移，摆动利旋转抎动之中。其有较高的自然运㪴顷率，这部分水在 MRI 被构：为自际水（buls phase）。如果水分千依附他迅动缓慢的较人分子如蛋亩质眉围而构成水化雲，这此水分了的门然运动频率就有较人幅度的减少，这部分水又被认为是络合水（hydratoon layer）T1 反映了这些分了向然运功顷率 可拉黁尔其垠频率之的䄪关系，当两芿差之

诚频率（常规MR 装䈯中揊杽尔頻率为 $6-65 \mathrm{MHZ}$ ）。以化，‥1弛邹做，II时问枤：较大分了如蛋门质
像也缓慢，T1时间还长，结合水运动频率介于自
内沘， 11 他豫较有成效，T1 时間较工述两种惜况均听显缩知

向由水坛结合水的慨念自助丁暂助认识病变的执部织构。有利于对瘟空作定性沴断 在行（T 扫
济液密度的差是，有时＇。泽䈷空洞区分困难。在
其 Tl 时间短与脑作液，作：TIWI 中呈较服脊液为

生的在于运动 在人体。体液内分于也在经力多种运动，其中弥敞（diffusion）颇为重要 珎散指液体山分子的随意云动，斯分子的布朗（Bromnian）运动。挴散可分为自怙弥敬，限制性妳散，在尤浓度阶原的纯水山，水分子隹随机的肉腿不㞴见的移动。即水的自我弥散 f self－diffus：on of waer）－在有
解。好比在一一杯渚水巾加入一滴䍜水号，罗水即以相问的概率向四泊八／$/$ 打共。用丁上述两和物理现家的发牛均源于液体分子自守所具隹的动能，代受能制，因此称之为自出弥散，在人体组织中。由于峧散受到一些犬然抨障如细胞茣，大分子䖪问等的限制，区此，隹这种情况下，弥散产朴是•种真让的随峦运动 有研究表明。弥散在跨越䐱白伎束
的限非大得多：这好像在进行汽在拉ノ赛时。参赛芥要根据赛场东道路记随机内变，不时故变行频方向，显然，在转弯时要减涑，卜述这种受到限制的
散，无论是自口弥散抑或限制性弥散，上地品等起目
 weighted maging．DWI）中成部后号減弗，只不珪自由弥散与限制快弥散所致 MR 信号衰娍的根变代一

二，水 肿

宗内经由室管膜扣外滲湍

鉴于较多的自的水被限制在细胞内，约此。发生细驰毒怍水肿叶衣场孙：散系数（apparent diffumon orf－ licient，ADC）变小，造成 DWI 经现显而易见的高信号：Warach 报道发病r： 2 小时 DWI 就可郘开缺血灶的位置和莐制，向传统T2WI止常：安宣豫等经兔急性脑樓塞弥散加权磁茾振成像的实验础究否指出，DWI可较平（0．5－1 小时）地量忩缺血区的大部分：I2WI 则在 6 小时待能洜小大部分缺血区进随时间遂渐与 DWI 接近。但在 12 小时内其范周场明亚小十 DWI 前不久，安宁豫采周DWI 亚今最品的 1 例急性脑缺血发病仅 1 小岵。

血管源性水肿的病理生理基础为血脑屏障破坏，血浆由血管内漏出进入细胞外间际，血管源性水肿立要发生在脑白质中，结构致峷的脑灰质通常本易受影响：典型血管源性水肿古 F指状分布于脑门质之中，血管源性水虫以白由水增多为主，结合水增加为辅：山于细管内水进人细胞外间隙，自出弥散力度加大：此外，随着细胞受惯进一步加重，最㞓细胞溶解。使限制性弥散咓少，自由弥散增多，届时，细细胞声性水肿时 ADC 变小相比较，血管源性水瞆ADC值又回升。病变区在传统 12WI以及 DWI 上均呄现显㩃高倞号。

间质性水肿是脑系内压力增高，脑脊液经室管
岁日：，如急性瞝积水或交通性脑积水吋，T2WI上

又见少，问质性水耽由于含有较多的结合水，在 ［2W1 上已能与脑宰内脑脊液的信马区别；在 入 （H）WI上，两考信号对比通明昆：间质性水肺之信号明显高于脑空以眩脊液的信号蛽度，其原因除厂上述两者含有水的物理状态不一样（脑脊液为自由水。问质性水肿为结合水）外，亡要是脑室内脑脊液受搏动运动影响，造成氢质子的去㥵位，致脑脊液信号强度减弱。

三，出 血

血时间方面有其独特作用。其中以脑纳血肿 MR信号演变最具有特征物。

血液由血管内溢出后。在局部脑组织内形成血肿：随着皌肿内血细兆追的港变以及血抌的液化，吸收，MR 信号也发生一系列有规律的变化，因此，探讨血红蛋白及其衍生物的生物化学，生物物理基础对于认识与解释血肿MR信号至火車要。

性血，不论足散在的（如斑片样）还是集中的 （如血肿门，首先造成的是出血部位蛋点质浓度的显著增高，由此而产生的结合水效问先于血肿演变过程中诸多边绅蛋白衍生物对外加磁场的干扰效咩。丁扰效应施加于 MR 信号的影响还与 MRI 检查所采周的外加磁场强度以及所选脉冲库列有火。与出血有关的血红蛋白衍生物有氧合血红蛋田，脱氧利红蛋白，正铁血红蛋㖵以及含铁血黄素，其中氧命血红蛋白属抗磁质（diamagnetic substances），脱氧血红蛋白，正铁血红蛋白为顺磁质（paramagnelic substances）。含铁血黄素师干超顺磁质（superpara－ magnetic substances）－在外加磁场中，抗磁质对磁环境几平没有影响，而顺磁质，超顺磁质严重扰乱了磁坏境：

虽然氧合血红蛋向与脱氧面细蛋白队的铁离子坽为二价铁（ Fe^{+}），倠是。前者铁离子含有成对电子，而忶者铁离子却具住四个不成如电子。氧合血红蛋白仅微弱地排斥外吅磁场中的磁力线，其磁效应尚不足以使 T1，T2 发生变化。脱氧血红蛋龙具有比普通质子大数百倍的磁知，它在外加磁场中，

好比疽人 一块小铁棒。它使其邻近峂质子驰像加快，称为质子－电子，偶极子－偶忣了质了把䄷增强效高．期 proton－electron dipole dipole proton relax－ ation enhancemen，（PFDDPRE 效应），T1，T2 弛豫时间均缩疑，以 T1 缩短非显。此外，内于挶部磁化率有帉，它造成局部聯场不均匀，使 T2 弲 豫明显加速，即优先 I 2 质子驰豫效应（preferential T2 prcton relaxation，FT2PRE 效应），细胞内脱䇲血红蛋白具有吸显的PT2PRE效留。由于该顺磁质被局限了一个有限空时。水分一弥散经过该顺磁质中心将体验到一个不均匀的局部磁场，从而迅速玄相位。T2 缩短，住 T2 WI E信号减弱 鉴于 PEDDPRE效场是以水分子能接近顺磁质中心为前提，脱氧血红蛋臼中的铁离子被珠蛋白多榪包绕。水分子不能當近，因此，细胞内脱氧畈红歪中不政变T1扡像，因此，T1WI バ出现高信号。
红细胞溶解后，止铁血红蛋白从少晩仏，均匀分有于细胞外间院之中。随即，其浓芠也减小了，该顺磁质强化了外加磁场磁力线。当水分于詣以自由弥散经这并賞拢顺稵质中心时。它们即体验到由不成对电子所造成的磁波动，在顺磁质附近的水分子则经历了 PEDDPRE 效㕸，T1 弛像明显加快，在 T1WI F呈现了岗信号。由于正铁辿红蛋白已均准地分散在细胞外，不再形成较为朋显的磁场不均匀吽，国此，T2 弛豫加速在此不趆明显，T2WI不形成引人瞩目的低份号：

含铁的黄素所含有的铁是超顺磁质，使 T 2 缩知：短 T2 效畆使血肿周缘出现低信号，见十 T2WI，TIWI不明显，信号丧失可见于历时多午的出血，系因含铁血潢素的永久性沉着，

值得一提的是脑外血耽。 由于脑外结构不存在血脑屏障，因此，「噬细胞从畆外血肿摄取铁之居，与脑内血肿相比较，更窝易般运铁。结果，在脑外们肿，几乎没有韍者至多是少许的含铁血黄素视积于血肿周園。

四，血 流 异 常

由于血流信步强度受考种因素如血流方向，速度，大小以及财指脉冲序列的影响，因此，在分析血流信号时，一个值得注意的问题足要注意上述各种因素，综合考虑。

 TIWI H 沓小基底动脉血桿，獚轴们T2W1 则业及基底动脉流事消失，需㻃行意的是。化横轴保㨁描
常 住念吽膇缺血。受累动脉可冚先常对比增强。

血区低灌注。你共振流动分析（AR fow ana！vsin）吅显示受累㕷管直径变小以及血流量娍少。大脑动脉环交通父或眼动脉㑑流行间屾有改变

住正常脑静永窦，花采肝SE莩河时，垂肖于成像半的的静脉缓做佰流古高信号：平行于成像平的的缓

较只有性异吽的 MRI 所见为T1WI以及T2WI均呈

分后提示再通 此外。顿㭗以远静脉异常护张亦可在
队衁流缓慢抑或血软，磁共撤流动分析不失为一种行之有效的检查弥法，既川以除外青脉晏不不发育或解副变异，又叫进过流动质厂的速度和力间自关信息，偕以鉴别血流缓慢与血检形成

治脉留内的快作流及其所适戊的切「豆力与致动永䀘队信号丘失，在MRI字具有流空的异常血管
类似论挂运动，结梁引起体儿内む相位。慢血流战测流则见干酵将动脉瘤的巾央或靠近中央部分，在 MRI 多少表现出一些信号 21）P（「以及（INE，MRI可望星小扑㝾血流动打学的变化，加永分义部以及动脉终未端动咏㾋由于受到心脏搏动的血流冲， A_{1}

吕示血派，

动静眿婍形巢为幼脉与静脉分流部位。有呋析

较大动静脉瘘的动热永畸形。其分流㝵炵十 分法自流速之快已不受心脏搏动之有有；

五，脑脊液运动异常

快常厈力脑椇水导水瑶䮄脊液流过异增多，往往6
流今效応引人注用，色性交进吽脑利水导水䉣流空效它不大朋业，在导水管狭窄或导水管帉邻近病变
流速缓摱，存 MRI近平没有流空效品 较大的本

可有流穹效度，倠肿溜空洞不存在流空效呧 为了显小脑唃液的流动状况。 72 WI 是不吅缺少的扫描广号列。有时为了区分脑脊液缓慢运动还是啭留，在十拱时还采雨心电门控 年水管流量分析有助下区㤡棵阴性：或交通性脑积水，任梗阻性璃积水，可＂！圲脑准液双向流动减弱；在交逝性垴积水，脑脊液

胑震肿

值待注意的是，不管把脑亚液流动所召迅的局
甚通道的某个部位何限地转动。造成咨只改变加误为肿溜，炎拝或椎问盘突 4 ，为丁排除这种可能性。可作另一抣描方向的切层或作（rd－DTPA 増强扫描，确实有病变者，检查重复性好或有异常对比增强，有时，为了确定脑室内是否有囊性病变，还来用磁共振流动分析 该纷法出隹助下判定孔洞脑与脑宅系统是否有交通：

六，铁沉积过多

T2WI」叮见平常战人在苍诗球，红核，蟔㕆，壳核，尾状核私后墑岀明显低信号，这是用于高铁（基）物质在卜述部位润利所致，已为厂7检离休脑 Perls 染色证实，每 100 g 上述肺组织的含铁量分呺付 $21 \mathrm{mg}, ~ 19 \mathrm{mg}, ~ 18 \mathrm{mg}, ~ 13 \mathrm{mg}$ ， 4 mg 以及 5 mg ，

研究衣明，不论是MRI或 Perls染色均未显分新牛儿脑部存在铁。有止常婴儿6个月时，苍白球听见少量铁沉积：黑质铁沉着见丁 9－12 个刀时，红核在 1 岁半－2 岁：小肺快状核约到 3－7 岁才显小铁的存在。上述部位的铁沉着量哲和龄增长有一定的相关性，仅沉积速度不一样，如苍白球的含铁量在开始时即高，以度缓慢增加：而売核的含铁量在不始时并不高，以后才有较明显的增加。南到 70 多以后才接近苍的球所含的铁量，大脑半球以及八脑当球的脑灰，白质含铁量最低，其中相对较高的是影叶皮层下弓状纤维，其次为额壮脑白质，枕叶脑自质，在内囊后肢后端以及视放射中儿乎不存在铁。铁在脑部选择性沉积其机制至今不明，但是，铁由小肠吸收辰，通过运行，代谢，最终以正价铁（ $\mathrm{Fc}^{-\cdots}$ ）娀自由铁形式沉积于少突神玲胶质细胞－j䒜形细胞的生理过积已得到证实。在正常情况下。铁沉积按部位，随年龄渐增为一种生理过程，不会造成相关部位功能异常；但是，如果铁沉积在某个或某些部位增加或与年龄不相松，被认为是一种病理过程。届时。柏关部位有可能会出现功能障碍：研究已表明，苍白球黑质色素变性 （Hallervorden－Spatz 氏综合征），进行性核上麻痹 （Steele－Richardso－Olszewsky 综合征），特发性直讴性低血压（Shy－Drager 综合征），早老性㾰呆 （Alzheimer 氏病）等疾病以有不同部住，不同程度地铁沉积过多。尽管病理学家们已允分认识到 i 述

疾病叮仙现铁的年常沉积，但占于在活体缺之显小铁过多的检合㡰法，MRI，特别是高场强情况下，采井T2WI此 T2 WI 垡謪铁沉积异常在活体显示成为可能，H于住外圳磁场环境下，病变部位过多的铁造成了磁场长均的性。使 T2 缩短，因此，在

七，脱 鲢 鞘

保留。

相比较）的物质基础：肉层主要含䟽水的磷脂，由于自出水少。使得其仕 T2WIF等现低信号（与脑灰质相比）－脑门质髄鞘具有独特的组织结构。由于水珎散在方 lis 1：的限制，在㪂DWI 时，叧现弥散的各相异性（anivotropy），与腺灰欣形成明蚛的对
水分子的随意运动愛限制较小，易发生肖施去相位，在DWI 1：俭号低：面与弥散梯度方问垂肖起行的脑长顸㐌道鞘，水付子运动受限制较多，较易造成质子目放相位－－致。在DWI上皆高信号，目前
常与秀的最为敏感的评估指标，

脱歌鞘病是一种已经形成正常髓轱，后来又发生：䯝䩞脱失的疾病，脱䯣䩞病首先古现的MRI异常为 DWI 上出现高信号，仅映了止常脑向质檤鞘的弥散各相异性消失，脱㪉鞘不仪健病变孙散效曾
 DWI上，病变诃正常服组织易干区分 由于脱敬靼，正常髓鞘内，外层们复存在，以至于毁损」使 TIWI 卓高信号，T2WI旱现低信号的物质基础即内层含有的磷脂 -j 外层含有的胆络醇，糖脂，脱檤鞘造成T1WI毕低信号，T2WI 呈高信号。在MT （磁化传递）昹冲序列中磁化传递率（MS／MO）随 T1WI 病变俭号过行性减低而渐进性降低，反映了脱膸鞘过程以及大分子结构的瓦解在䒺增．由于脱
 1YPA 增强打描时，病变发牛异常对比增强 增强析度与防憡细胞迂移以及浸润程度呈让比，多发牛

硬化所致血肺屏障破城往仕是䄻分的，不完金的，所以，常常化延达打描时（由静脉注（id DTPA 后 45 分钟或 60 分钟）病变增虽 达到高峰。 1 耽熘抑或炎症造成的完全州血滈并随破坏不一样。

第2节 MRI 检查和沴断的优点

一，多参数成像，图像对比好

与其他检查方法如（TI，超出成像不一样，

图4．8－1 女， 40 岁，左肾当们虫病，经于术病理证实，SE 撗轴位 TIWI（A），F（D）WI（is）以及 T2WI（C）

MRI系多参数成像，其中包括组织特征：参数，检旦者可依据检查山的，有的放矢地选择扫描脉计序列和抖描时间参数，以期达到加权某一组织特征参数，淡化其他参数或抑制某一参数，获得反映该信号参数特征的图像（图4－8－1A，B，C）

由于扫描时采用了脂肪抑制，使正常胃䯣的高信号藏而不露，病变得以充分显示，

在成像参数中，T1 和 T2 对图像对比起着重要作用，其他参数如质子密度，磁化率效应，磁化传递，弥散以及流动效应在…定条件下也明显显露，对图像对比产生重要影响。说明 MRI 是一种务实的，具有较高检查灵活性的检查方法。

二，任意方位断层，图像可读性强

MRI叮在病人检查体位不变的情况下，通过变换层面（方位）选择梯度磁场，作横轴位，矢状位，冠状位甚至任意斜位扫描（图4－8－2A，B，C ）。

多参数成像以及任意方向切层使上述病变定位正确，病变（囊实性）内部线构显示满意。

出于 MRI 具有多方位成像，可读吽强，可与传统 X 线片，CT，超声戊像以及 PET对照。此外，亦据宽厂MRI的立用前景。例如，在做3D MR angiography 时，可依据被检查大血管的解剖走行，随意确定采样成像平面，使 3D contrast MR angiography 较 3D）（TA 处于较为优越的地位（图4－ 8－3）：

三，不使用造影剂可显示心脏和大血管

MRI 是惟一对相位改变很敏感的影像学检查方法。在 MRI 成像时，流动效应与信号强度的强弱密切相关。流空效应使心胧和大血管在T1WI 和 T2WI 呈低信号，町借以区分它们的周围结构；血管相关性增强效应，使TOF MRA 付诸实现；相位对比，使 PC MRA 成为叮能。流动效应使 MRI 成为一种不使用对比剂，名副其实的尤创性心脏，大血管检查方法。

四，无 骨 伪 影

由于骨皮质在 MR 成像时旺低信号，且不发生伪影，因此，在检查有些部位如后顾凹时，显示效果明显比 CT 好。

五，较高的时间分辨率

在儿种影像学检查方法中，MRI 具有较高的时间分辨率，在超快速 MRI 为 50 ms 。而 CT＞ 100 ms ；SPECT 和 PET：10－50s．解不久推出的

图 4－8－2 左胫学上段偏外侧我质旁骨肉畮
女， 19 岁。左胫消下，段偏外制皮定旁肖肉㾂，织手术病理证实
A．SE 㱏状位T1 根权像 B．FSE 撗轴位 T2 加权像
C．SE 矢状位并脂牥抑制 Gd－DTPA 增强㨂描

MR 扫描仪，由于时间分辨率进一步提高，在做灌注成像时，可望对 5～6个层面进行监测，使诸如像肺成像等难度较高的检查得以实现。

图4－8－3 男， 68 岁。腹主动脉硬化。3D动脉增强 MRAL显小腹主动脉管壁不规整，部分管腔略窄；

双侧肾动脉，骼总动脉显小住

六，无损伤，较安全

MRI 元电离辐射，被认为是…种无创性检肖：用于作增强扫描的对比剂 Gd－DTPA 副作用小，安全系数大且对肾脏无毒性作用。在做 3D contrast MR angiography 时，即使用高倍剂量 $0.3 \mathrm{mmol} /$ kg ，其总量也不到作 CTA 所需碘对比剂剂量的一半。因此，MRI不论作平扫抑或增强扫描，均是一种令人放心的无愦害检查。

七，能对特定原子核及其化合物作定童分析

磁共振波谱分析能提供人体组织内某些原子核共振频率的化学信息。 ${ }^{1}$ H MRS 主要用于研究脑，已为临床所认可；${ }^{31}$ P MRS 用来探测与能量代谢有关的化合物以及细胞膜合成，降解相关的某些化合物，在研究心脏，前列腺等方面也初见成效。随着 MR 机性能的不断提高以及 MRS 技术的可持续性发展，MRS 叮望在病变早期发现，分期及预后评佔方面发挥积极作用。

第3节 MRI 检查利诊断的缺点

一，成像速度仍较慢

梁管近儿年推圸的 MR 掏描仪作成像速度方面有很大的进步，但是，还代能较好满足业上开展的称散成像，㴗注城像以及脑圾能成像等要求。现装备的MR机，有时为了加快打指速度以期达到某种检查目的，也不得不将就图像的信噪比或空闭分辨率。至于使用已久，有待更新的 此 MR 扫描仪，由于采用传统成像技处，城像速度慢吏是一个突出的问题，成像速度慢造成图像质量下降或一部分病人检查失败。

二，检查费用较昂贵

与其他影像学检香う法如 CI 相比，MRI 检查费用较品贵，不大可能作为一种常规检查手段加以要求。

三，钙化灶不易被显示

MRI对钙化灶的显示不敏感，－般均表现为低俗岁。尽管过有表现为高信号的如含猛的铕化，但作为异常信号，钻化信号缺乏特䒜性。鉴于钲化有时在诊断抑或鉴别沴断中有重要作用，MRI在不同程度上丢失了这部分信息。

四，伪影名目繁多

$\underline{E}^{\mathrm{j}}$ 其他影像学技术相比，MRI 是出现伪影最多的一种检查方法。伪影 l^{1} 磁共振扫描或俭息处理较为复杂有关，甚至每开发出一种新的脉冲序列，都可能随即带来新的伪影，因此，要能识别伪影，明辨是非；还要弄清伪影米源，设法在扫描或图像处理时消除伪影，以去伴仔真。

五，含铁磁性物体限制了作 MRI

具有铁磁性植人物，异物的病人不能作 MRI；含铁磁性物质的器械，装置代能进入MR检査室。因此，上述病人以及赖以恰护，抢救设备的患者失去了作MRI的机会。一些曾作过清创介的外科患者，由于清创所留下的钦磁性粉求引发仿影，使 MRI 图像无诊断价佰。

六，少数被检查者出现焦虑，恐惧及幽闭忈怖

约有 $5 \%-10 \%$ 做被检查者，作扫描时父生点否，恐惧及幽闭恐怖。上述心理异常系多因素促成的。主要源于MR打描仪的机器孔径较小以及抽描时所发生的噪音：最近推讧的短磁体设计及 60 cm 直径病人开 11 的 MK打描仪，星绘病人带来「舒运感，但是，由于梯度场及切换速度店寓不下，梯度线圈所发生的噪音仍佂诱发被检查者焦虑，恐抧及幽闭恐怖。

七，㗚 音 大

有研究衣明，如不用山塞作 MRI，有 43% 的被检植者发牛暂时性耳狵，H此可见MR扫描仪噪音之大 FAD认为，MKI工作噪音应控制在：65－95分以尔 （ dB ）。事实上，近儿年开发出的 $1,5 \mathrm{~T}$ MR 扫描仪，在采用较快的脉冲序列时，噪咅过 100 dB 者茾不少见：MRI 工作噪咅主要来源于梯度线圈 由于通过该线圈的甴流高达儿百安培的数量级。因此，在梯度场转换期间，较大动力作用于线淃载145，使之发生振动，由此产生了下作噪音。白前，力减噪音的简易方法是在检查时使用山塞或棉花球。一种出藂合物泡沫组成的耳塞可降低噪音 $29-32 \mathrm{~dB}$ 。此外，加用耳机也是一种行之有效的方法。

第4节 MRI检查的禁忌证

MR 检貣的志要禁忌证为被检查病人体内含有金属移植物。按心脏起搏器者忌用MRI，frij 时，体内具有其他电刺激器以及埋人装䈯者亦禁忌作此项检查。有些金属移人物如心脏瓣膜以及骨接合東采用物质，在做MRI检查时具有风险，对此，在行 MRI 謌必须谨慎「解勺评估上述金属移人物㗅类型以及部位，以决定 MR 检查是否被采纳，由于骨接合术使用的物质固定在体内，因此，即使有磁性，在 MR 检查时地不至于有他险，然而，图像质量可能受到明显影响。另一些金属移人物如外科手术夹等，也应予以警惕。尽管其中大多数不具有磁性，但是，有磁性物会在磁场中发生物学效应，是十分危险的。
（蔡幼铨）

第 9 章 MR 成像设备

MR 成像的設备主要出伭体，射频系统，梯度

系统及计算机系统等绍成见图（4－9－1）。

图4y1 㗝共挀条统杆：图

第1节 磁 体

磁体（magner）是 MR成像设备的重要组成部分，它的主要作用是产本均灼稳定的静磁场 B ，使人体组织启：生磁化，它是 MR 成像的必要条訛之一。

磁位按磁场强度可分为向场，中场，低场：近常所说的高场一般是指场强盾 1.0 T 以上，中场在 0.5 T 左在，低场在 0.35 T 以下。

蚻据磁体结构可将磁体分为一种类型，即永磁型，常导型和超导型。卜而分别介绍这三种磁体的结构特点

一，永磁型磁体

永礠型磁体（permanent magnet）一般由铁氧体或钕铁䃃等铁磁性物质及合金组成。与普通磁铁——样，永磁型磁体也具有两个不同的破性即 N 极和 S极，在两块磁体的N极与 S 级之间形成垂直磁场 （图 4－9．2）。水磁型磁体的场强较低，一般在 0.35 T 以下。它的特点是场强较低，对周违环境影响小，对场地要求不高，安装义维护费用低，并可

做成开放式磁体火减少病人的幽闭感，问时由丁磁场强度低可以将图像显小゙器及宗些手术器械带入扫描室内开展磁共振介人治疗，

永磁型磁体主要的缺点是磁场的稳定性和均的性稍差，受周制环境温度变化的影响较人，磁场不能关闭。

钢架 1 保路

图4．9．2 永磁等磁体小意图

二，常导型磁体

常导型磁体（resistive magnel）的线圈一般是由铜或尚线绕制，按线圈有元铁芯可分为铁芯常导型

和空芯常导型两种类型，铁芯常导型应用较多（图 4－9－3）。低场强的新型非放式常导型磁体具有结构简单和磁场建文时间短的特点，新的磁场稳定技术最快可使磁场在几分钟内建立，并叮随时退磁关闭磁场，非常适合磁共振介人治疗。该磁体的主要缺点是对电源稳定性要求高，电ノ消耗较大。

图 4－9－3 铁芯常导型磁体示意图

三，超导型磁体

超导型磁体（superconducting magnet）的线圈通常是由某些特殊合金如银铢利垥金导线绕制，铌铁合金导线的超导温度为 8 K 。当将其放置于超导型磁体的液氦当中时，日于液氦温度为 4.2 K ， -2699° ，低于铌针和合金导线的超导温度，超导型磁体的线圈呈超导状态。由于超导时线圈导线的他阻为 0 ，所以线圈可以通过强大的电流而不产性任何能量消耗。励磁后可将电源断开，闭合磁体线圈以的电流仍保持悺定（图4－9－4）。

迢导型磁体的磁场强度高，目前临术应用的磁共振系统最高磁场已经达到 $1.9 \mathrm{~T}_{\text {c }}$ 超导型磁体磁场的稳定性和均匀性好，紫急情况下磁场可以关闭。超导型磁体的设计制造上省复条，成本高，运行维护费用高，需要定期补充液氮和液氦以维持低

图 4－9－4 超导型磁休示意图

温超导。
新型磁体利用冷头和压缩机组成的制冷系统来代替液氮制冷。制冷温度低，效率高。们需要定期维护冷头和压缩机。有的新型磁体则完全利出制冷机组来代替液氮和液氨制冷，无须定期补充制冷剂，从而降低厂超导磁体的运行维护费用。但该磁体对市电的要求较高，们叮长时间停电。

四，磁体 屏 蔽

磁体屏敬（magnetic shiclding）的设置是为了防止磁场对周園不境产生干扰，同时也防止周用大的铁磁性物体干扰主磁场的均匀度。根据磁体的类型，有无自屏蔽和是否具有有源屏蔽，以及周围坏境的条件，央定是否需要外加磁屏蔽并对磁体房的屏蔽做出设计。磁体间的屏蔽材料一般采用 2 cm厚的钢板设计成四面或开面屏蔽，具体要求应参照厂家提供的场地安装手册，

第2节 梯 度 系 统

梯度系统（gradient system）主要是由 X，Y，Z三组梯度功率放大器和三组梯度线圈组成。梯度功率放大器对磁共振控制计算机发出的梯度场给定脉冲信号进行放大，并通过 X，Y，Z三组线圈在主磁场队形成 $X, ~ Y, ~ Z$ 三个方向相互垂直的线性梯度场。这三组梯度磁场在磁共振成像泻描时由计算机控制开启和关闭，分别用于控制层面选择，相位编码和频率编码，即人体组织的空间定位。

梯度系统的梯度场强度，梯度上升时间和梯度切换率是决定梯度系统质量的重要指标。一般应当使梯度场強度和梯度切换率尽量提高，而梯度上升时间应尽量减少。

犆于梯度线螣内部的梯度场屏蔽线圈可以消除涡流的影响，使梯度保持线性，提供精确的梯度脉冲，避免图像失真从而提高图像质量。

第3节 射 频 系 统

一，射 频 系 统

射频系统（RF system）主要由谱仪柜（包括 MR控制机，射频发射机，射频接收机等），射频功率放

大器及 RF 线圈组成。
射频系统日前基本上采成全数恿化 RF 发射，接收技术，高速多进道䧁A／D变换器，内置于线圈内的低噪声前置放大器，相控际技术及大功率 RF功率放大器。

射频系统的作用是控剌发射 RF 脉冲和接收 MR 信号。它的工作対桯是 MR 控制机接收主计算机发出的扫描脉冲序列指令，产缃窎稳定的射频眿冲经 RF 发射机送给射频功率放大器放大辰由 RF线圈发射山去。同时通过 RF 接收线圈接收MR信号并经 RF 接收机数字化转换处理后送入主计算机。

二，RF 线 圈

RF 线圈（RF coil）是磁共振成像系统的重要组成部分之一，根据其结构和用途可分为以下厂种类型：
（一）QD 正交线螣（quadrature coil）
QD 线圈可用于发射和接收，其特点题两组线圈呈 90° 正交放淔，彼此独立，可岡时狿取 MR 信号而不会相互产生干扰：使得扫描视野加大，信㯨比高，图像质量好。

常用的 QD 线園有体线圈，头线圈，膝关节线圈等：
（二）表面线图（surface coil）
表面线圈只用于接收 MR 信号，使用时需同吋配合相应的发射线圈，由于表角线圈可以近距离放置子受检部位附近，所以接收到袁近线圈的局部组织信号较强，但扫描视野较小。表面线圈可以做成各种形状及不同尺寸以适丕不同组织部位扫描的要求。

常用的表面线卷有领椎䌸圈，胸腰椎线圈等。

（三）其他线園

除以上两种线圈外还有多种新型线圈如：用于磁共振频谱分析的特定元素线圈，可大范围增加扫描视野的相控阵线圈，可重复使用的腔内线圈等。

三，射频屏蔽

射频屏蔽（RF shielding）由于磁共振的 RF 接收系统是专为采集人体组织微弱的 MR 信号而设计的，所以为了防止外部的电磁丁扰，必须为扫描室安装射频屏敞：扫描空的D壁，顶㮶和地面应用薄

锎板焊接战为整体，观察窗和门也必须安装屏蔽，观察窗的屏蔽叮采取双层铜网交叉放置，门的缝隙也要加屏蔽，射频异蔽间应保让与其他物体绝缘并采取单点接地，挍地电阻应小子规定值：扫描窒内应使用向炽灯，所有进人扛描窑的电源必须加滤波以消除电源下扰：

第4节 计算机系统

计算机系统（compluter system）的作用是对磁共振整个系统述行控制管理，包括病人信息数据的录人，扱描序列和参数的选拝，控制射频系统利梯度系统的工作，完成对MR 信号的采集，䅫始数据的处理，图像的重建和存储及各种图像和数据的应处理工作：

目前磁共振计算机硬件部分普遍采用计算机工作站，如 SUN工作站，SGI oryx 工作站及 DEC Alpha工作站等：采用64位分布式并行 RISC 处理器，1GB以上的硬盘， 64 MB 以上的内存。采用可擦写光盘机作为图像及数掘存档，数宁激光相机，高分辨率彩色太屏幕业小器等。

软件系统邫遍采用 UNIX 或 WINDOWS NT多任务计算机操作系统，磁共振应用软件炰括常规抽描操作软件和医生诊断软件，同时提供各种特殊用途的扫指和诊断软件包，以及．I程师检测调整及故障诊断软件。图形界面的应用使磁其振计算机操作变得更肋直观，方使。

DICOM3．0接口剅用于同其他计算机设备柏互通讯，交换数据。
（阻仲英 胡 阳）

．参 考 文 献

1．高元桂，蔡幼捡，蔡祖龙．磁共振成像诊断学，北京：人民军医出版社， 1992
2．Mansfield P，Mor ris PG：NMR Inaging in Biomedicine． New York：Academic Press，1982；pp29－30
3．Purcell FM，Torrey FC，Pound RV：Resonance absorption by zuckear magnetic moments in a solid．Phys Rev 1946； 69：37

4．Lauterbur PC：Image formation by induced local interac－ tions．Nature 1973；242：190
5．Damadian R，Goldsmuth M，Minkoff L：NMR its cancer． XVI．FONAR image of the live humar body．Physiol

Chem Pays 1977；9：97－100
6．Mitchell DGG，Burk DL．，Virianki S，el al：The biophysiced basis of tissue contrast in extracranial MR imaging．AR 1987；149：831－837
7．Wulff SD，Balaban RG：Magnetizatiun transfer contrast and thasue water proton relaxation in vivo．Mug Reson Med 1489；10：135－144
8．Balaban RS，Ceckler TL：Magnetization transfer contrast in magnetic resonance magmg．Magn Reson Q 1992；8：116－ 137
9．Exckson SJ，Prost RW，Tinuins ME：The magic angle of－ fert：background physics ar．d clinical relevance．Radiology 1993；188：23－25
10．Fuflerton GD，Cameron IL，Ord VA：Orientation of ten－ dons in the magnetic fields and its effect on T2－relaxation umes Radiology 198．5；I55：433－4．35
11．Bloch F：Spin echoes．Phy，Rev 1950；80：580－594
12．Hennig j，Nawerth A，Friedburg $H: R \wedge R E$ imaging：a tast imagıng method for clinical MR．Magn Reson Med 1986； 3：823－833
13．Melki PS，Jolesz FA，Mulkern RV：Partial RF echo－planar imaging with the FAISE methord．I．Magn Reson Med 1992；26：328－341
14．Melki PS，Jolesz FA，Mulkern RV：Partal RF echo－planar imaging wath the FAISE method．II．Magn Reson Med 1992；26：342－354
15．Brateman L：Chemical shift imaging ：a review．AJR 1986；146：971－980

16．Rowemer PB．Edelstein WA，Hayes（＇etn et al：The NMR phased array Megn Reson Med 1990；16：192－225
17．McCaulcy TR，McCarthy S，Lange R：Pelvic phased array coil：image quality assessment for spin－echo MR imaging． Magn reson Imaging 1992；10：513－522
18．Mansfield P，Maudstey AA：Planar spin imaging by NMR． J Magn Reson 1977；27：101
19．Osho K，Fenbery DA：GRASE（gradjent－and spin－echn） imaging：a novel fast MRI technique．Magn Reson Med 1991；20：344－349
20．Gyngell ML：The application of steady－state fret precession it rapid 2DFT NMR imaging：FAST and CE－FAST se－ quences．Magn Resun Imaging 1988；6：415－419
21．Harke EM，Tkach J：Λ review of fast imaging techniques and applications．AJR 1990；155：951－964
22．Listerud JL，Einstein S．OLtwater E，Kressel HY：First principles of fast spin echo．Magn Reson Q 1992；8：199－ 244

23．Henkelman RM，Itardy PA，Bishop JF，et al：Why fat is bright in RARE and fast spin－echo imaging I Mugn Reson lmaging 1992；2：533－540
24．Outwater EK，Mitchel．DG．Vinitski S：Abdominal MR imaging：tvaluation of a fass spin－echo sequence．Radiolo－ gy 1994；190：425－429
25．Heid（），Deimling M，Huk WJ：Ultra－rapıd gradient echo imaging．Magn Rewon Med 1995；33：143－149
26．Edelman RR，Wielopolski P，Schmitt F：Ecino－planar 1maging Radiology 1994；192：600－612
27．Lersku RA，Straughant K，Williams JL：Practıcal as－ pects of grosting in ressistive NMR imaging systems．Phys Med Biol 1986， 31 （7）：721－735
28．Aubert B．MR imaing quality control：an 18 －month hos． pital study．Radiology 1986， 161 （9）：281
29．Pattany PM，Phillips JJ，Chive JC，et al．Motion ar：i－ fact suppression technique（MATT）for MR imaging．J Comp Assist Iomogr 1987， 11 （3）：369－377
30．Kanal E，Wehrli FW．＂Signal，Noise and Contrast＂in MR Imaging：primeiples，methodology and application． chapter 2，Wehrl FW，Shaw D，Kneeland B．Editors， VCH Publishers，New York， 1988
31．Van Beers BE，Gallez B，Pringot J．Contrast－tnhanced MR imagir．g of the liver．Radiology 1997，203：297－306
32．Frasch RC．New directions in the development of MR imaging contrast media．Radiol 1992，I83：1－11
33．Lanffer R．Paramagnetic metal compiexes as water proton relaxation agents Sor NMR imaging．Theory and design． Chetu Rev 1987，87：901
34．Niendorf HP，Alhassan A，Geens VR et al，Safety review of gadopentetate dimeglumine．Extended clinical experience after more than five million applications．Invest Radiol 1994 supplement 29 ：S179
35．Nelson KL，Gifford LiM，Lauber－Huber C et al．Clinical safety of gadopentetate dimeglumine．Radiology 1995. 196：439－443
36．Candana R，Morana G，Pirovano GP et al．Focal malig－ nant hepatic lesions．MR imaging enhanced with gadolini－ um benzyloxypropionictetra－acetate（BOBTA）－preliminary results of phase II clinical application．Radiology 1996， 199：513－520
37．Reimer P，Rummeny EJ，Daldrup IF：et al．Clinical re－ sults with Resovist．A phase 2 clincal trial．Radiology 1995，195：489－495
38．Weissleder R，Elizondo G ，Wittenberg J et al．Ultrasmal superparamagnetic sron oxide．Characterization of a new
class of contrast agentc for MR imaging．Radiology 1990， 175：489
39．Bellin MF，Zain S，Auberton E，et al Livet metactasis． Safety and efficacy of detection with nuperparamagnctic iron oxide in MR inaging．Radiolugy 1994．193：657－663
40．Yamamoto H，Yariashita Y．Yoshimalsu S et al．Hepato－ celluler carconoma in cirtbutse livers．Derection with unern－ hanced and iron oxide－enhanced MR inaging．Radislogy 1995．195：106－112
41．Grandin C，Van Beers BE，Rohert Λ ，et al．Reniga hepa－ tocellular tumors．MRI after superparamagnelic iron oxide administration．J Comut Assist Tomogr 1995， $19: 412$
42．Schuhmann－Giampieri G．Schnitr－Willich H．Press WR et al．Preclinical evaluation of Gd－EOIS－TTPA as a contrast agent in MR itnaging of hepatobiliary system．Radoslogy 1992，183：59－64
43．Wang C ，Cordon PB，Hustredt SO ，et al MR ，maging properties and pharmocokinetic of MnDPDP in healthy voluniteers．Acta Radiologica 1997，38：665－676
44．Wang C ，Ahistrom H ，Edhoim S，el al．Diegnostic effica－ cy of MnDFDP in MR itraging of the liver．A phast 3 mul－ ticenter stucy．Arta Radinlogica 1997．38：643－649
45．MeDonald D．A．Blood flow in arteries 2nd Baltimore； Willianms and Wildins．：994
46．Davic D．Stark Magnetic resorance imaging 2nd ed Mos－ by－year Inc 255－302 1992
47．朱小平．磁共振成像原理．人民卫生出版社， 1987
48．Edeltnan R．R．Mattle H．P．Quantification of blood how with dynarnic MR imaging and presaruration belus tracking Radiology 1989，171：551－556
49．Charles R．Higgins Hedvig H．Rucak．Clyde A．Heims Magnetic resonanze imaging of the body First edition 1992，Raven Press Ltd 343－348
50．E．James Potchen．Magnetic resonance angiography：con－ cep1s \＆application 1993 Musby－year brok Inc 194
51．M．J．Graves．Magne－ic resonatuce angiography．The British Joumal of Radiology 1997，70：6－28
52．Atkirison DJ，Vu B，Chen DY，et al．First pass MRA of the abdomen：u．trafast，non－breath－hold time－of－flight imaging using Gd•DTPA bolus．J Magn Reson Imaging 1997，7：1159－1162
53．Bakker J，Beek FJ，Beuler JJ，et al．Renal artery stenosis and accessory renai arteries ：accuracy of detection and vi－ sualization with gadolinim－enhanced breath－hold MR an－ giography．Radiology 1998，207：497－504
54．Wesbey GE，Moseley ME，Ehnuan RL．Translational
molecular self－diffusicn in magnetic resonance imaging．
II．Measuretment of the self－diffision coefficient．Invest Radiol，1984，19：491
55．Moseley MF．，Kucharciyk d，Mintorovitch J，et al．Diffu－ siott－weighted MR intagng of acute stroke：corrciation with T 2 －weighted and magneric susceptibility－enhanced MR itnaging in cats． $\mathrm{NJNR}, 1990.11: 423$
56．Warach S，Chien D，Li W，et al．Faxt magnetic resomance diflusion－weighted maging of acute human stroke．Neurol－ ogy，1992，42：1717
57．Bunat AL，Allen KL，King MD，et al．Diffusion－weighted irnaging studies of cerebral ischemia in gerbils．Poterntals relevance to energy failure．Stroke．1992．23： 1602
58．Rordorf G，Koroshetz WJ，Cepen WA，et al．Reglonal is－ chemas and ischemic njury in patients with acule madde cerebral artery siroke as defined by early diffusion－wengited and perfasion－weighted MRI Stroke，1998．29： 939
59．van $Z i \mathrm{j} 1 \mathrm{PC}$ ，Hletl SM ，Ulawowsk $J A$ ，et al．Quantatative asoessment of blood flow，blood volume ard blood oxygena－ rion effects in functional magnetic resonance maging．Vat Med，1998．4： 159
60．Berry I．Ranjeva JP，Duthil I ${ }^{2}$ ，ec al．Diffusion and perfu－ sion MRI，messurements of acute stroke events and out－ come：present，practice and future hope．Cerebrovis Dis， 1998， 8 （Suppl 2）：8
61．Kim SGi，Tsekos NV，Ashe J．Malti－stice perfusion－bused functional MRI using the FAIR technque：compatison of CBF and BOLD effects．MMR Biomed，1997，10：191
62．Ogawa S，Lee TM，Kay AR．et al．Brain magnetic rexy－ natre imaging with contrast dependent on blood oxygena－ tion．Proc Nat Acad Sci USA，1990，87： 9868
63．Kwong KK，Beliveau JW，Chesler DA，et al．Dynamic magnetic resonance imaging of human brain activity diring primary sensory stimulation．Proc Natl Acad Sci USA， 1992，89：5675
64．方 虹，郭庆林，张贵祥等 正常人胶不同区域 ${ }^{1} \mathrm{H}$ 磁茎振波谱研究．中华放射学杂志，1997，31（1）：35
65．广虹，郭庆林，赵海涛等．脑肿痛 ${ }^{1} 11$ 偻共振波谱改变。出华放射学杂志，1997，31（3）：203
66．棺发宝，黄志兰，方虹等，P－31 MRS 在国人心肌梗塞的临体应用。中华放射学杂志，1999：33
67．Cousins JP．Clinical MR spectroscopy：fundamental，cur－ rent application，and future protential．AJR．1995，164： 1337
68．Ott D．et al．Ifuman brain tumors：Assessment with in vi－ vo proton MR spectroscopy．Radiokgy 1993，186：745

69．Petrufi OAC，et al．Cerebral intracellular $p \mathrm{H}$ by P－31 nu－ cleat magnetuc resonance spectroscopy．Neurolugy 1985， 35：78i
70．Kreis R ，et al．Development of the humearn bran in vivo quanilification of metabolite and water content with proturn magne－ic resorance－pectrascopy．MRM．1993，30：424
71．Hubesch B．et al．P． 31 MR spectroscops of normal human brain and brain tumors．Radklogy 1990，174： 401
72．Vande：KMS．et al．Age－deper．dent changes in localized proton and phosphorus MR spectroseopy of the brain．Ra－ diology 1990，176：509

73．Barker PR，et al．Acute stroke：Eialuathor．with serial proton MR spectroscopic inaging．Radisoggy 1994， 192 ： 723
74，Schilhrg A．et al．Liver tumut：follow－up with P－31 MR spectrocopy after local chemotherapy and cherio－truboliza－ tion．Radology，1992．182：887

75．Menon DK，et al．Effect of functiontal grade and etiology on in viws hepatic phosphorus magnetic remmarice spec－ trokcopy in cirthesis；brochemical basic of spectral appear－ ances．Hepatology，1995，21：417

76．Conway $\mathrm{M} \Lambda$ ，et al．Cardiac metabolium during exercise in health volunteers measured by P－31 magnetic resonance spectroscopy．Br．Heart J．1991，65：25
77．Yabe T，el al．Detection of tryctcardial iechemia by P－31 magnet．c resonance spectroscopy durıng handgrip exe－cise． Circulation 1994，89：1709
78．Schaefer S ，et al．In vivo phosphoru－31 spectroscopic imaging in patients with ghobal muocardial disease．Am．J Cardiol 1990，65：1154
79．Kent－Braun JA，et al．Magnetic resor：ance spectroscopy studies of humarn muscle．Radiologic Clinics of North Atmerica 1994， 32 （2）：3．3
80．Buchili R，et al．Assessment of abmolute metabolite concen－ trations in human tissue by P－31 MRS in vivo，part II： musclr，liver，kidney．Magn．Resion．Med．1994， 32.453
81．Kurhanewicz J．et al．Three－dmensional H． 1 MR spectro－ scopse imaging of the in s．tu hurran pookate with high （0．24－0．7． cm^{3} ）spatial resolution．Radiolory 1998，198：795
82．安宁橡，高元桂，蔡幼铨，等．急性脑梗塞磁共挀弥

散加权成像的演变特性，中国医学影像学杂志，1998， 6：245
83．Wa：ach S，Chien D，Li W，Runthal M，Edelman RR． Fas magnetic resonance difftsion－weighted imaging of a－ cutt human struke．．Veurology 1992，42：1717
84．Takeda K，Normura Y，Sakuma H，et al：MR assess－ ment of normal bran development in neonates and infants： corparative study of T 1 and diffusion－weighted imaging．J Compute Assist Tomog：1997，21：1－7

85．Janick PA，Hackney DR，Grossman RI，Asekura T： MR anaging of various oxidation states of intracellular and ext－acellular hemoglubin．AJNR 1991，12：891－897
86．Permirone JR，Sebert JE，Laird TA，et al：Determina－ tion of blood flow direction using velocity－phase imaging disp．ay with 3D phase－contrast MR angiography．AJNR 1992，13：1435－1438
87．Finzmarın DR，Ross MR，Marks MP．Pelc N：Blood flow in trajor cerebral arteries measured by phase－contrast cine MR．AJNR 1994，15：123－129
88．Anderson CM，Saluner 1），Lee RE，et al：Assessment of carovid artery stenosis by MR angiograply：comparsion with x－ray angiography and color－coded doppler ultrasound． NNR 1992，13：989－1003
89．桿流泉，察幼辁，解恒革，等．Alzheimer 病杏仁核海否结构体积的 MRI 测定，中华放射学杂志 1998,32 ： 827

90．Bertnezene Y，Croisille P．Wiart M，et al．Prospective Comparison of MR lung perfusion and Lung scintigraphy． Journal of magnetic resonance imaging 1999，9：61－68
91．Frank LR，Buxton RTs，Kerber CW；Pulsatile flow arti－ facts in 3 D ）magnetic resonance imaging Megn Reson Med 1993， $30: 296.304$
92．Goldfarb JW，Fdelman RR，Coronary arlerics，breath－ hold．gadelinium－enhanced，three－dimensional MR an－ giography．Radiology 1998，206：830－834
93．Shellock FG，Schatz CJ：High－field strengh MRI and oto－ logic implants．A／NR ．Neuroradiol 1991，12：279－281
94．Trite．baum GP，Yee CA，Varn Horn DD，et al：Metallic ballistic fragments：MR imuging safety and artifac：s．Ra－ dology 1990 175：855－859

第 5 篇

CHINESE MEDICAL IMAGING

主编 陈炽贤 高元桂

第 1 章 计算机 X 线摄影

在影像医学领域中，尽管 X 线授影是临休放射学检查中应用最早和最普㴜的成像方式，但却是影像医学中最后实现信息数字化的检查手段。这一事实妨碍了 X 线摄颜信息肖接进人图像存档与传输系统（PACS）以及远程医学系统。反之，也是这两个系统覆盖内谷的不足。此外，传统的胶片／增感屏组合的 X 线摄影方式固有的䑤感性和分辨 J的腿度也是实施传统的 X 线捡影技术改良的促因之一。

这今，已从不同渠道探讨5 X 线平片信总的数字化方式，目前具有资际应用价值的方式归纳起来主要有 一种类型：

（一）直接成像方式

以极小的（代表一个像儿）光敏元件组成的接收装置代替胶片接收 X 线影像信息，并直接转换为电信号，进而转换为数字信号的成像弹式。起今 （1998年），此类装置的空间分辨力和时间分辨力还在完善中。此外，此类接收装置只能国定在专用机上使用

（二）间接成像方式，又包括两种方式。

1．计算机 X 线摄影（computed rediography， CR）以口本富士胶片公司（Fuji film）开发的 FCR 系统为代表。该系统使用＂成像板＂作为接收 X 线信息的载体，然后由激光束扫描，读出成像板记录的信息。由于整个过程分为两个部分（接收上j 读出），故称＂间接成像方式＂。成像板既可以代芙胶片现有的 X 线机四配使用，又叮在专用机上使用。

2．数字 X 线摄影（digital radiography．DR）此种分式问世已多年，系使用影像增強－电视链采集信息，后经视频密度计使视频信号数字化的成像方式。

（三）过渡方式

采用专门的读出装置，扫描已摄取的常规 X线胶片，使胶片上记录的模拟侣息数字化为数字式平片影像。此种方式是回顾性施行的，通常作为把以往的常规 X 线平片信息数字化的过渡方式。

目前。由于（一），（二）两种方或均是使平片
（或传统 X 线）信息数字化，在设备的命名上有些混乱，除 FCR 系统囚已冠以商品名外。其他厂家生产的 CR 系统通常多称为 DR 系统。故在使用中为明确设备的具体类刑。

第1节 CR 系统的发展与基本结构

一，开发 CR 系统的基本动机

（一）实现常规 X 线摄影信息数字化 基于该系统的功能，使常规X线摄影的模拟信息转换为数字倍息。
（二）提高图像的分辨，显示能力，使之突破常规 X 线摄影技术的固有局限性。
（三）采用计算机技术，实施各种后处理㘦能，增扣显示信息的层次，
（四）降低常规 X 线摄影的楅射量。
（五）实现 X 线摄影信息的数字化储有，再现及与其他相） 信息的联网（传输）：

CR 系统最早是富十胶片公司的高野正雄 （Masao Takano）等，于 20 世纪 70 年代开始研制的，80年代初期已有市售，90年代头5年，产名已几度䄯级。目前，FCR 类型的设备已在全世界逐步普及。

1981货6月在比利时首都布鲁塞尔不开的国际放射学会（ICR）年会上，曾因 FCR 系统利数字惐影血管造影（DSA）系统的问址的被誉为＂放射学新的起步年＂。

二， CR 系统的基本结构

CR 系统的基本结构主要由四部分构成，即：信息采集，信息转换，信息处理和信息记录：

图5－1－1显示」 FCR 系统的基本组成部分。

（一）信息采集

常规 X 线摄影中使用增感屏／胶片组合系统的成像方式已众所周知，在 X 线照出上最终形成的影像一无法直接数字化。CR 系统解决的关键问题之

一則足开发 ${ }^{3}$ —种既时接受模拟信息，又所实现模拟信息数等化的信息载体，即成像抜（imaging plate． $1 P$ ）。这样，采集的信息（acquired informan
tion）则可应用数学图像信息处理技术，实现数学化处理，储佰宁传输。

图 5－1－1 CR 的主要组成部分
成 CR 豕统的信息转换部分；显示与记录装置构成 CR 系统的信息处坜手记氶部分

1．成像板的结构 成像板为外观很像摄影增感屏的一种溥板，由保护层，成像层，支持层和背衬层构成（图 5－1－2）。其中 X键的成像层为一雲含微量二价销离子的氟卤化钡唱体。该唱体层内的化合物经 X 线照射后，可将接受的能量以潜影的力

式贮存于晶体内，是为模拟影像。当随店用激光束扒描带有潜影的成像板时，可激发贮存在晶体内的能量，使之转换为荧光，继而被读出并转换为数字信号。数字信号则可被馈人计算机和数字图像处理系统，最终形成数字影像。

图 5－1－2 IP 结构的剖正图
从上至下依次为保护层，域像慁，支庤层与背封层

成像板是装人特定的暗盒内，用和常规 X 线摄影相同的方式投照的，因此是可以和常规 X 线摄影设备兼容的。也有 CR 的专用机型，使用一组

IP 在设备内循环采集信息，而不必使用暗盒。但仍使用与常规 X 线摄影类似的 X 线发生器与投照方法。

2．成像板的理化性质 某些荧光物质可将第一次被激发的信息储存（记录）下米。再次受到激发的则释放出 - 初次激发所接受的信息相应的荧光的现象，称为光激发发光或光致发光（photostimulated luminescence，PSL；，具有此种现象的荧光物质称为辉尽性苂光物质（photosimulable substance）。IP 中的成像层内为含有微量二价铳的氟㐫化稘晶体「barium fluorohalide（ $\mathrm{BaFX}: \mathrm{Eu}^{2-}, \mathrm{X}=\mathrm{Cl}, \mathrm{Br} .1$ ）］．该晶体即为辉尽性荧光物质。

筛选氟図化钡晶体为成像板的苂光材料，是因为该化合物的光激发发光现象最强，该化合物在 X线或长邖间紫外线激发下形成称为＂F中心＂的色彩中心而被着色。F中心是晶体内的－－种缺陷，叮吸收叮见光辐射中特定波长的光线，它位于歌成奛体的特定原子已被去除向俘获了一个电子的点（空六）上。微量的铕离子在形成荻光体时被结唱，产生所谓发光中心（luminescence center）。F 中心与发光中心共同担任储存 X 线信息的任务（图 5－1－3）。

晶本内的铂离子初次出 X 线激发而被解离。由二价变为三价，将电子释放给周围的传导雰。释放的电子在以往形成的㐫离子空穴内被 Coulomb力俘获，产生半稳定状态的F中心。X 线在成像板上形成的模拟影像即是以这种状态储存下来。

图 5－1－3 氟囷化锶的晶体结构
晶体中的卤素（X）可以是氯（CI），溴（Br）或滞（1）
此后，若以可被 F 中心㖟收的可见光（即二次激发光线，CR 设备中用之为读出光线）再次激发成像板，则被 F中心俘获，激发二价锦离了的能量以发光的形式释放出来，供读出装置读出，并最终重建为模拟影像。此种恽尽性荻光物质在 CR 成像中的详细光化学反应过程尚不完全明了（图5－1－4）。

医 5－1－4 氟卤化钡的挥尽附发光特征
激发（第一－次激发）过程，尼时昆体结构内微量的铕弫 2 价安 K_{2}价，虚线表亦辉尽吽发光的激发（第二次激发）过积，喑重新由所变为 2 价

3．成像板的特性

（1）发射与激发光谱：光激发荧光体可发出监－紫光，是由荧光佮内作为发光中心的小量二价铕离子产牛的，发光的强度依澈发 IP 的光线的波长而改变。第一次激发 IP 的 X 线光谱称发射光谱 （emission spectrum），它的 PSL 峰值为 390 … 400 nm ：在这一点上，光电倍橧管的检測效率最高，这对提高影像的信／噪比（SN）很重要。

第二次激发IP的读出炎线以 600 nm 左右波长的红光最佳，它可最有效地激发PSL，称激发光谱 （stirrulation spectrum），发射光谱＇ S_{j} 激发光谱波长的峰值间需有一定的差别，以保证二者在光学卜的不一致，从而达到最体的影像信噪比。保是，PSL的光谱 ${ }^{\mathrm{E}} \mathrm{j} \mathrm{X}$ 线激发 IP 后在荧光体内产生的 F 中心 （色彩中心）的吸收光谱相当－致（图 5－1－5）。
（2）IP 的时间响应特征：当停止用第二次激发光线（读出光线，如氦－氯激光）激发光激发苂光体时，后者发射的荧光依其发光过程的衰减特征逐渐中止。这样，当快速扫描（读出）时，若前面激发的信息来不及消隐的活，将与扂面读出的信息重叠，从而降低影像质量。

荧光体被二次激发后，其发射荧光的强度达到初始值的 $1 / \mathrm{e}(\mathrm{e}-2.718)$ 的时间称为光发射寿命期 （light emission life）。IP 的光发射寿命期为 $0.8 \mu \mathrm{~s}$ 。

图 5－1－5 氟卤化钡的发射光谱与激发光谱 If 被 X 线照射而激发，激发 IP 的 X 线光谱称发射光谱，其峰位为 390 ． 4010 nm 。经发射光谙激发分的 IP 㫣由数光光束激发。此一次激发的光谱称激发
利达到坛佳的影像侻噪比

由于该期极短，故可在很短时问队以很高的频变重复采集与读出大面积 IP 上的 X 线影像信息，而不会发生采集与读出信息的重沄。即足说，IP 具有可满足医学成像需要的，极好的时问响估特征（图 5－1－6）。

图 5－1－6 iF 荧光体的时间响应特征栄北体被激光束读出时，发射荧光的寿命呴为荧光强度达到初始值解 $1 / e(c-2.718)$ 的时间值，IP 荧光体的保布期仅 $0.8 P_{p s}$ ，敋明任复时间内而复使用IP成像
（3）IP 的动态范围：当 X 线第一一次激发IP时，其吸收光谱巾于 37 KeV 处可见一陡峭的快速吸收，系其成像层荧光体中的饮原了的 K 缘所致。钡是荧光体的重要成分，拊此吸收特征与二，次激发时的发射灾光特征无关，IP 发射荧光的量依赖于一次激发的 X 线量，在 $1: 10^{4}$ 的范围具有良好的线

性，即是说，IP 在用于 X 线摄影时具有良好的动态范围（图5－1－7）。

常规 X 线摄影中增感屏／胶片组合的动态范围比 IP 窄的多，不能有效地发挥增感屏自身光发射方面宽的动态范围的优势，IP 则可能精确地检测每－种组织间的小的 X 线吸收的差别。 FCR 系统中，IP上的信息北分为两步读出。第一步是由激光超高速地，粗略地读出影像信息，在瞬时核算出 X 线影像的光激发发光量的直方图；第二步，在获取上述信息的基础上，自动调节光电倍增管的敏感性和放大器增益，再以超强激光光线高精细地读出 X 线影象信息。配合 CR 系统的固有功能，则可能在允许范围对任何物体，以任何 X 线剂量获得稳定的，最适宜的影像处理与影像的光学密度。
（4）IP 存储倍峊的消裉：X 线激发（一次激发）IP 后，模拟影像被仔储于荧光体内。在读出 （二次激发）前的存储期间，一部份被 F 中心俘获的光比子将逃逸，从而使第二次激发时苂光体发射出的 PSL 强度减少，这种现象称消褪（fading）。

IP 的消螁现象很轻微（图5－1－8）。读出前贮仔 8 个小时，苂光体的PSL 量减少约 25% 。随时间的延长及存储温度的升高消褪会增加。但事实上由于 CR 设备对光电倍增管增益的电子补偿和自身补偿，依标准条件曝射的 IP 在额足的仔储时间内 L可不会受到消袨的影响，但若 IP 的嚗光不足和存储过久，则将会由于检测到的 X 线量于不足和天然辐射的影响而发生颗粒吽衰减，致使噪声量加大。故

昸 5．1－7 IP 的动态范围
A．在从低剂量到高剂量的跨越 $1: 10^{4}$ 的很宛的范围内，IP 显示了极好的线性，即在 CR 系统的摄影剂量落围内具有良好的动态范围 B．CR 系统的宽的动态范围可以一次嚗光后分别显办气算，支气管影像（B）及肺野的影像（A）

图 5－1－8 IP 存贮信息的消褪特征
IP 的消侽现象很轻微，第 次澈发后，IP 上存贮的信息在第二次擞发（读出）前若度贮？ 8 个小时，其荻光体的 PSL 量减少约 25%

最好在第一次激发店的 8 小时内读出 IP 的信息。
（5）天然辐射的影响：IP 不仅对 X 线敏感，对其他形式的电磁波也敏感，如紫外线，γ 射线以及粒子线，即 α 射线，β 射线及电子线。随着这些射线能量的积蓄，在 IP 上可以影像的形式被检测出来。IP 为高度敏感的光敏性材料，因而可受到来自墙壁，建筑物的固定装置，天然放射性元素，宇宙射线及一些 IP 自身含有的微量放射性元素的影响。长期存放的成像板上会出现小黑斑，使用前应先用激发光线消除这些影响（图5－1－9）。

（二）信息转换

CR 系统中，IP 经 X 线照射后被激发（第一次激发）。经第一次激发的 IP 上贮存有空间上连续的模拟信息，为使该信息数字化，IP 要由激光束扫描（第二次激发）读出。CR 系统的读出装置中的激

图 5－1－9 天然辐射对 IP 的影响自然环境榊存存的各种人然辐射能量可在吅下。蕃积．长期存放后在 IP 上听产牛小黑妧，者直接使用长期在放届的 $1 \mathrm{I}^{3}$ ，可在歓倸上检测到这些小黑理。格中为存放中使用＇」木使用铅材料屏蔽的 IP 上㭘测到的黑孜数

光发生器发射激光束（氦－氯 $\overline{\mathrm{He}} \mathrm{He}$ ． $\mathrm{Ve} \mathrm{E}^{-}$激光束波长为 633 nm ，半导体激光束波长为 $670 \sim 690 \mathrm{~nm}$ ），在与 IP 垂直的方向上依次扫描整个 IP 表面：IP 上的苂光体被二次激发厔发生光激发发光或称光致发光 （PS：）现象，产生荧光。荧光的强枵与第一次激发的的能量精确成比例，即呈线性正相关。该炭光由沿着澈光扫描线设置的高效光导器采集和导向，导入光电倍增管，被转换为相应强弱的电信号。继而，电信号被馈人模拟／数字（A／D）转换器转换为数字信号：至此，CR 系统完成 「模拟份号到数字信号的转换（图5－1－10，5－1－11）。

事实上，FCR 系统的读出装唨是依据 IP 上成像层内晶体的PSL 特征设计的。FCR 系统中的信息转换（transformation of information）部分主要是由激光扫描器，光电倍增管利 A／D 转换器组成的。

（三）信息处理

CR 系统信息处理（processing of information）的原理与其他数字信息处理技术是类似的。大体上讲，CR 的信息处理可分为谐词处理，空间频率处理和减影处理。

1．谐调处理 谐调处理（gradation processing）

图5－1－10 IP 的杵尽性荧光体工作方式
荻光体被 X 线照射后激发（第一次激发），含有潜影的荧光体被激光扫描（第二次潵发），产牛光激发发光（光致发此）现象，二次激发公的炎光体被强光照射，消除厂潜影。可秉新用于成像

涉及的是影像的对比。常规的增感屏／胶片摄影系统中，最终显示的影像相当大程度上衣赖于 X 线曝射量，当曝射量过高和过低时，均不能得到有诊断价值的影像。 CR 系统中， X 线辐射量和（或）能

图 5－1－11 IP 的读出方式示意图
FCR 系统中，随 $1 P$ 在淀出装置内移动，IP 被激光東逐行照射向激发（二次激发），荧北体发射出与贮仔的信息相应强度的炎光，苂光被算止导人光电倍增管，转换为电信号，继而经 A / D 转换紧转换为数子倌号而被读诣
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

量改变（曝射宽容度）的允许范围则较大，在适当设罟的范围内曝射都可以读出影像的信号。

在－张 X 线照片上包括有不同的解剖部位，每次投照时可能使用不同的投照技术。荐使用问一种关型的谐调处理技术来产生所有的影像品然是不理想的－CR 系统可分别地控制矢一幅影像点示的特征，可依据成像的目的设置谐娍处埋技术。比如：胸部摄影中，影像信息覆盖的苑围很宽，在肺野和纵隔部位的密度差别很大，因而可分别应用不同类型的谐调处理技术，以便既可级好地显示肺野内的结构，又叮防止在输出影像中纵隔的密度与骨的密度过于接近，提高纵隔内不同软组织的分辨层次。又如，在乳腺摄影中，则要增加低密度区的对比，抑制高密度区的对比，以利显示包括边缘部位在内的乳腺内钙化（图5－1－12）。

谐调处理中，谐调处理状况的非线性转换曲线由四个参数决定，即谐调类型，旋转中心，旋转量和谐调曲线移动量。谐调类型是四个参数中最基本的参数，它规定非线吽转换曲线的基本形式。FCR系统有 15 个以上谐调类型的形式，例如，选择某

图 5－1－12 CR 影像的谐调处理曲线示最适于胸部丘乳腺沴断应用的谐调类型（GT）
－种谐调类型，则可炎现影像的黑／白翻转；当曲线围绕某一特芫的中心点旋转时，依赖旋转中心点的位置和旋转程度叮得到仆同的影像对比；当谐调曲线移动时，则可改变影像的总体光学密度（图5－ 1－13）：

图 5－1－13 影响谐调处理的非线性转换曲线的参数
A．旋转中心（GC）和旋转量（GA）；B．谐调曲线移动量（GS）

2．空间频率处理 空间频率处理（spatial fre－ quency processing）是指对频率响应的调节，从而影响影像的锐度。在增感屏／胶片系统，随着空问频率的增加，频率响应变小，即是说影像内高频率成分的对比将减小。 CR 系统中，可通过空间频率处理调节频率响应。比如，可提高影像中興频率成分的频率响应，从而增加此部分的对比。

边缘增强技术是空间频率处理的较常用的技术。该技术是通过增加对选择的空间频率的响度，使感兴趣结构的边缘部分得到增强，从而突出结构的轮廓。改变显示矩阵的大小也可决定不同结构的对比，使用较大的矩阵可使处于低空间频率的软组织结构得到增强；使用较小的矩阵则可使较细微的结构，如骨的微细结构得到增强（图5－1－14，5－1－15）。

图 5－1－14 空间频率处理
FCR 系统中檤用的空间频䅫处理称为代鲜明蒙片处理，正中 Q代衣原姢影像，Qum 代表不鲜明影像，QL 代表经处埋的影像。虚线代衣原始歌像与不鲜明影像之间的差别（Q－Qus），单点利曲线指本经诗处哩付颜像的频率响应

图 5－1－15 不鲜明蒙片处理中加权系数的函数曲线图图中，加权因素 K 直不是一个常数， K 值随原始影像的落度（信马Q）拍芫地增堿，在低密度区域（Q 㑑小的区域）K值减小，在高密度区城（Q 作人的区域）K 值剒加。此类处理称为＂非线性不鮮叫家片处埋＂

通常，谐调处浬（影响对比）和空间频率处理 （影响锐度）是结合应用的。低对比处理和强的空间频率处理结合使用可提供较大的层次范围和实现边缘增强，利于显示软组织，如纵隔等；高对比处理比弱的空间频率处理结合使用可提供与增感屏／胶片系统提供的类似的影像。

3．谐调处理与空间频率处埋的效果 因为 X线成像系统可以被认为涉及两个圤程，即影像采集和影像显示，所以在试图增加病变的检测吽时可以采取两种方式。…是利用一个可以提供优质物理学影像质量的影像采集系统，即具有大的信噪比
（SNR），高的空间分辨力和宽的动态范围的影像采集系统；另一个是使影像显示最宜化。从而使放射科经师可以从中提取尽可能多的诊断信息：第二杉万式其所以叮增加病变的检测性是因为实施检测的人在观察巾不仪仅依赖于影像的物理性质，而目也做赖冮吰示条作：

影像显示特征的最优化处理—呲调处理和空间频率処理可用于改善低对比 X 线摄影 $/ j$ 式的可检测性。图5－1－16显示厂上述处理的结果。图中使用的是熟知的接收—运行特性（receiver－operating characteristic，ROC）曲线。图中检测的模型为 5 mm直徐。虚线表示，当用于显示的特性曲线（H 和D）作成与在 Hi－STD／RX 的增感屏／胶片组合中相同时的可检测性。长，短相间的虚线表示特性曲线的非线性系数加倍时（对比加倍）的可检测性。实线表小实施 $\mathrm{RN}=1, \mathrm{RE}=3$ 的频率处理时的可检测性，

图5－1－16 影像显示特征的最宜化处理改善影像的检测性
图中安验性检测的模型自伦 5 mm 。虚线农不本经过处理的影像；长，䓡相问的桠线表示非线性系数屾倍时（对比斦倍时）的叮检测性；曲线代表非鲜明蒙片处理中实施

$$
\mathrm{RV}=1, \mathrm{Rr}=3 \text { 的频率处理时的检测性 }
$$

这样，低对比 X 线摄影方式的可检测性道过影像处理被改善，其结果可用下述物理学原理解释 （公式5－1－1）：

$$
\begin{equation*}
\mathrm{S} . \mathrm{VR}_{\mathrm{R}}=\mathrm{S}_{\mathrm{R}} / \mathrm{N}_{\mathrm{R}} \tag{1}
\end{equation*}
$$

式中表示 X 线影像的物理学信噪比 $\left(S N R_{R}\right)$其中的 X 线影像是 X 线在 IP上曝光，由影像读出装置（IDR）读出的。如果读出的影像实施影像处

理，比如使对比度加倍的沘淍处理。则信号与啝声二者均将加倍，SNR 将无忿化，这与图5－1－16 给服的结果是矛盾的。因而，我们假先在观察者的眼，脑系统中存在一个号外的噪声成分，这个噪声是观察者固有的，设为 N_{I} 假定 N_{I} 仔在时的 $S . R_{1}$ 公式为：

$$
\begin{equation*}
S \mathrm{VR}_{\mathrm{R}}-\mathrm{S}_{\mathrm{R}} /\left(\mathrm{X}_{\mathrm{R}}^{2}, \mathrm{~N}_{1}^{2}\right)=\mathrm{S} \times \mathrm{R}_{\mathrm{K}}^{\prime}-1+\left(\mathrm{N}_{1} \mathrm{~N}_{\mathrm{R}}\right)^{2 ? 1} \tag{2}
\end{equation*}
$$

这样，即可解释实施对比增强后可检测性的增加。当对․－给定的影像实施对比增绌时，信号与噪声均被相同的因数所增强，$S \mathrm{VR}_{\mathrm{K}}$ 无改变，然而，

周有的（读出者内在的）噪声的相对量减少了，这样就产生一个较大的 $\mathrm{S} \mathrm{VR}_{1}$ ，得到了一个给定物体对比的较大的可检测性，或者说，因而相应地只需要个较低值的对比。

4．减影处理 减影通常是 DSA 设备的功能，
处理（subtraction processing）。在时间减影血管造影方式中，（R 系统同样可以摄取蒙片和血管显影照片，并经计算机软件功能舀施减影：

利 DSA 设备町比，（R 系统实施时间減影方式还有下述优点：可 1 P 覆益范制大，可克服 DSA 设

备中影像增强器（I．I）视野较小的限制。（2）IP的空间分辨力比 I．I TV 系统高，若使用 10×12 英寸的 IP，其空间分辨力为 $3.3 \mathrm{LP} / \mathrm{mm}$ ，I．I－TV 系统为 $1.8 \mathrm{cycle} / \mathrm{mm}$ 。（3）IP 的动态范围宽，利于视野内的结构具有明显密度差别时信息的采集，如胸部摄影。

在能量减影方式中。 CR 系统除可采用传统的瞬时切换曝光电压，得到两幅仆同能量影像实施减影的方式外，还可在暗盒中放置两张 IP，中间夹有一层铜滤过板，只需一次曝光，因钧滤过了软 X线，下面的 IP 接受了相当于高能量曝光的硬 X 线照射，们别读出后则可实施两种能量曝射的影像减影。如在喉部摄影中，采用能量减影方式可有效地突出气道的显示（图 5－1－17）。

CR 系统实施时间或能量减影方式功能时的缺点是时问分辨力差，日前不可能达到 DSA 设备通常可达到的每秒数幅以上的采集频率及实时显示。但在继续改进设备功能的同时，可以实施对时间分辨力要求不高的部位与目的的检查。

图 5－1－18 是 FCR 系统实施的胸部能量减影的例子：成像中，X 线管电压可快速的切换为 120 kVp 和 60 kVp ，两次曝射的间鄈为 0.9 秒。图 $5-1-18 \mathrm{a}$ 是用 60 kVp 摄取的影像； b 为 120 kVp 摄取的影像；c 为保留软组织的影像；d 为保留骨组织的影像。在 d 中，心脏，大血管及纵隔组织的影像几乎完尒消除，显小骨结构的影像（胸椎，助骨等）比在a中清唽。在c中，骨影已完全消除，更好地勾画出了支气管和大血管影像

图 5－1．18 FCR 系统实施能量减影的实例
A．为用 60 kV 摄取的影像；B．为用 120 kV 摝取的影像；C．通过能量㖪影む除广幽影，更好地显示了纵隔软组织影像；D．改变能量减影方工式，几乎完合消除了心肚，大血管影像，更好地显示广悄性胸倣

在实际运行中，若拟获得良好的能量减影影像，需具备以下几个条件：（1）两次曝射的 X 线能量差别要大；（2）IP 的检测线性要好；（3）IP 的检测性能要高；（4）散射线的影响要小。

图 5－1－19 是一幅肺癌病人的能量减影照片。5－ $1-19 \mathrm{a}$ 为标准的 X 线照片； b 为能量减影的软组织

像；c 为能量减影的骨骼像。于 b中，骨骼成分完全被消除，在标准 X 线照片中因被肋骨遮蔽而观察不到的肺癌影像现在一目了然。此外，在骨骼影像中，心脏，大血管及纵隔影像均被消除，和常规 X 线摄影影像相比，对胸椎和肋骨的显示有了显著的改善。

图51－19 胸部平片能量减影的实例

推利胁肖的显示已复著改差

（四）信息的记录

FCR 系统的信息是存储在光盘中的。若光盘的一面存储量为 1 GB ，而一幅 CR 影像的存储空间为 4 MB ，则每面光盘听仔储 250 幅图像。但是，资料管理系统可提供匤缩，若压缩率为 $1 / 20$ ，则每面光盘的存储量可扩充到 5000 幅影像。

FCR 系统使用的影像数据压缩方式有三种类型。 2 种类型㘬是利用相邻区域的原始影像像元数据预测兴趣像元的数据达到信息压缩的口的。

第一种类型，如图 5－1－20 所示，系通过把相邻区域原始影像像元作预测处理并转换为二进制符号的一种可逆性压缩方法。相邻区域像元预测法又称前值预测法，系计算前一像元与下一像元间密度差的方法：X 线影像系由从黑到向的连续色调构成，相邻的像元间的密度通常没有急剧的变化。前

值预测法即是利用了 X 线影像的这一特征。

图 5．1－20 前值预测法影像犮缩原理
前值顶测法系把相邻区域的原始影像作预测处玾，川转换为二进制符导的一种可这性顶缩方法

第＿－种类型是前先实施 $2>2$ 像元的平均缩小，然后再进行了第一种类型压缩处理的厅法。该方法为非可逆性犬筦法。复原时，只可使被长缩的部分复景，及恢复像元的数日，但代能恢复像心平坅的成分。

根据摄影的部位和方法的佥则，第一种类型 （及第二种类型）的术缩有很人的不同，如图5－1－21所小，四肢，乳房等部信压缩率高，因为尽管四肢含有骨骼等密密度结构，但大部分结构均由均匀的成分构成，乳腺更是这样；的胸部，胃肠道及各种造影影像的压缩率低，因为这些部位的结构憲度庢别大凡不均匀：此外，伓缩率也随 IP 接受的 X 线量间变化：随 X 线量加人，影像的噪声成分減少，其压缩率相㙟提高

图5－1－21 㚜种摂影部位和方法的平均压缩率

尤缩素低

第三种类型如图 5－J－22 所示，把原始数据分为主数据的插补数据，循数据分类，内插预测及

Huffnan 编㱜实施压缩：首先，把原始影像作 $2 \times$ 2 像元的平枃缩小，分类为主数据与插补数据。王数据被量子化后，经前值预测上j Hufíman 编码实施压缩，插补数据系出原始数据分离后进行内插预测，再进行误差数据预测。即预测内插的插补数据辂真数据之间的误差，靠移动量子化行二进制符号数宁化，再行 Huffman 编矽居行压缩处理。

> 原始影像数据

取沟缩少 2×2

图5．122 前二种类型的压缩方式
把原好数据分为主数掂与插补数据，胙数据分类，内插预测及 Huffrnan 编沙的顺序处施的压墔

图 5－1－23示三种压缩类然中不同部位的还缩率 $=$

事实」，由于现伦计算机处理速度，存储容量进省极快，新的存储力式，如磁光盘，光盘组等可

图 5－1－23 二种压缩类型在不同部位的压缩军

以提供更大的存储能力和存取速度。
为满足临床诊断目的，FCR 系统信息的记录分式有三种主要类型，即激光打印胶片，热敏打印胶片及热敏打印纸。激光打印胶片是常规的记录方式，CR 信息传输到激光打印机，打印机还叮同时联接其他成像设备，如CT，MR，DSA 等，形成网络。

第2节 CR 系统的临床应用

一，降低摄影条件（减少曝射量）的价值

一组研究材料用 CR AC－3 系统及标准铅梯，选用九组投照线量依次递减的条件，分别对铝梯依表5－1－1 的条件行 CR 和中，高速屋常规X线投照。

对获取的照片用密度计检测各梯段的密度值，取样三次，对数据分析后绘制井线 二 三种照片不同条件下图像密度变化曲线如图 5－1－24。

表 5－1－1 CR 与常规 X 线片投照条件设定

\％ 4 Hemm			
80	100	0.1	65
80	70	0.12	65
80	70	0.1	65
80	70	0.08	65
80	70	0.06	65
80	70	0.05	65
80	70	0.04	65
80	70	0.03	65
80	30	0.03	65

图 5－1－24 三种不同条件的照片图像密度变化曲线

根据上述井线可见，不同条件所得到的 CR 图像密度变化很小，而中，高速屏片则有很明显的差异。只要给予高于曝射条件下限的 X 线投照条件， CR 系统即可在较宽的曝射宽容度范围内取得满意密度的图像。图5－1－25 是三幅利用三种不同条件对头颅体模行侧位投照的 CR 影像。图5－1－25A 摄影使用的 X 线线量高于图 5－1－25C 将近 42 倍，但图像质量无显著差异。这不仅减少广病人接受的 X线量，还可以延长 X 线球管的使用寿命。

在临床应用中 CR 系统降低 X 线剂量的价值主要体现在以下方面：

（一） X 线量

CR 系统设计的初衷之一是减少 X 线量：投照 X 线量的降低与 IP 的性能，检测（读出）设备的敏感性，投照部位及投照时的技术参数等多种因素有关。已有材料证实，底用 FCR 系统成像的 X 线量，在胸部投照时为常规 X 线摄影的 $1 / 20 \sim 1 / 7$ ；在胃肠道造影检查时为 $1 / 20$ ；泌尿与盆腔检查时为 $1 / 8$ $\sim 1 / 2$ 。 X 线量还与 IP 使用的期限有关，事实上超过额定曝射次数的 IP 通常仍可使用，但 X 线曝射量提高，才可继续得到可满足诊断要求的影像（图 5－1－26）。

图5－1－25 不同投照条件的头所测位 CR 照片

图 5－1－26（R 系统的 X 线剂量

（二）团检及高危人口的 X 线检查

适龄女女的乳腺定期普香己相当普及，似积䒺的 X 线量过高自厊即火一个致癌的危险国素 CR系统的低 X 线量成像则极有利于乳腺普查及其他类似日的的团检。此外，对辐射尤其敏感的予妇及儿童，使用 CR 系统代巭常规 X 线摄影则吁人大放宽 X 线检查的内容与次数的限度。

（三）国民X线剂

这是衡量某一国家或地区人П接受的平均 Y线剂量的参数：这个概念有两忶含义：一是一般意义的剂量：二是诱发向血病意义的剂量：比1978年，日本的 般意义上的 X 线臌影的匡民X线剂量为 $10.3 \mathrm{mrad} /$ 人 $^{-1} /$ 仵 ${ }^{-1}$ ；透视者为 $5.0 \mathrm{mrad} /$人 1 年 ${ }^{1}$ ；唀发白血病意义下的 X 线摄影的国心剂 量 为 $29.9 \mathrm{mrad} /$ 人 $^{-1} /$ 年 ${ }^{1}$ ，透视者为 $52.3 \mathrm{mrad} /$ 人 $^{-1} /$ 年 $^{-1}$ 。若采用 CR 系统，假定 X线剂量平均下降到常规 X 线检杳的 $1 / 5$ ，则 \cdots 般意义上的同民 X 线剂导为 $2.1 \mathrm{mrad} /$ 人 $1 /$ 年 ${ }^{1}$ ；诱发白血病意义上的国民 X 线剂显为 $6.0 \mathrm{mrad} /$ 人 $1 /$䒜＂${ }^{-1}$ ，这样，具有遗传学意义的 X 线剂量仅为犬然轵射剂量的 $2 \% \sim 3 \%$ ，诱发自血病意义的剂量将下降到天然辐射剂量的 10%

二， CR 系统的后处理功能

如在上节所述，CR 系统可对已玲采集的信息

作杪调处理，空间频摔处理改減影处埋 这些后处埋帅能在不同部位叮以炇活使用，从而得到山满全沴断目的的影像。

三，CR 系统的优缺点

（一）综上所述， CR 系统的优点有：
1．X 线剂量比常规 X 线接影显著降低
科技帅不需特殊训练即可操作：

3．具有多种有处理理能，如测量（大小，面积，密度），局部放 之，对比度转换，对比度反转，影像边缘增强，双滆品示以及減影等。

4．留示的信息易为诊断厌牛阅读，理解，H．质量吏易满足诊断要求。

5．可数宁化仔档，利于并人网终系统；何管省部分胶片，退叮节约片库占用的空间及经费：

（二） CR 系统当前的不足

CR 系统当前主要的不足是时间分辨力较差，不能满足动念器官和结构的显示。此外，在细微结构的步示上，与常规 X 线检查的增感屏／胶片系统比较，CR 系统的空间分辨力有的还稍嫌不足。但很姜情况下可通过南接放大復影方式弥补。
（礽 吉）

第2章 图像存档和传输系统

图像存档和传输系统（pichure archive and com－ munication system，PACS）是1982午丁美国加州 Newport Beacr 不开的第－认 PACS 会议提持的，以后，在日本， $\mathrm{P} \Lambda C S$ 会议与11本医学影像技术会合下，每年一次。1987年会议更非一步扩大，包括以下四个方面的研究：立泈像物理学；可泈像抓取（image capture），格域（format）利分形（distritu－ tion）；（3）图像处理；（ 1 PACS 的设计利评估

在欧洲，欧洲 PACS学会从1984年召开年会，是欧洲 PACS 父换信息的推动栄

最为集中的一伏会议是北约（NATO）国家的…次学术会议，约有 100 余位科学突参腘，于1990年在法国 Evian 举行。会议汇编对 I＇ACS 的最新仾穴和发展作＂了全面的总细。

在关国，对 PACS的最品研究是出美同陆军提供经费的课题，远程放射学（1ele－radiology）。以后又进行了＂数字化图像网绛和 PACS 安装现场 （DIN／PACS）＂课题的矿究，为此，选拎与两个地点，即西海岸鸥雅图市的华盛顿大学（University of $W_{\text {ashingrion }}$ ）和东海岸华盛顿哥伦比亚特区的布治敦大学（Georgetown Universit！）和乔治华盛顿大学 （Grorge Washington University）（原两芹组成联合体执行研究）－ 1985 年美性 卫体俩究所（National Institure of Health，NIH）的団家痮症研究所（Na－ tional Cancer Institute，N（I）折资慗助PACS 的项日之－，名为＂放射沴断＂学的多观察站＂（Multiple Vewing Stations for Diagnontic Radiology ）的课题，设在加洲大学洛杉矶分校（UCLA）。

第1节 建立PACS 的迫切性

当今信息量山增，即使乍月常出活吅，大量的信息也需要处理。一些现代化的组织机构，如财务机关，航空公司，国陏部门利邮兯等，都珀圳需要好的广法来处理日益膨胀的众要数据信息，放射科的业务也是 一样，日㤘繁杂，他括从多种不蔺成像工具产生的图像，图像叟示，图像诊断，报待㕲图

像存档处理等一序列上作 让む能使 一个心规模的放射科有效运作的组织形式和技术，当它发展扩大时，就恨得力不从心 5 ，当今现代医学所面临的最大挑战之，是及时处理众多的影像原学信息：具有复杂原将阳题的病人，需典进行多种影像学检查，这些检当有可能是使不同医院进行的，US此，劳闭信息不程而造戊代必要的軍复检杳；同时取得䢒此影像学资料，对确诊疮病义非常必要：此外，不问的原生看同 病人，都需要复习该病人的图像资料，随着医院的规模扩＂人，就诊病人口益增多向白
白切㥃他随之增加，过む那种以胶片模式传递信息，实在难以满足需要。而且胶片不在手头。遭到
只息，从长远看，所篅费朋相对较高，综 5 所述，图像序档和传递信息的广式必须改进。

为此，电子图像存档和传输系统即应运而生它的特点足：（能存储所佫图像信总：（2可以过速地霊新取出图像信息；能同时亨用多种成像功具所采集的终像括息；（㕽以在多场合下，异地多人同的学用，从而克服了过去用抆片模式所带来的困难和限度。形发PACS 的H的就是要提点操作效率利提呂诊断能力

从近期看，PACS 的实现，耑要比较高的投资，而所 $\vec{j}^{\prime \prime}$ 生的回报率较少，这就是 PACS 尚未被 ＂泣接受的原因 具有远见的工牛行政人员应该看到。PACS 任进行矤院赏理方而所具备的巨大潜 נ和不可低什的作用。

第2节 PACS 的原理和方法

输 人到 $\mathrm{P} \Lambda \mathrm{CS}$ 的图像可以束白产生数学化图像的成像．．具，如CT，LS，MRI，CR 和核原学等。也朾以来的经过数字化处理的模拟图像（analog im－ age），这些信息概可以来自当地的战像系统，也可以来自远距离通让网络输人的图像信息。总的来说，一个 PACS 要氾括一些子系统（subsystem）和

部件：影像采集设备（image acguisition device）； （2）数据处理系统（data management system）；（3）数据仔储设备（data storage device）：（传输网络 （transmission network）；图泈像齿示站（image dis－ play stationt）；（ii）产生硬拷则图像的设备（hard copy device）．

虽然 PACS 并不像戊像 1．具，如 CT，MRI， US，CR 那样能给诊断疾病带来新的止展和提高，也就是不能直接产生诊断用图像信息，但是它能它质量，高速度，大容显地存储图像：高速度，宿质庫地传输图像；通过后处理，间接地提高诊断效率：

一，图像的输入

如前所述，除了 CI，MRI，CR 等产尘数字化图像可直接输入 PACS以外，大量的常规X线图像必须经这信号转换成为数字化信号扂。方可存入 PACS，下面介绍三种常用的读取转换系统，经

过这样处理，常规 X 线图像即可输人 PACS．

（一）摄像管读取系统

这－系统（见终 $5-2 \cdot 1 \mathrm{~A}$ ）$-\mathrm{j}-\cdots$ 般的摄像过程－
成数字化信号，再输入 PACS：这 系统的特点是：价格低而且简便易行，共缺点是图像项量欠佳。

（二）电荷耦合器件读取系统（图 5－2－113）

电何耦合器件（charge coupled devicc．（CD））是以桨光灯作为光源，光透过胶） 后，由一排（4096）光感受器接收到的光信号转换成为电侣号，严业 A D 转换器转换戊数字化信号，然它输人 $\mathrm{I}^{\prime} \mathrm{ACS}$ 。这种系统的特点是具有读取文宁原稿的光覑强度。
到对文字信息利图像信息的系统管理。们因为是一条线，一条线地谈取，比较费时而H图像质男中等
（三）激光读取系统（图5－21．1．）
共原理有些类似 CR 的读取系统。使用光源为

图 5－2－1 图像读取转换系统模式图

氦分激光，椐过多面体旋转武仅光镜对义线片进 ＂广挂描。同时，由快速多路门动跟踪接收器将接受到们北信号转变为电信号，然告両由 AD转换器转换成数宁信号弟输入 PACS；这种系统的特点是

速度快，比 CCD 系统快 2－3 倍；其次是精确度
格上则是最昂贵的，以上，种方法的性能和特点如衣5－2－1 所小゙。

表5．2－1 X 线片数字化系统性能比较

方 式	像 元					
摄像管系统	1440×1440	窘	1／15 秒／幅	快	质量欠佳	费用低廉
CCD 尔统	4096 （僙何）	巾等	12－14秒／鹤	图像质量优良	较慢	结梅简单
激光系统	4096×4096	r°	10－20秒幅	质量优速度快	费用过吊	结构复杂

二，图像的传输

这一迹程危论是在图像的输入，以及以后的检索和再处理。都是必不可少的。它是 PMCS 条部分之间的桥梁，其关键问题是传输速度和并位时间内的传输量，即信息流是，芭是限制 PACS 在一定范围内应用的时素之一。

（一）传输类型

类型因传输的月的不同而有差异，其基术类型如图 5－2－2 新示；两点间传输主要用摄影设备与计算机中心之间及终端；计算机中心之间的联系；星型实际上：是两点间传输的延伸，即计算机中心与条个终端间的联系：國形和平行型则是各医院的 PACS 之间的联系，以形成中心系统乃至大型网络。

图 5－2－2 传输费型模島图

（二）传导方法

日前用作影像信息传输的媒介基本有二种：电信号，光信乒和微波，因媒介不涧，与法地吕

1．公用纯话回路 将PACS间（内）的影像信总以电信号的形式，通过出话线来连接以完成信息交换。这种今治最简便易行H费用低，然而存在的问题是传送速度太慢，经过信息压缩会的一张胸片大约需 10 分钟才能传送出去，当然在电话回路用材上加以政善，如将电缆增粗和使用高导材料等可以克服这些缺点

2．光宁通讯 将数字化影像信息变换成光信
换。由十光納通讯技术的发展，就可能完成远距离，舁速度和准确地传输影像信息。例如：使用 $2 \mathrm{~Gb} / \mathrm{s}$ 的高速发光一极管和光导纤维组成的传送系统站． 300 m 距离是 $2 \mathrm{~Gb} / \mathrm{s}, 500 \mathrm{~m}$ 是 $1.6 \mathrm{~Gb} / \mathrm{s}$ 。 1 Km 距离是1．2（ Fb / s ，传输流量随距离延长而降

低一张胸片的俗息量约为 $4 \mathrm{MB}=32 \mathrm{Mb}$ ，传输距离为 300 m 时，以上述系统为例，所需时间约为 $32 \div 2000(2 \mathrm{~Gb}=2000 \mathrm{Mb})=0.16$ 秒，却只需用 0.16秒就可将 - 张胸部平片的信息传送到 300 m 以外，这是理论速度，实际速度比理论速度要低 10% 左有：这是交换信息喱大，使用率高时的最住方法。

3．微波通计 这是－种和电视台发射再由电视按收机再现影像的原理相问。由 PACS 中心将数宁化影像变换成微波信号，按要求发射出去，提出要求信总的…方将收到的微波信昂变换成数字化影像并重建冬像。由于双方的联系均需具备发射和接收微波信号的设备，从而基本投资很高。然而这一－方法术受地域限制，传输速度快，而且可以卫星中䌽站在较大的范围队实现 PACS 的传输功能，没有讨圱中继站时，还可利用微波传羭地百中继站。
（三）影响传输逨度的因素 几种主要因素如下：
1．终端与接口的数量 物理性连接增加电阻。

不同信号媒介的转换，如光电转换，电光转换等均直接影响传输速度。所以随终端和接门数量的增多，传输速度减慢。

2．传输类型 一般以圆形加星型最为迅速。因为在 PACS 的任何两点间的传送均可以最短的距离来完成。

3．传送方法 以光导和微波通讯最为迅速，但投资较高；电话回路速度慢，但比较经济，肉此可垠据条件进行选择。

如前述可知，PACS 的支柱是利用电子网络系统来移动信息。传输网络要求操作协议规程（pro） tocol）的电子学规则，这样才能使被传递的信息达到想要去的目的地，而不至和另一组传递的信息数据发生冲突。最有效的规程应是灵活而又适应性良好的，并且可以对通过网络的数据容量的波动进行回应。成功的网络连接要求标准化的接口（inter－ face），以便使不同厂家生产的设备都能使用网络协议或规程。美国放射学院（American College of

Radiology，ACR）和美国国家电器制造商协会（Na－ tional Electrical Manlfacturers Association，NEMA）制定了一种成像设备的通讯标准：DICOM（digital imaging and communication in medicine，医用数字化成像及传输），这种 DICOM 标准允许在不同计算机和操作系统中，互相操作。而且它的灵活性大，允许进行改进和扩充。1985年推出第一版本（ver－ sion 1．0），1988年推出2．0版本，1992年又推出 3.0 ，即称之为 DICOM 版本，得到普遍接受。

三，图像数据的存储

此为 PACS 最重要部分之一。有效存储量（随时可以使用的存储量）和再现影像的质量决定 PACS 的有效性。目㷙作为存储元件的有磁带，磁盘，光盘和各种记玌卡，如表5－2－2 所示。因为软盘存储量心，不适于矤学影像的存储：硬盘在 PACS 中主要用于过渡吽存储，经处理后再存人磁带或光盘中。记々片则用于个人医疗信息的存储。

表5－2．2 存 储 元 件

（一）磁带

标准的磁带存储量以 CT 为例，可以存储 430帧 CT 体层影像的信息，约为光盘的 $1 / 29$ 。这种磁介质存储器随着时间的推移，介质中代表信号大小的磁化强度会自然减弱，从而造成信号丢失。

（二）光盘

1．记录原理与结构 光盘是在球璃，塑料或铝等所制作的基板上，涂以记忆膜，用较强的激光按影像的信息在膜上打孔而记录信号。读取时，以较弱的激光根据反光原理把记录下来的影像再重建。

2．存储量 因光盘的直径不同而易。袮准 12.7 cm （ 5 英寸）光盘为 2.6 GB ，约相当子常规 X线相片 650 张，CT 5200 张： 30.48 cm （ 12 英寸）的光盘为 5 GB 。采用集合型光盘系统后，在系统内可以同时管理 32 张光盘，不需更换，即可同时检索。

3．光盘的特点 一般记录后不能更改，此乃

其缺点，然亦为其优点，即在医疗上可作为法律鉴定的依据。

近年来推出的 WORM（write－once－reac－many，即一次写人，多次阅读）光盘和可擦洗光盘的度用，为图像存档带来福音，WORM 光盘的容量可达到 $10 \mathrm{~GB} \sim 21 \mathrm{~GB}$ ，存储性能非常稳定。它不受外界磁场的影响，而且至少可以保存数据达 10 年之久。可擦洗光盘（erasable optic disk）又称 MO 盘（magne－ to－optical disk），其介质为稀土物质，这种物质可以保存局限的磁极性（localized magnetic polarity）。而这种磁极性又可在加热时，加一磁场来使之改变。用聚焦的激光束产生局部热量来改变磁极性，这种 MO 盘的缺点是不如 WORM 盘敏感，数据传遂慢，约为 $100 \mathrm{~KB} / \mathrm{sec}^{\circ}$ 。

（三）记忆卡

一般其大小与银行信用卡相似，大体分为二

种：磁吽卡坊，记录的信惫埋少，只能㲹下姓名，
是自集成电路和半导体记忆元件组成，其记忆量为 $64 \mathrm{KH}-512 \mathrm{~KB}$ ，为磁性卡片的一倍以上，们东能存储影像；激光卡片。共记录原理同光番，记忆量 If 在 $2 \mathrm{MB} 3 \cdots 100 \mathrm{MB}$ ，为集戊屯路卜片的 $4 \sim 200$ 倍以上，可以记录病人的关键影像和重要㤢床数据。

就㶤卡片目前所起的作用是检索，如查找病分号等。

四，图像数据的压缩

一个汉字对计算机的信息量是 16 bit，通一张常规 X 线脂约为 $4 \mathrm{MB}(1 \mathrm{MB}=1000 \mathrm{~KB}=$ 1000000 bir），即相莦于 1563 页红满沌宁的原稿纸 （ 400 宁 $/ 1000 \mathrm{MB}$ ）。过即矿以存储 2000 张普通 X 线相片的信息。但是还存储不下一个 600 床以上的医院一犬所有的影像信息，因此信息的压缩存储就显得非常重要，依现有的技术条作，可将数据压缩至 $1 / 5$ －－1／10 而不影响质量。

由于PACS 本身是一种戈门计算机网络，对其由的信息流进行压缩，是提高 PACS效率的重要途茎。

数据压缩分为两种：不丢失性哌缩方法（loss－ less compression method）和宝失情压缩技术（lossy compression technique）。前者只能作到 $2: 1$ 至 $3: 1$的延缩卒，而存者则可作较大比例的压缩，虽然不能精确，完美无缺地再产生与原始图像…样的图像。但是图像质量还是很好，既见不到图像有降解 （degradation），也边会影响诊断质量，

JPEC（Joint Photographic Expert Group．联合图片专家小组）标准和子波太詑（wavelet compres－ sion）均属于转换基础上的丢失压缩技术（transform－ based lossy compression technique）这一类：它包括三个步㵵：转换（rransformation）；量化（quantiza－ tion）和编码（encoding）。转换阶段是不会丢失数据的，图像从空间域的灰阶转换成其他域（domain）的系数，大家最为熟悉的就是 MR 成像时图像重建的傅立叶转换。子波转换则应用了数据床缩，量化这一步就会有借息丢失发生，它会保存最重要的系数，而ズ衰要的系数则被粗略地近似掉（approxi－ matcd），如零，最后一步是将量化的数据进行编码，这一步也不会丢火信息。

JPEG技术的缺点是：（1）应用于影像学图像高

比例压缩时，图像质量有降解，产生伪影；（2子波小综技术的图像质量，在同了一长缩比例上优于 JPEG；而且可以获取较高的压缩率（compression rate）。Savcenko 等（1998）使用子波基础压缩技术评价后前位胸片，发现小的末钙化肺内结节病变和纤维化病灶，在压缩率高达 $40: 1$ 时也不会减少上述病变的检出的精确度，当达缩率达到 $80: 1$ 村。则基发现病变的能力有所下降，然而诊断正确性并无统计学上的差异。

五，图像数据的处理

图像数据处理系统就是专用计算机，它控制网络，图像存储设备和图像采集等，以使得整个系统有度运作。总的来说是容量，处理速度和可接终端数量越大，越快和越多就越好，然而经费的投人就随之提高，

（一）编辑及再处理

这一部分是把文字说明与相应图像一并存储，并同时将没有意义的图像去掉。对图像可以进行再处理，使易于理解利便于诊断。

（二）检索

在输入图像的同时，要准确无误地输入病人的有关资料和病历号，以利检索和诊断。

第3节 PACS 的结构

PACS 的结构随其应用的环境和要求的不同而

图 5．2．3 PACS 的基本结构图
\qquad

图 5－2－5 小型 PACS 模式洛

图5－2－6 中型 PACS 模式图

第4节 PACS 的临床应用

各类小型 PACS 已在荷兰，美国和 11 本的一些大学建立起来，还存更多的系统在筹建之中。应用这种系统的好处在于：

一，对病人来说，减少等候时间，其次可以避免在不同医院在病而带米多次重复硷查。

二，对医生来说，可以免去繁涢的借，还照片

手续，其次是可以在不同场所，由许多医生会诊同 －病人的影像侣息，还可以检索出不同时期病人不同种类的影像信息，综合参考，有利于提高诊断。

三，对医院管理方面，首先減少 X 线及各类影像资料的保管，借与还的业务，减少保管照片的场所；随时可以了解和得到医院各影像设备运衍情况的数据，如摄片和其他影像诊断检查的人数，部位，检查次数和种类等。

尽管 PACS 日前佛存存着投资高，技术困难和医帅们难以逗应从荧屏观察图像习惯的暂时困难等缺欠，然淌，从长迅的战略观点来看，将会带来巨大效益，病人只要手持一卡（磁记忆卡），到任何有 PACS 或加入 PACS 的任何医院就诊，以前的影像资料随吋可以调出，重复检查可以免除，会诊可以随时进行，极为方便，故其前票是可观的。

第 5 节 远程放射学

近年来，丐联网（internet）使犬各一方的人们的联系既方便又快捷，远程放射学因而迅速发展。远程放射学的基础是图像的数字化存梢和传输，本篇所述的 CR 和 PACS 就是远程放射学得以实现的基本条件。我周幅员广大，由于经济发展的不同，

医疗资源的分貓极代平衡，包括給验本富的高级医务人员的分布，从端影像设备的前有程度在不可地区均大们相同。尤其是训练有素的人只的溃工，使边远地区付些疑难医㷌问蚬代能及时解決，或需较诊而长途跋涉，其全因向延误为情的处理。远程放射学提供了就地会诊和就地继续教育的培讲机会，其前程是无量的。 日的，在我同就存计多以荣一城市的高等医学院校或科研院所为巾心的畀型网络，联系会诊，取得良好效果。

（郭启勇 陈炽贤）

参 考 文 献

1．赵喜 ψ 郑崇勋 毛松寿 PACS 的发展趋势，中华放射学杂志．1998；32：5－7
2．彭明辰，小词典 CCD（charger－crup）led device）医学影像新技术，1998；1：43－44

3．鄅启勇 陈烦贤。第一兩 第六音 压学影像学新进展－当算 X 线撮影抜术和图像存储及传输系统。刘玉清 李
社。1943 133－144

4．宋健＂${ }^{\circ}$ 浅谈远积放射学。 4 华放射学杂志 1998， 32．3－4

5．Pratt FIM，Langotz CP，Feingold FR er al．Incromental costs o：deparmental－wide implementaton of a pacture archoving and communication syotem and compured radiogra－ phy．Radiology 1998，206．245－252
6．Erickson FJ，Manduca A．Palissun P et al．Wavelet com－ pression of medical images．Radiology 1998，206：599．607
7．Savcenko V，Erickson［JJ，Palisson P ti al．Detection of subte abnormalities on chest rediogratphe after irrcversible compression．Radiolegy 1958，206：609－616
8．Stabh F．Y：PACS mini refresher course：Introduction．Ra－ diographes $1992,12 \cdot 125-126$

9．Choplin RH，Bnehme JM，Maynard CD．PACS minı re freshet course：Picture archoving and communicator sys－ tem：An overview．Radiogtaphics 1992．12：127－129
10．Frost Jr MM，Honeyman JC，Stabb EV：PACS mini re－ fresher course：Image archuval technologies．Radiographics 1992，12：339－343

11．Bidgood Jr WD，Hortı SC：PACS mini refresher course： Introduction to the ACR－NEM1A DICOM standard Radio－ graphics 1992．12：345－355
12．Dwyer SJ．Stewart IKK．Sayre JW．Honeyman dC： PACS mini refresher course：Wide area network strategies fi）r teleradiology systems．Radiogrphics 1992， $12: 567$.

576
 compresson for computed rathiswraploy of the chesl．J Ingul Imag：ng．［998 入v，11：4）：176－8］
 and of meanuring asisintance cowls an computed radegraphy． Evaluation of the weight－beanng knee．Anta Racior．1998 Nov， 39 （6）：642 8
15．Jurick KL．，et al．Automated routing of［0］C（） Kl CI． MR ，and CR images：solving the pufalls of vendur－aperif－ ic DICOM implememtations．J Digit Itraging． 1998 A．g． 11（3 sump 1）：131－3
16．Kasaı K．et al．Significance of resdual tenal functions of patients with end－stage renal feilure undergoing commous ambulatory peritoneal dalysus V_{1} ppon Jinzo Gaikkaı Sin． 1997 Dec． 39 （8）：7839

17．W＇ilkanson LE，et il．Theterminatom of curtect AFC Funt thor with computect radugraphy cassottes．Australas I＇ay： Eng Sci Med． $1997 \mathrm{~S}\}, 20\{3\}: 186-91$
18．Hragg DC，et al．Fxperriences with computed rabkgata phy：can we afford the cost：＇AJR inn J Rixencgenol． 1957 Oc1． $169(4): 935-41$
19．Ogecka M，et al．Linsharp masking lechmaque ustrig mul tiresolulion analysus for computed radugraphy mage en－ harwerment．J Digit lmaging． 1497 Aug， 10 （3 suppll！． 185－9

20．Hangiandroou VJ，et al．Inimai experience with wofterpy display of compnted radography innges on threr picture archive and communication aystems．J Dignt Imaging． 1997 Aug． 10 （3 Suppl 1）47－50
21．Lehuda K ，ei al．Climcal evaluation of irreversible data compression for computed radiography in excertory urogra－ phy J Ligit Imaging． 1996 Aug，y（3）：145－9
22．Neo J．et at．Ct nical evalation of tooth－colored materats in certical lesions．Am J Dent 1996 Feb． 9 （I）．15－8
23．Ohara K，et al．Impat of biological cleanance on tumer radioresponsiveness．Int I Radiat Oncol Busi Phys． 1996 Jan 15， 34 （2）：389－93
24．Yoshida T ，et al．Climeal study of phoolodynatme thetapy for laryngeal cancer Nipron Jibiinkuka（akkaı Kaihu． 1995 May． 98 （5）：795－804
25．Fujita S ，et al．Clinical application of compuled radu）gra－ phy in orthopedic surgery．J Digıt Inraging． 1995 Feb， 8 （ 1 Suppl 1）：51－60
26．Gringold EL，et ai．Computed radography：user－pro－ grammable featur＝s anc．capablities．I Digit Imaging

1994 Aus． 7 （3）11．3－22
 Jucumenced by CR and CT mupun Jibinkerka（rakker Kai－ ho． 1993 Sep． 96 （9） 1471 81
28．Kimme－Smath C ，et al Eifferts of reduced exposure on compated radography：comparison of nodule detectorn ac－ curacy with conventional and asymmetric screen－film rado graphe of a chest phantum．AJR 1495．165（2）．269－73
29．Tucker－DM；Barnes－GT；Koehler－RL．Proure archiving communtacation systerns in the mensone（are unit．Radicho \＆．．1995， 196 （2）：297－304
30．Olive WR，et al．Three－dimensionsal recon－truction of a bullet jath：valication by computed Radograpins．J Forensic Sci 1995， 40 （2）：321－4
31．Aman A．cowen AR．Improved mage ruality utiliang du－ at plate computed radiography．Fir J Radicl．1995，of （806）：182－8
32．Auki－K，Computed racugraply is pediatrics．：Digit

Itnaging 1995． 8 （1 Suppl 1）：92－5
33．Parkitig（iJ．Clinical aspects of dieect digheal mammergra－ phy J Digit Imaging．1995．8（1 Suppt 1）：61－6
34．Mac．Mahon H．Digita．chest radiography at the Liniveterly of Chicagu：present status and future plars．J Dhgil Imag－ ing．1995． 8 （1 Suppl 1）•11－4
35．Nawario S．Evaluation of digital mamography in diagnows of brtast cancer J Digit Imaging．1995， 8 （1 Suppl 1）． 182－8
36．Lsaigaki T ，Sakuma S ，Findo 1 ，et al．Dhagroms uxitul－ ness of chest computed radography filim versus cathode．ray tube maker．J Digit Imaging 1995 ， $8: 1$ Suppl 1）． 25 30

37．Kamimyra K，Takashima T．Clinicel applicatio：of single duai－cnergy subtraction lechnique with digital storagt－phos－ pher radiography J Digis Itnaging．1995．8（I Suppl 1）： $21-4$

中英文对照索引

2 D傅立叶重廷
2－1）Fourier reconstruction 41， 99
B_{0} 场，主磁场
Bohr 模型（原子核）
（TT动眿门脉造影
へT血学造影
（＂I 值
K－穿间
Lamor 方程
Larmor 频率
V－乙酸门冬氨酸
Plank 常数
T1
T1 加权
T1 值
I＇2
T2＊－加权
T2－加杝
I2值
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ 轴梯廹
XY 平！磁化久量
X 线的量
X 线的质
X 线电影摄影
X线发生吅
X 线旁电流
X 线管电辰
X 线摄影
X 线阴极靸材料
X 线驶度
Z轴磁化矢量
安其格钠劵（用系血管
浩影）
百万分之一
半峰值最六宽度

半傅立叶成像
半价层
饱和
被动屏蔽
边缘增强

13． $95-06$
Bohr mendel 3
CT arterial portography．CTAP 56
CI engiogrept），（CTA 56
CT number 59
K－space 105－108
Larmor equation 95
Larmor fretatency 95
． V －acelylaspartate 142 － 143
Plank čonstant 95
TI 96
T1－weighted 104
TI values 104
T2 $96 \sim 97$
T2＊－weighted 109
T2－wajghted 103～104
T2 values 104
Gx，Gy，Gz 97． 159
Mxy $\quad 96 \cdots 97$
quanisty，x ray 11
quality，x－ray 11
emeradiography 21
X－ray genewator 10 － 11
tube current 10
tube potential 10
radiography 19
targel matorial $7 \sim 8$
hardness，x－ray 10
Mz 96
angwgrafin $\quad 24-26$
parts per mullion（ppm） 137
full width at half maxamum， FWHM 138
half－Fourier imaging 106
half－valuc layer 10
saturation 118， 127
passively shiclding 159
edge enhanerment 173

编鸡
呩记
标识 X 线
标识过程
孙识图（路标）
标准床渐进豆（ CI
表向线柬
衣圲弥敬
表现张散系数
波谱
波㬐戊像
波谱分析
波谱分析畐用丁
脑 MRS
乳腺 MRS
Fit MRS
肌肉 MRS
不成对电年
不兵失数据压㴼法
部分嵒积效应
会间距
层流
层而厚度
层面选择梯度
常导磁本
超导磁呠
漺高速 CT

超顺磁性物质
超顺磁性氧化铁

成像板

成像序列
插像
驰像时间
话加
传输网络
窗技术
㑑宽
窽位
encoding 97－99， 186
land markıng 84
characteristic x－ray 6－7
characteristic process 6－7
road map 72－73
standard incremental（CT $41-32$
surface mil 160
apparent diffusom 1.33
zepparent diffuvion cuefficiert 1.33
seectrum 137～149
spectrowcopic imaging 140
secelroчcopy $137 \sim 149$
sjxctruscopy application of 141－－149
brain MRS 142－－146
breast MRS 145
liver MRS 146
muscle MRS 148
unpaited electrons 121
loseless sompression method 186
partial volume effect 62,117
slice gap 115
laminar flow 126
slice thickness 115
slice selection gradient 97
recistive magnet $\quad 158 \sim 159$
superconducting magnet 159
ultrafası computed tomography，
LFCT 42－43
superparamagnetic mutcrial $\quad 123-124$
superparamagnetic iron oxide（SPIO）
12．3－124
image plate，IP $168 \sim 172$
imaging sequence $102 \sim 113$
relaxation 96
reiaxation times 96～97
hemorrhage 152
trensmixsion 182－185
window technique $60 \sim 61$
window width 61
window level 60

磞其㧨波揹
嘫共振战像

磁共振功能成像
磁共挀血管造影

磁兴振血管造影（を越时间法）
一维 飞越到间法磁共报血营造影
三维飞越对间法磁共
振血管造影
磁化传递对比

磁化率
磁化率伪影
磁娕
磁屏敬
磁体
磁旋比
代数重建技术
代谢物
单次激发
单能定是（T
单能直的
单体
单柏
胆破
腿教葡较

递推滤过
第 回波
第二回没
点分辨波售法

碩米分醇
碘本酯
碘跇啦啥
碘必乐，睃异酶醇
碘泊酸钙
碘狄醇
碘泛酸
碘化钠
碘化油
碘卡明葡胺

MR spectrewryp（MRS）1．37－149
wagnetic resothance maging，MRI
93－－164
funcliontal MRI 1．33－1．36
magnetic resonatice angivgraphy
（MRA）126－130
magnelic resonante angiography
（TOFMRA）128－－129
2DTOFMRA 128

319TOFMEA 128－129
magnctization transfer connrast （MTC）100－101
magnetic susceptibility 100
suscepubility attuifact 113
magaetic：mement 95
magretic shiedding 159
magnet 158
gyrumagnectc ratio 95
algetjaic reconsuruction texhnique 40 metabolites 137－138
single shot 111
single－energ $\mathrm{QCT}, \mathrm{SEQCT} 52$
monsenergetc 7
monemer 24
single－phase 10
choline（Che） 142
＂exdopamide，bylgrafin，chaugtaliut 26
recursive fi．tering 85
first echo 102～103
sccond echo 103－－ 104
PRFFS（point resolved spectroscopy） 138
iohexol，ormipaque $24-25,54$
pantopaque．myodil 26
diodrast $24 \sim 25$
iopamidel，iopamion $24-25.54$
calcium tupudate，bilopt．n 26
iodixanol，visıpague $2<-25$
topanuic acid，respaque 26
sordium iodide 26
sodized onl，lipiodol 26
locarmate meglumine myeoram，bis－ contry $24 \cdot 25$

硾砒㥜乙酸
喠普岁按。优维业
稷曲伦
磌雜索，安射利
电磁鎦射
电荷偊合器件
电离
电离辐射
旦离室
先势
电压波形
昆庄波形脉动
巴
ㅂ 子伏特
电 「5束（TT

已子探测器
词制传递函数

定量CT

至失数据压缩技术
动永注射数字减影
动态成像
动态打描
读出梯传
然 Tl 反转恢复序列

断面成像
好比
对比剂
对比剂
对比检查

对比噪声比

对比增强

如比增强 MRA
多层面
多回波
考平面和多曲的重组

多平面重组
二聚体
－磷酸～＂比醛锰
uroselcretan 24－25
icpromide．ultavist 24－25，54
iutralin，sovist $24 \sim 25$
icversol，optiray 24－25，54
electromagnetic radiation $12 \sim 13$
charge coupled device．（CDD 18，
innization 6． 12
ismization radiz．tion 12
unnzatus chamber 12
electric potentian 5
waveform 11
ripple in voltage waveform 10
electron $3 \cdots 4$
flectron volt，eV $3 \cdots 4$
electron beam computed tomography，
EBCT $42 \sim 43$
clectronic detector 16
modulation transfer functicri，MTF 62
quantitative computed tomography， QCT 51
lossy compression techrique 186
IATSA 82
dynamic imaging $55 \sim 56$
dynamic scatming $55 \sim 56$
read－out gradient $97 \sim 98$
short Tl inversion recovery（STIR）
105
crost－sectional maging 20
contrast 23
contrast agent $\quad 23 \sim 26,121 \sim 124$
contrast media $\quad 23 \sim 26,121 \sim 124$
contrast exathination $23 \sim 26,121$
－ 124
contrast to noise ratio（CNR） 114 ，
115
contrast enhancemert $54 \sim 57$ ． 120－－121
contrast enhanced MRA 130～131
multi－slice $102-104,110$
multi－echo 102－－104， 110
multi and curved planar reformation，
MPR／CPR 47
mulriplazar reformatung 47
dimer 24
namganese dipyridoxal diphopphate
（MnDPDP） 124

$$
\begin{aligned}
& \text { 二维成像 } \\
& \text { 二继傅立以变换 }
\end{aligned}
$$

一维㭼位对比血管進影
－－乙焍三胺吾乙酸钝

发光中心
发射光谱
反投影法
反转恢复
倾倒角
反转时间
反转时间
反转预脉冲
泛影的

泛影隼胺

办位
防治射线测定䮀卡
放人摄影
放射学
放射诊断学歹观察站

飞超时间法
非离子型对比剂
多配
优特（电压单位）
氟－19 磁六振波谱

氟卤化钡
辐射
鎘射扵描
复方泛影䈻胺
傅立叶变换
益格－弥勒认数器
感光胶片
感兴趣区
高分辨力 CT

高空间频率重建法

高什先拫影

高斯
twu－dimersional magmg 97－－99 two－dimension Fourier transtorm （2DFT）97－99

2D PCMRA 129
gadolinium diethyl triamme－pon－ luactlic acd（Gd－DTPA）121－ 122

Jumistescence center 169
tmission spectrum 169
back projection 40－－41
inversion recovery（JR）104－105
flip angle 96．108－－ 109
merrsion time（T1）104～105
$\begin{array}{ll}\mathrm{Tl} & 104-105\end{array}$
invession prepulse 110
sodium diatrizoate，hypacue sodium 24
meglumine diartiznate，hypaque
flleglumine 24
orientation 96
badge 33
magnification radiography 20
radiology，roentgenology $1-31$
multiple viewing station for diagnos－ tic radiology 182
time of flight 126
nomonte contrast media $25 \sim 26$
distribution 182
veltage 5
Fluorine．in epectroscopy，${ }^{19} \mathrm{~F}$－
MRS） 149
barium fluorohalide 169
radiation 6
radial scan 107
urografin，eenogrefin 24
Fourier transform（FT）99～100
Geiger－Muler Counter 12
photcsensitive film 16
region of interess（ROI）79， 138
high－resolution CT，HRCT 48 ～ 49
high－spatial－frequency rezonstruction algorithm $\quad 173 \sim 174$
high－silovoltage raduggraphy 20 Gauss 158－159

高危
格式
各问异性
地能
共振频率
公筤酸
谷氛酰氨
观察野
灌注
光电效应
光发射寿命期
兆激发发光，光致发光

光子
广域网
鬼影
含铁血黄素
核磁共掋（NMR）成像

黑血＂磁共摂血管选
影
亨氏单位。（I值计量
単位
横波
横向弛穆时间
横向磁化欠星
䍒向自旋－白旋驰像

宏观磁矩

呼吸门空
五联网
化学位祊
化学位移戊像
辉尽性苂光物质
回波
回波链
回波平面成像

匽波时间
回波时间
混合减影
肌醇
肌酸
枳分蒙片
基本粒－子
high risk 27－28；54－55
formal 182
Anisotropy 133
kinetic energ3 5
resonance ftequency 95－96
glotamate（GLu） 142
Elutanine（GLu） 142
fleld of view（FOV） 115
verfusion 134
photo－electric effect 14
light emission life 169
pholesumpulated luminescence，PSI． 169
photon 4－5
wide area network，WAN 187
ghost Imaging 117－－119
hemosiderin 152
nuclear magntic resonance（ NMR）
imaging 94－95
black blood MR angiography 152
tounsfield unit，YU 59
transverse wave 4
transverse relaxation time 96－97
uransverse magnetizaion（Mxy） 97
transverse spun－spin relaxation 96 － 97
macruscopic magnetic moment（vec－
tut） 96
respiratory gating 117
internet 188
chemical shift 137～138
chemical shift irnaging（CSI） 140
photostituuable substance 169
echo $102 \cdots 104,108 \sim 113$
echo train 110－113
echo planar imaging（EPI）111－ 113
ecto time $102 \sim 104,108 \sim-113$
TE $102 \sim 104,108 \sim 113$
hybrid subtraction $85-86$
Myo－inesitol（MI） 142
creatine（ Cr ） 142
integrated mask subtraction $84 \sim 85$
fundamer．tal particles 3

蒙片	mask 71， 79	人射电 f	incident electrons 6
妳散	diffusion 133	三磷酸腺苜	adenosine triphosphate（ATP） 145
密度分辨力	density resolution $15,62,80-81$		~ 146
敏感性	sensativity 30	(α, β, y) 二磷酸腺苷	α－ATP，β－ATP，γ－ATP $145 \sim$
模拟图像	analog itnage 182		146
䍚角	magic angle 101	三维傅立叶变换	three－dintension fourier transform
钼	molybdenumı $7-8$		（3DFFT） 99
内光电效应	internal photo－electric effect 14	三维显示技术	three－dimensional tendering tech－
钢－23 阙共振波谱	sodium，in spectroscopy，（ ${ }^{233} \mathrm{Na}$		nique $47 \sim 48$
	MRS） 148	－维相位对比血管选	3D PCMRA 130
脑㳏塞	cerebral infarction 134	影	
脑衁流量	cerebral blood flow（CT3F） 134	三相	three－phase 11
能量减影	energy subtraction $79 \sim 80.175 \sim 176$	扫描荣	gantry 37～38
偶回波重聚	even ectuo rephrasing 127	扫描时间	scan time 46
配准错误	mistegistration 81	射频	radio frequency $159 \sim 160$
匹配滤过	matched filtering 85	射频脉冲	RF pulse 159～160
偏振光照片	polarvid filtre 38	射频屏萄	rado frequency shield 160
频宽	bandwidth 4－5	射频线圈	radio frequency coil 159～160
频率	frequency 4－5	射血轮廊	tjection shell 90
频率编码梯度	frequency encoding gradient $97 \sim$ 98	深部分辨表面线圈波谱分辨法	DRESS（depth resalved surface coil spectroscopy） $138 \sim 139$
	plain film 19	时间分辨力	resolution temporal 81
平扫	plain scanning／rumenhanced scanning	时间减影	temporal subtraction 79
	53－54	实时局部曝射控制	real－time lucal exposure control 34
平野洝过	field－flattening filter 81	实时透梘成像	real－time fluoroscopic imaging 46
葡药糖胺	glucosamine $24 \sim 25$	势能	potenticl energy 5
谱宽	spectral width 137－138	㐨张期伪门控	diastohc pseudogating 127
谱线	spectral line $137 \sim 138$	数据处理系统	data management system 185～186
曝射	exposure 10， 13	数据存储设备	data storage device $185 \sim 186$
暴射时间	exposure time 10	数宁 X 线摄影	digital radiography，IJR 167
氢密度，氢自旋密度	N （H） 100	数字化图像网络／	DIN／PACS 182
去相位（相位分离）	phase incoherence（out of phase，de－ phasing） 102	PACS 安装现场数字减影血管造影	digital subtraction angiography，
去氧血红蛋成	deuxs hemcglobin 152		DSA 69～92
全景体芸摄影	pantomography 19	数字苂光成像／数字苂	digital fluorography／digital fluo－
扰相位脉冲	spoiler pulse $108 \sim 109$	光透视	roscopy．DF 72
热离子发射	thernionic emission 6	效回波	Dual Echo 102～104
热阴极管／柯力芝管	hot cathode tube／Coolidge tube 8	双能定量 CT	dual－energy QCT，DEQCT 51 ～
人名，爱因斯㘿	Einstein 5		52
人名，发明 CT 者	Hounsfield 41	双向 DSA	bl－plane DSA 73
人名，设计 EBCT 者	Boyd 42	永抑制	water suppression 110～111
韧致过程	bremsstrahlung process $2,6 \sim 8$	水和脂㧍去相位	water and fat dephasing $110 \sim 111$
容积成像	volune imaging 48	水－脂肪位移	water－fat shift（WFS）137～138
容积感兴趣区	volume of interest（VOS） 48	水肿	edema 151～152
容积显小法	volume rendering，VR 48	流速编码	velocity encoding 129
	lactate（Lac） 144	探测器	detector 37

碳－13磁共振波谱 carby，in afectroscopy（ ${ }^{13} \mathrm{C}$－MRS） 148
特斯拉
梯度
梯度回波
梯度回波成像
梯倡闭波字列
梯度线圈
梯度运动相位重聚
梯尿白㱩同波
体层摄影
体线倦
体元
钦磁物质
同层动态扫描
同时迭代重建技术

同位素
投射重建
投影成像
透视容积显示法

透视图
图像存档和传输系统

图像降解
图像显示站
图像重建
湍流
湦流
团注法
脱䯖静
网状内皮系统

微脂肪粒

为影
胃影葡胺
稳足状态
稳态进动快速成像

涔流
铇
细胞萼性水肿
氯挨测器
氺示野
线園

Testa 95，158－154
gradient $97-98,159$
gradient echo 108
gradient echo imeging 108－110
gradient－recalled echo（GRE） 108
gracuerst cril 97－98， 159
gradient motion rephasing 127
graclent spin echo（GRASE） 111
tompgraphy 19－20
bady coil 160
voxel 59,80
ferromagnetic substances $123-124$
single level dynaric wataning 55
simultancous iterative reconstruction rechnique 40
isomole 3
projection reconstruction 39－41
projectional imaging $39 \sim 41$
perspective volume rendering， PVR 48
pieture archive and communication
systenn，PACS $182 \cdots 188$
degradation 186
image display station 183
jruage reconstruction 39～41
turbulent flow 126
vortex flow 126
bolus injection $35,81,131$
demyelnation $1.54 \sim 155$
reticulo－endothelial system（RFS） 123
liposome 27
artifact 63～64．81，116～119
gastrugrafin 25
steady state 109
FISP（fast imaging with steady－state precession） 109
eddy curretits 159
tungsten 8
cytoroxic edema 151
xenon detector 37
field－of－view．FOV 115
coil 160

线束硬化
线性内㖞运算法
相位编码
相位步码数相位对比血管造影

相位图像
相位效底
相们－－致
相位重聚焍伎
像元移为
潒元
消返
协议规程
谐调处理
磁化率
信号
容号异常
位步检测
信号平均
言号平均次数

伝息转换
言噪比

兴趣区
血池对比剂
自流
血流速度

血脐／屏陪
血容积
血氧水平依赖

压缩摔
延识打描
沿轨道运行电子
氧合血红蛋白
液体衰减反转恢复

次写人，多次阅读

光盘

区用数字化成像及传输
依洛前列素
依前列腺䧐
teant hardenirg 10
linear interpolation 50
phase encoditrg 98－99
number of phase encoding steps 105
phase contrast magnetic resonance
angiography（PCMRA）129－－ 130
Fhase mage 109－－ 110
phate cffects 109－110
phase coherence（in phase） 102
rephasing gradient 102． 108
pixel shifting 84
pixel 59． 80
fading 170
frotoce 185
gradation processitig 172－－175
surecptibiluy 100
signal 99
signials，abnormal 150
signal detection 160
signal averagitig 115
number of signals averaged（．NS N ）

$i 15$

Lranformation of infurmation 172
signal－to－noise ratio（S．VR） 62 ～
$63,76,114$
region of interest， ROI 79
Hhood－poril crontrast agent $124 \sim 125$
Elood flow 126， 134
velocity，blood flow $131-132$ ， 134
biloud－b：ain barrier（BBB） 121
bloord volume（Vb） 134
Lliond oxygen level dependent （BOLD） 135
compression rate 186
delayed scanning 56
orbiting electrons 3－4
oxyhemoglobin 152
flund attenuated inversion recovery （FL．AIR） $104 \sim 105$
write－once－read－many，WORM disk 185
digital imaging and communncatior．in medicine，DICOM 185
il．bprost 26
prostacyclin 26
\qquad

胰高糖素

移动式线束均衡摄影

移动伪影
异泛影钠
异泛影角咹
阴没射线管
荧光并
荧光缩影
影象采集设备
影象接受器
影像容积
影像增强器
影像诊断学
影像抓取
確拷贝设备
永磁体
有效回波时间
有源屏蔽
预饥和
预佨和脉冲
颁磁性
顷反转罗回波
域
元索
原始数据
原了序数（ Z ）
远程放射学
远程笑学
钥孔成像
匀场
运动伪影
阵蒙方
再配准
噪声
增强与二掉
遮蔽闪胨
進盖表面亚示

诊断流程
降列处理器
开交线園
正铁血红蛍白
正电子
帧频
脂肪－水界面
glucagon 89
advanced muluple beam equälizatios：
radography，AMBER 34
motion artifact 77
comray 401024
conray 24
cathode ray tube，CRT 8.9
fluorement screen 18
flutroradingraplyy 20
image acquisition device 183
image receptor 16
inlaging volume 50
image intensifier，1．I 18－19
imagng diagnosi． $30 \cdots 31$ ， 65
image cap：ure 182
hatrel copy device 183
permanert magnet 158
effective entho tume 110－－ 113
aclive shieids $\quad 158 \sim 159$
precatuation 118，127－128
presatuation pulse 138，127～128
paramagntetic $120 \sim 122$
pre inversion muti echo（PRTME）
donain 99,186
elemerid 3
raw data 177
atomic number（ Z ） 3
teleradiology 188－189
telemedicine 188－189
keyhole inuaging 107
shimming 158－159
motion artifects
remavking 84
reregistation 84
noise $62-63,77$
enhanced scanning 54
veiling glare 76
threshold shaded surface display， SSD 47
flow shart 21
array processor，AP 46
quandrature cail 160
methemoglobun 152
positron 3
frame frequency 81
fat－water interface 116

脂肪抑制
项耍
质量俊证
质量控制
质子
质子磁共振波謟

质子扣权橡
质子密度
质子密度 $\mathrm{P}(\mathrm{I})$ ）加权像
巾心处理装置
山子
平夏时间
重复时间
重建
重建吅：间
重聚脉冲
周期的间
尚闱闻隙现象
主磁场场蛍
转换
转换基础上丢失压缩
技术
准肖．婩
子波压缩
f系统
白旋
白旋回波
白旋回波成像
自旋密度
自旋一自旋
白族－白㬵（12）弛豫时
间
白旋一氐旋相互作用
白由中千
自由感应衰减
目族－皆格（TI）弛懓
纵向弛豫时间（T1）

纵向磁化矢量

最大强度投影

最大强度投影法
最小平か造代技术
fat suppression $104,110 \cdots 111$
mass 3
fuality assurance．QA $6+$
quality control．QC 64
proton 3， 45
oroton，in＂pectrocopy， p （D）（： H －
（IRS） $141 \cdots 145$
．V (H) weighted $1012-103$
proton density 102－－103
proton densty－weighted maging
102－103
ionitral procesw untr，CPU 38
nculron 3
repetition time（TR）102 • 113
TR 102－103
seconstrucuon 46
reconstraction time 46
reforising pulse 102
cycle time 46
peruphcral space phenomemon 62
field strength $95-96$ ，158－159
transformation 186
transform－based lassy compression
technique 186
collima－or 38
wavelet compression 186
ubbsystem 182
spin 95
чрін echo（SE）102～103
spitt echo imagng 102－103
spin density 102－103
spin spin $96-97$
spin－spin telaxation（12）time 96 ． 97， 104
spin－spin interaction 96－97
fres electrons 4
fiee induction decay（FID） 99
siom－lattice relaxation（T1） 96
longitudinal relaxaton time（ TI ）
96,104
lengitudmal magnetization（Mz） 96
maximuth mensty projection（MIP）
47－－48
r．aximum intensity projection，MIP
47－48
iterative leasi－square lechnique 40

英中文对照索引

2－1）Fourier reconstruction	2－I）傅立叶重建 41， 99	black blowd MR angiography	＂黑血＂磁共张血管造影 152
2D I＇CMRA	一，经相位对比血管造	blood flow	衉流 126．134
	影 129	blood oxygen level dependent	血氧水平依赖 135
35）PCMRA	三经相位对比 Ift 管造	（BOLD）	
	影 1.30	blocod volume（ Vb ）	血容积 134
active shields	付源尿蔽 158～159	blood－brain barrier（BBB）	血脑屏蒘 121
adenosine triphosphate（ATP）	二噒酸腺苷	bleod－pexol contrast agent	血池对比剂 124 ～
$\alpha-$ ATP，$\beta-\Lambda T P, \gamma-A T P$	（ $\alpha, \beta, \gamma)$ 二磷酸脉付		125
	145，146	body coil	体线圈 160
advanced multiple beam equalization：	移幻式线束均衡摄影	［3ohr model	Bohr 模型（原子核）
radiography，AMBFR	34		3
algebraic reconstruction technique	代数重綪支术 40	bolus injection	团注法 55，81，131
aliasing	卷褶 116	Boyd	人名，设计 EBCT 者
American Cullege of Radiolog．	关図放射学院 185	bremsstrahlung procesa	㮏致封程 $2,6 \sim 8$
$\wedge \mathrm{CR}$		calciunn iopodz．te．bioptin	碘泊酸钙 26
amalog mage	模拟图像 182	carbon，in spectroscopy（ ${ }^{13} \mathrm{C}$－MRS ）	碳－13磁共振波谱
analytic method	解析法 41		148
angiografin	安長格钢芬（用于血管	cathode ray tube，CRT	阴极射线管 8－9
	造影） 2 － 26	central process unit，CPU	中心处理装置 38
anlisotropy	各向异性： 133	cerebral blood flow（CBF）	脑血流量 134
apparent diffusion	表现弥散 1.33	cerebral infarction	脑梗塞 134
apparent diffusion coefficient	表现称散系数 133	characteristic process	标识过程 6－7
	近似掉 186	characteristic x －ray	标识X线 6～77
approximated	阵列处䎸品	charge coupled device，CCD	电荷耦合器件 183
array processor，AP	年列处理器 46	chernical shift	化学位移 137～138
artifact	肉影 63－64，81，	chemical shift imaging（ CSI ）	化学位移成像 140
	咸子序数（Z）	choline（ （ Ch ）	胆磩 142
alomic number（ Z ）	原子字数（ Z ） 3	cincradiography	X 线电影摄影 21
averaging frames	均帧 85	cold	线圈 160
R_{4}	T6场，主磁场 95～	collimator	准直器 38
	96	compression rate	还缩率 186
back projection	反投影法 $40 \sim 41$	Comptom scattering	唐普顿－吴有训散射，
badge	防治射线测定胸卡		又称 Comptom 散射
	33		14
bandwidth	频宽	computed radiography，CR	计算机 X 线投影
bariunn flurohalide	氟囟化钦 169		167～181
barium sulfate	硫酸钡 23	compuled tomography，CT	计算机体层放像 35
beam hardening	线束硬化 10		－67
hinding energy	结合能 14	computer	计算机 36， 167
bi－plane IDS \wedge	双府 DSA 73	conray	异泛影葡脺 24

0			英中文对照系引 199
conray 400	异泛影钠 24	diodrast	碘吡啦㖒 $24 \sim 25$
conlrast enhancement	对比增强 54－57．	distrubution	分配 182
	120－121	domain	域 99.186
combrast	对比 23	JRESS（ depth resplved surface coil	深部行辨表的线組波
contrast agent	对比剂 23－26，121	spectruscopy）	橧分旅法 138～139
	－124	dual echo	双回泼 102－104
contrast enhanced MRA	磳比增强 MRA 130	dual－energy QCT，DFPCT	双能定解CT 51
	～ 131	dytamic imaging	动态成像 55－56
contrast examination	对比检査 23－26，	dynamic scarning	动态敃描 55－－56
	121～124	echo	囵波 102－104，108
contrast media	对比剂 23－26， 121		$\cdots 113$
	－ 124	Echo Planar Imagng（EPI）	回波平面成像 111－
cortrast to noise ratio（CNR）	对比檪垍比 114 ，		11.3
	115	echo Time	回波吋间 102－104，
convolution method	卷积反投影法 40～		108－113
	41	eche train	回波煡 110－113
creatine（ Cr ）	肌酸 142	eddy currents	涡流 126
cross－4ectunal imaging	断的战像 20	edema	水肿 151－152
crosstalk	交叉干扰 115		
CT angiography，CTA	CT 血管造影 56	edge enhancement	边缘増强 173
CT arterial portography，CTAP	CT 动脉门脉造影 56	effective echo time	有效网波时间 110 －
CT nutnber	CT 值 59		113
cycle time	周期时间 46	Eirstein	人名，爱因斯坦5
cytotoxic edema	细狍毒性水肿 151	ejection shell	射血轮隴 90
data mamegement system	数据处理系统 186－	clectric polential	电势 5
	186	electromagneuc radiation	电磁辐射 12－13
data storage device	数据仵储设备 185－	electron	电子 3－4
	186	electron beam computed tomography，	电于束CT 42～43
degradation	图像降解 186	EBCT	
delayed scanning	䞨迟扫描 56	slectrom volt，eV	电子伏特 3－4
demyelination	脱筩鞘 154～155	electronic detector	电子探测器 16
density resolution	密度分辨力 15,62 ，	element	问素 3
	80－81	etrission spec：rum	发射光谱 169
deaxyhemoglobin	去氧血红蛋白 152	encoding	编码 97～99， 186
detector	探测器 37	energy subtraction	能量施影 $79-80$ ．
diastolic pseudogaring	舒张期伪门控 127		175－176
diffusis，	㑈散 133	enhanced scarning	㙂强扫描 54
digital fluorography／digital fluo－	数字荧光成像／数字荧	etasable optic disc／magneto－optic	可擦洗光盘 185
roscopy，DF	光透视 DF 72	disc，MO dis：	
digital imaging and communication in	医用数字化成像及传	even echo rephrasing	偶回波重聚 127
medicine，DICOM	输 185	excitation	激励 6，96
digital radiography，DR	数字X线摄影 167	exposure	暴射 10,13
digi：al subtraction angiography，	数字掝影血第造影	exposure time	曝射时间 10
DSA	69－92	fading	消遥 170
dimer	－聚体 24	fast flow	快速流动
DIN／PACS	数字化图像网络／	fat suppression	脂肪抑制 304．110～
	PACS 安装现场 182		111

（1）			英中文对照索引 201
IADSA	动脉注射数宇减影	ioversel．opriray	碘维索，晏射利 24$\cdots 25,54$
	82		
iloprost	依洛前列耆 26	isorope	同位素3
itnege acquisition device	影像采集设备 18.3	ifcrative least－square techmque	最小中方选代技术
iminge capture	影像抓取 182		40
image display station	图像显示站 183	IVTOSA	静脉江射数字血管造
image intensifier． 1.1	影像增强器 18－19		影 87
image plate，IP	成像板 168－172	Joint Photographic Expert Group，	联合图片专家组 186
image receptor	影像接受器 16，	JPEG	
image reconstruction	图像車建 39～41	joule	焦鳥 5
imaging daynosis	影像诊断学 30－31． 65	keyhole imatying	钧孔成像 107
		kinetic energy	功能 5
imaging sequence	成像序列 $102 \sim 113$	K－space	K－空间 $105 \sim 108$
irnaging volume	影像容积 50	kymugraphy	记波摄影 21
uncident electrons	人射电 ${ }^{\text {c }} 6$	lactate（Lac）	乳酸 144
inc：emental dynamic scanning	进床式动态扫描 55	laminar flow land marking	层流 126
inflow effects	流，效应 127	Lammor equation	标讣 84
inflow MRA	流入 MRA 128－129		Larmor $/ 5$ 程 95
integrated mask subtraction	积仆蒙片减影 84＊	Larmor frequency	Larmor 频率 95光发射寿命期 169
	85		
interface	接以 185		线性内插运算法 50经动脉碩油梌塞术
	内光电效应 14	linear interpolation lipıodo－－transarterial embolization，	
internet	互骩网 188	lipooteo－transarterial embolization， ISP－TAF，	经动脉磺油检塞术 89
interventional radiology	介人放射学 $87 \cdots 88$	lipusome	敉脂肪粒 27
inverse square law	挋离平方及比定律	local area network．L．AN ${ }^{\text {a }}$ longitudinal magneuration（ Mz_{3} ）	句域网 187
			纵向磁化矢量 96纵的㤝豫时间（T1）
	11	longitudinal magnetration（ M 7 ） longitudinal ralaxation time（ T 1 ）	
inversion prePulse inversion recovery（IR）	反转预脉冲 110	longitudinal relaxation time（T1）	$96,104$ 不无失数据压缩法
	反转恢复 104－105	loseless compressiott method	
inversion time（TI）	反转时间 104－105		不丟失数据压缩法
iocarmate meglumine	碘卡明葡胺 $24-25$		丢头数据术缩技术
isdixanol，visipaque	碘狄碠 24－25	．ossy compression technique	186
iedized oil，lipiodul	碘化油 26	luminescenec center	发炎中心 169
isdopamide，biligrafin，cholografirı	胆影莆胺 26	macroscopic fragnetic moment（vec－	宏观磁矩 96
iohexol，ommipaque	碘苯公醇 $24 \sim 25$ ，		
	54	magic angle	魔角 101
ionic contrast media	离子型对比剂 25 －	magnet	䮄体 158
	26	magnetic moment	阙知 95
ionization	电离 6,12		翃共拢血管造影 126
ionizatuon chamber	电离室 12	magnetic resonatce anpiography （MRA）	-130
ionization＂adiation	电离辑射 12	magnetic resonatice angiography	嗞共振血管造影（飞越
iopamidol，iopamiro	砽必乐，碘异酗醇	（TOFMRA）	邖间法）129－129
	24～25， 54	2DTOFMRA	二维飞越时间法磁共
iopancic acid，telepaque	碘泛酸 26䃆署罗胺，代维显		振血管造影 128
ropromide，ultravist		35TOFMRA	〒维飞越时间法磁共
	$24-25,54$礌曲伦 $24-25$		振血管造影 128 －129
iotralan，isuvist			

202 英中文对照索引			
maknelic resonance imaging，MRI	磁其振成像 $93 \cdots$－ 164	$N(H)$ weightad	质子加权嘜 102－－
magnetic sthelding	砍局斋 159		103
magnetic susceptibility	磁化察 100	Xacelylaspartate	－乙－酸门冬氨酸
magnetizathon transfor emtrast	磁化传递对比 100～		$142 \sim 143$
（MTC）	101	Vational FIectric Manufacturers Asi－ sociation，NEMA	美国国家电器制造商协会 185
magruification radiography	放大摄影 20		
manganese dipyodoxal diphoxphate	二磷酸二比醛紨 124	r．et macroscopic vector magnetization	净磁化量 95
（MuDPDP）		r．eutron	中子 3
mask	蒙片 71， 79	t cise	檪声 $62 \sim 63,77$
truass	质量 3	r．onionic contrast tnedia	非离子型对比刘 25
matched filtering	所配滤过 85		－ 26
matrix	矩阼 59,80	r．uclear magnetic rewonance（NMR） imaging number of phese encoding steps number of signals averaged（NSA） orbiting electrons	核磁共振（NMR）成像$94-95$
maximum intensity prujection（ MIP）	最人强度投影 47 ～		
maxımum intensity projecton，MIP	48		相位步码数 105 信号平均次数 115
	最大强度投影法 47		
	－－48		沿轨道运行电子 3 ～
meglumine diatrizuale，hypaquit	泛影蒱胺 24		4
mreglumitie		crierilation oxyhemoglobin	方位 96
metabolites	代谢物 $137 \sim 138$		氧合血红蛋白 152
metallic artifact	金属异物似影 $118 \sim$	pantomography	全景体层摄影 19
met．remoglobin		pantopaque，myodil	碘苯酯 26
	正铁血红蛋H 152	paramagnetic partial volume effect	顺磁性 120－122
met：ızamide．amipaque	甲泛醣胺 25		部分容积效应 62 ，
misregistration	配准错误 81		
molybdenum	锦 $7-8$	particulate radiation parts per million（PPM）	粒了辐射 5
troncentrgetic	单能皆的 7		白万分之一 137
monomer	单体 24	Passively shielding	被动屏蔽 159
motion artifact	运动伪影	peripheral space phenomenon	灌注 134
MR spectroscopy（MRS）	磁共振波谱 137～		咯围间隙现象 62
	149	permatient magnet	永磁体 158
multi and curved planar reforn：ation， MPR／CPR	多平近和多曲面重组	perspective views	透视图 48
	47	perspective volume rendering，PVR	透规容积显示法 48
multi－echo	多同波 102～104，	phase coherence（in phase） phase contrast magnetic resonance	枌位一致磁共振 102
	110		相位对比血管造影
multiplaras reformatting	多火面重组 47	angiography（PCMRA）	129－130
multiple viewing station for diagros－	放射诊断受多观察站	phase effects 相位效应 109～110	
uc：radiology	182	p．ase et．ccoding	相位编码 98－99
multi－slice	多厷面 102－104，	phase image phase incoherence（out of phase，de－	相位图像 $109 \sim 110$
	110		去相位（相位分离）
Mxy	XY平面磁化矢量	phase incoherence（out of phase，de－ phasing）	102
	$96 \cdots 97$	phosphocreatine（ Pcr ）	磷酸肌酸 145～146
myelotrast，bisconray	碘卡明葡胺 $24 \sim 25$	phosphediesters（PDE）	磷酸二脂 145～146
nyyc－inemital（M1）	昛醇 142	phosphomonoester（PME）	磷酸单脂 145－146
M \％	2．轴磁化欠量 96	phosphorous，in spectroscopy，$\left({ }^{31} \mathrm{P}\right.$－ MRS）	磷 31 磁共振波谱
V （H）			145－148
	100	MRS） photo－electric effect	光电效应 14

shimmong
ahort Tl mersion recovery（StilR）
shots
signal
signal averaging
signeal delection
signals，abnermel
signal－to－noise ra：io（SNR）
sitnultanedus iterative veconsaruction
technique
single leve dymamic sca：ning
single－phase
single shot
smgle－energy QCT，SFQCT
slice gatp
slice solection gradient
shice thickness
sodium datrizoate．hypaque sodium
sodium iodide
sodium，in spectroscopy，$\left({ }^{-3} \times\right.$ a－ MRS）
woner
spatal encoding
spatial filterng
spatial frequency processung
spatial localizatton
spatial resclutuon
spectral line
spectral width
spectroscopic amatging
spectroscopy
spectroscopy application of
brain MRS
breasi MRS
liver MRS
muscle MRS
spectruth
spin
spirı density
spin echo imaging
spin echo（SF）
spin－lattice relaxation（＇Г1）

约场 158－154
智TI反转恢复序列
105
激发 169
信号 99
信号平均 115
信号检测 160
信号，异常 150
信噪比 62－63，114
问时迭代重律挍术
40
同层动态泍描 55
单相 10
单次激发 111
单能定量（＂I 52
青诃跑 115
层向选择梯度 97
层道涅度 115
泛影钠 24
偅化钠 26
钠－2．3 磁共振波谱 148

声纳
空间编码 97－98
空间跕讨 84
空间频率处理 173
空荘定位 $97 \sim 98$
空间分辨力 61－62，
80， 114
谱线 137－138
谱宽 137－138
波谱成像 140
波谱分析 137－149
波潽分析！监用丁：
141－149
脑 MRS $\quad 142 \sim 148$
乳腺 MRS 145
肝朓 MRS 146
肌肉 MRS 148
波谱 137－149
白旋 95
自旋密度
自旋可波成像 102～
103
白旋回波 102－－103
白旋一鼠格（11）龟像 96

spin－spon	自旋－白旋 96－97
spurn－spin interaction	自旋－自族相互作用
	96－－97
spin－spin relaxation（ 72 ）time	自放一白施（T2）弛橡时
	间 $96 \sim 97,104$
spiral scan	嫘旋扫描 44
spoiler pulse	扰相位脉计 108－
	109
standard meremental CT	标准床渐进戍CO141
	－ 42
suady state	稳定状态 109
SlEAM（stimulated echo atquisition	激励洄波采样法 139
mode）	
stimulation spectrum	激发光谱 169
subsystem	了系统 182
subtraction	减影 71～72
superconducting magnet	超导磁体 159
superparamagnetic iron oxide（SPlo）	超顺磁性氧化铁 123
	－ 124
superparamagnetic nuterial	超顺磁性物质 123～
	124
surface conl	表面线圈 160
susceptibility	磁化率 100
susceptibility artifact	磁化宾伪影 113
T1	TI 96
T1 values	T1值 104
T1－weighted	T1 加权 104
T2	T2 96－97
T2 valuer	12值104
T2＊－weighted	＇I2＊－加权 109
12－wcighted	T2－加权 103－104
target material	X 线阳极鞇材料 7－
	8
TE．	回波时间 102－－104，
	108－113
telerredicine	远程医学 188－189
teleradiclogy	远程放射学 188～
	189
remporal subtraction	时间战影 79
Tesla	持斯按 95．158－
	159
therrmoric emission	热离子分射 6
Three－dimension fourier transform	三维伐立叶变换 99
（3TJFT）	
three－dimensional rendering tech－	二维显示技术 47～

48
\qquad

transverse spin－spin relaxation

Iransverse wave
truncation artifact
tube current
tube petential
tungsten
turbulent flow
two－dimension fourier transforma
（2［JFT）
two dimemasnal innaging
ultrafasi compuled tomography，越高速 CT 42～43
UFCT

ungaired electrons

urografin，renografin

一相 11
遮盖表面显小 47

攴较甽间 $104 \cdot 105$
飞蝼时间 126
体层摄影 19～20
豍悤时间 102－103
依总转换 172
转换 186
转换基磂上丢失正编
技术 186
传输网络 182－185
横向磁化矢昜 97
撗何弛僾时间 96～
97
横向自旋•白旋弛旅 96－－97

横波 4
截断伪影
人线管出流 10
X 线嗢电左 10
铇 8
揣流 126
一维傅立叶变换
97－99
一维成像 $97 \sim 99$

似成对电子 121
复方泛影变胺 24
unselectan
valence electrons．
vering glarc
velocity eneoding
velocily，blesed flow
voltage
volume intaging
volume of interest（ VO O ）
volume rendering，VR
vortex flow
voxel
vatter and fat dephasing
water suppression
water－fat shift（WFS）
waveform
wavelet compresson
wide areal network．W．AN
Withelm Conard Roentgen
winduw leve］
window lechraque
window width
wraparound（aliasing）artifact
write－once－read－many，WORM disk
xenom delecter
x －ray gencrato：

燠砒酮乙酸 24－－25
价电了 4
海蔽闪㶱 76
速要编码 129
血流速度 131－－132，
134
代特（电压单位・こ
容积战像 48
夋积感兴趣区 48
容积显小゙法 48
涡流 1.59
休元 59．80
水利脂肪 公相位 110－
111
水抑制 110－111
水－脂肪位移 137 －
138
波形
子波压宿 186
广域网 187
伦邿 2
窗位 60
窗技术 60－61
窗宽 61
卷积伪影 116
…次写人，多次阅读
光盘 185
気探测器
X 线发尘器 $10-11$

[^0]: 根据检查日的，可将心脏及大血管的 DSA 检点分为功能性检查与形态学检查两类

 ## （一）功能性检查

 1．大心室大小测量 作控静脉开け泣射的 IVI）SA，慑 30° 右前斜位（或 $10-15^{\circ}$ 左㫐斜位），借 EKG 门控技术种（或）视顿密度引测量协助确定左心空收宿期末占舒张期木的影像。并根据阳积－长度公式分别讨算二者的体积，再经简单的数学计算即可持续到左心室的大小。

