奈特
人体神经解剖彩色图谱
Netter's Atlas of Human Neuroscience
原著 David L. Felten Ralph F. Józefowicz
绘图 Frank H. Netter
图片提供 John A. Craig Carlos A. G. Machado
James A. Perkins
主译 崔益群
译者 金利新 沈若武 张 良 王守彪
 孔 滨 孙妍萍 王玉彬 赵仁亮
审校 夏玉军
译者序

二十多年前当我在医学院图书馆第一次阅读《奈特医学图集》时还是一名解剖学研究生，翻阅其精美的彩图，简洁明了的图示和描述使我这位享誉医学界的名家大师产生由衷的钦佩。二十年后的今天能将大师的著作译成中文出版的确是巨大的挑战，同时也是一名解剖学教师所能得到的莫大荣幸。

由著名解剖学家及神经生物学家David L. Felten和Ralph F. Józefowicz主编的《奈特人体神经解剖彩色图谱》出版后受到解剖学、生理学和神经病学领域学者和专家的高度评价与赞赏。

本书原著共三章十六节。第一章介绍了神经系统的发生、细胞学特征、突触结构、电生理特性、大脑外形与内部结构、脊髓、脑膜、脑室和脑脊液。第二章描述了感觉神经和运动神经组成、周围神经分布与功能、自主神经组成与分布、脊髓、脑干、小脑、间脑和端脑的传入与传出纤维联系。第三章将前两章内容有机联系，介绍了感觉传导路（躯体感觉、三叉感觉、味觉、听觉、前庭觉和视觉）、运动传导路（下、上运动神经元、小脑基底节）及自主神经、下丘脑和边缘系统联系。

本书不仅绘图精美，文字描述也极为简练，并尽可能涵盖神经科学的最新进展和研究成果，部分章节还配有CT、MRI图像相互对照。因此，本书适合学习神经科学的本科生和研究生阅读，对该领域的研究人员也不失为一本重要的工具书和参考书。

值此本书付印之际，感谢我的同事们的鼎力相助以及在本书翻译过程中所表现出的认真负责的精神。对人民卫生出版社的信任、支持和指导，谨致深切的谢意。

时间因素不能成为托辞，译者的专业造诣与英文水准才是疏漏和错误所在。因此，恳请同道和专家不吝指教。

崔益群
于青岛大学医学院
2006年6月
前言

本书不仅涵盖Frank H. Netter博士所有原创的局部神经解剖学和系统神经解剖学丰富而精美的绘图，而且介绍了目前对人脑、脊髓和周围神经系统许多区域的日益深入的研究。本书还通过CT、MRI的方法对脊髓和脑干作了横切、矢状与冠状扫描，并对照插图进行重点学习。与这些区域相关的详细文字描述可参阅有关神经解剖学教科书。我们用简明清晰的图版和文字介绍挨张插图的主要部分和要点，特别为临床医师提供了在诊治神经科病人时所涉及的与临床相关的基础部分。通过这些精美插图并结合简洁的图版与文字描述，本书展示了局部和系统神经系统的部分成分、组成和功能。

为了便于学习神经科学的学生使用本图谱，将该书分成神经系统概述、局部神经解剖学、系统神经解剖学三章予以介绍。这样的编排使读者易于通过上、下文或不同的视角来观察神经系统的复杂结构；既可观察神经系统整体的一部分，也强调了局部关系，还可以通过观察穿行于脑脊髓的某一神经来了解其功能。掌握神经系统的基础知识使其服务于临床，为临床医师诊治神经科病人时提供帮助是本书的目标。因此，以全新的观念认真学习是实现该目标有用的方法。此外，本书为神经学科的研究者和教师提供了该领域更广阔和更全面的知识。

掌握上运动神经元和下运动神经元的构成和联系就迈出了理解临床运动神经元疾病的第一步，进而准确定位。本书的核心内容以及将局部神经解剖和功能相紧密联系学习更加容易而不是靠死记硬背。神经科学是一门十分复杂的学科，对神经系统主要区域和结构的真正理解对于基础研究与临床应用是至关重要的。

本书描绘了人体神经系统基本结构，不包括临床神经疾病，如多发性硬化、早老性痴呆、卒中、脊髓与脑损伤、认知障碍、失用、失语等。

第一章 神经系统概述

本章介绍神经元的结构和特征、神经系统的三大特征以及血管、脑脊髓、脑脊液等辅助结构。由于上述结构对深入理解和局部神经系统的复杂和神经系统十分重要，因此第一章首先介绍了神经系统特征和特征，包括神经元结构、神经递质、电生理特性、神经胶质细胞。还介绍初级感觉神经元、下运动神经元、自主神经元和感觉神经元。这些知识对理解神经系统传入和传出通路及第二章、第三章的内容奠定了基础。

本章第二、三、四节介绍神经系统的主要结构特征，包括主要区域特征和功能，使其与人体神经系统的实验室检查一致。向学生展示通过前脑外侧面、正中矢状面、底面以及某些横切面所获得的大幅图片，并应用于脑干、小脑和脊髓。在本章内容中学生应熟悉间脑、脑干、脊髓、外周神经系统，并理解这些结构的相互关系和联系。

本章还介绍脑（脊髓）膜、脑室、脑脊液、血管及神经系统所有辅助与保护结构。由于对脑和脊髓血管功能的评估是神经科诊断的重要内容，在本章中作了详细描述，还在第二章局部神经解剖学和第三章系统神经解剖学进一步强化理解。本章最后介绍神经系统的发育，描述神经系统如何发育成熟以及伴随其发育过程中某些重要的功能关系。

第二章 局部神经解剖学

本章首先介绍周细胞系统，继而向颅侧延伸，以期使读者对中枢神经系统的大脑和脊髓的传入纤维和传出纤维有透彻了解，从而掌握更多涉及调控中枢神经系统的传入和传出通路的颅侧区域的结构。

周围神经系统的描述建立了对中枢神经系统的初级感觉传入纤维，运动传出纤维，自主神经传出纤维的理解。从概念上讲，本书中一些最重要的描述包括在下列三个方面：1）二组感觉传导通
路——进一步处理初级感觉向中枢的传导，它包括反射、小脑通路和丘系通路。2）运动通路——首先是支配骨骼肌纤维的下运动神经元，后者是由脑干和皮质的上运动神经元调控，而小脑与基底神经节则调控与协调上运动神经元的活动。3）自主神经——通过自主神经节。自主神经节前纤维与外周靶器官连接，来自脑干、下丘脑、边缘系的中枢通路调控着自主神经和神经内分泌的活动。

理解与掌握周围神经各级结构是学习本书其他部分的基础。

在周围神经这一节中系统描述了神经根、神经丛、周围躯体神经，从而使中枢与周围建立协调。主要外周神经的描述对于更好理解中枢神经疾病十分重要，因为在医学实践中这一类疾病极为常见。本书以尽可能简洁明了的方式将周围神经的解剖、功能、临床疾病相互结合，以便于学习掌握。

周围神经系统的另一部分内容概述了周围神经系统的组成和主要分布区域。这一部分的重要性在于它描述了周围神经系统的功能及作用与周围神经系统的脑干及脑皮质的药物作用影响。此外，生活压力和生活方式对动脉粥样硬化、心脑血管疾病、癌症、传染病、慢性肺部疾病、甚至进行性神经系统的发生和发展有着重要影响。这些因素对临床治疗是通过自主神经系统，下丘脑-垂体-神经内分泌活动来实现的，并对细胞因子、激素、炎性介质以及众多免疫反应产生影响。最新研究表明：自主神经的调节机制包括了自主神经与免疫系统各类型细胞以及与肝细胞、脂肪细胞等新陈代谢细胞的相互作用。

在神经科学课程中，脑干通常被称为“无意识区”，但考虑到其在中枢神经系统重要位置及复杂的功能联系，不难理解它在记忆与情绪中所发挥的作用。虽然脑干结构错综复杂，本书展示的脑干图谱反映了大脑与小脑的完整性，以便更好理解脑干。脑干有六个主要成分：1）感觉神经核及其传导路——包括下丘脑感觉核及其传导感觉信息至脑干的传导路（三叉神经感觉、听觉、前庭觉、味觉、视觉）以及躯体感觉神经核及其传导路；2）脑神经运动核和控制脑干与脊髓的上运动神经元下行传导路；3）副交感神经节前核、自主神经下传传导路和调节交感神经与副交感神经活动的副核；4）脑神经核及其与脑神经核交感末梢的轴突；5）小脑及其入脑与传出纤维；6）网状结构。学习脑神经及其核团无论对于理解脑干结构还是在神经科损伤定位、病史采集和检查都很为重要。如前所述，脑神经及其核团是理解脑干前三个部分的主要参考，而奈特神经解剖学图谱详细与清晰地描述则为掌握脑干结构这一过程提供了基础。

本手册除奈特博士原绘图外，还补充了经脊髓和脑干所作的横切面图。这些切面图使得本图谱既可作为学生的实验室指导也可用于基础研究指南，无需另外的影像资料。此外，提供了一套精美的配以CT、MRI图的脑和脊髓横断面和冠状切面图。这些切面图、冠状面、矢状面图从功能上强调了重要结构，避免繁琐的标注和细节可能模糊“大图”效果而造成误解。本手册中还增加了脑干间核结构的最新插图，这一复杂结构贯穿整个中枢神经系统并涉及广泛而变化的神经活动。

本章中关于躯体、脑干、前脑关于描述着重于定性，这些区域的信息对理解特定部位的损伤后果十分重要。在前脑部分重点描述脑干的丘脑与下丘脑，包括丘脑底部与基底神经节；丘脑上部与下丘脑和边缘系统。虽然脑干分为四个功能区——大脑皮质、基底神经节、前脑边缘系统和嗅觉系统，但这些区域的功能和功能联系没有系统。关于基底神经节解剖、前脑边缘结构及其联系以及嗅觉系统则在第三章系统解剖学中详述。本手册中还将有关脑干特异性解剖系统的观点更新了前脑结构，特别是与基底神经节、血清素激活、多巴胺能和胆碱能系统。这些因素对中枢神经系统有广泛影响并且也是神经与精神科药物的靶目标。

第三章 系统神经解剖学

本章更为详细地描述感觉系统、运动系统、自主神经-下丘脑-边缘系统的外周和中枢机制以及其他高级的。在第二章周围神经解剖中已扼要地介绍了二级感觉及高级感觉传导路。这些大脑感觉神经成分包括躯体感觉、三叉感觉、味觉、听觉、前庭觉、视觉。为反映目前的研究成果，特别在躯体感觉系统和视觉系统章节，对奈特的原创图谱作了几处修改，增加了由约翰·克雷格医学博士和吉姆·帕金斯理与美术硕士创作的新图。本章强调丘系通路在传入感觉与意识处理过程
中的广泛作用，相关的图解和反射联系以及小脑传导通路也以适当的方式加以描述（例如：前庭系统）。

运动神经成分包括下运动神经元、上运动神经元、小脑、基底神经节。业已阐明小脑和基底神经节在调控作用相互作用的作用要比运动神经系更为广泛。对于上运动神经元传导路的各个部分作了描述，重点在于其功能。本章节中主要强调小脑的纤维联系，包括小脑特定区域（蚓部、蚓旁部、外侧半球）与相关深核（顶核、球状核、楔状核）；与其联系的上运动神经元系统（间脑脊髓束、前庭脊髓束、红核脊髓束、皮质脊髓束）。同样，基底神经节通过丘脑与大脑皮质相互联系，包括对丘脑皮质系统和其他皮质传出通路细胞的调控。其他的基底神经节在本章中作了介绍。基底神经节的病变涉及所累及的运动神经元而被称之为运动障碍。现已明确，尚存在其他的节与丘脑的其他区域以及其他皮质与基底神经节相互联系，并对认知和情感产生影响。

本章中自主神经-下丘脑-边缘系统部分介绍了这一重要环路相互联系的最新研究成果。该环路通过下丘脑与边缘系统最终调控许多行为和生理活动以及自主神经的内脏活动；同样下丘脑和边缘系统的许多联系作用于自主神经和神经内分泌的活动。最近十年的研究表明，下丘脑作用于整合来自前脑信息、脑干信息以及环路介质汇聚点的作用已十分清楚，并在本章中的新图予以描述。

重新编排扩充了前脑边缘系统的内容（海马、杏仁核、隔核、钩带等），它反映了新发现的复杂环路结构，聚焦于其汇聚作用，特别是通过下丘脑和中枢神经系统传出的自主神经活动。

作者期望本书能使读者理解并掌握神经系统的基本成分、组成和功能。具备这些坚实的基础知识能更好地服务于临床实践，无论是解释神经科查体或是理解大多数神经系统疾病与功能障碍，以及治疗神经科病人都极为有用的。
本书作者简介

David L. Felten

David L. Felten 于 1969 年在麻省理工学院获得理学博士学位，而后分别在 1973 年和 1974 年获得宾夕法尼亚大学医学博士和哲学博士学位。

目前 Felten 博士是加州大学艾尔文分校解剖学与神经生物学教授；Susan Samuliel 医学中心执行主任。曾任罗切斯特大学医学院神经生物学研究所所长；解剖学与神经生物学教研室主任。Felten 博士开创了对淋巴器官自主神经调控的探索，奠定了作为医学基础的神经 - 免疫信号的先驱性研究。因其杰出的工作而获许多奖励，包括一项著名的 John D. & Catherine T. MacArthur 大奖；同时两项 NIH 功勋奖；以及其他奖项和众多的教学奖。他在全美医学考试委员会任职多年并担任神经科学委员会主席。

Ralph F. Józefowicz

Ralph F. Józefowicz 于 1975 年在约翰斯·霍普金斯大学以优异成绩取得生物学学士学位，1979 年从哥伦比亚大学内科与外科医师学院获得医学博士学位。

Ralph F. Józefowicz 现任罗切斯特大学神经病学系教学副主任，神经病学与内科学教授。他还是该校神经病学住院医师培训项目、第三年神经病学师资培训主任及二年级医学生“精神、大脑、行为”课程的主讲，是 2002 年全美医学院校协会颁发的 Robert J. Glaser Alpha Omega Alpha 杰出教师奖获得者。因其在医学生培养的卓越表现，他于 1998 年获得罗切斯特大学医学与牙科学院校友会颁发的金质奖章。同年还获得美国神经病学会优秀教师奖。
奈特博士简介
（Frank H. Netter）

奈特博士于 1906 年生于美国纽约市。他在学生时代联合大学和美国国家设计院学习绘画艺术，后进入纽约大学医学院学习医学，于 1931 年获得医学博士学位。在学习期间，他的素描就引起了医学界的注意，并纷纷聘请他为一些文章和著作绘制插图。在 1933 年成为职业外科医生后，奈特继续在业余时间从事绘画工作，但他最终放弃了医生的职业，全身心地投入到他热爱的绘画艺术中。在第二次世界大战期间，他在美国军队服役，退役后便开始了与 Ciba 制药公司（现为 Novartis 制药公司）的长期合作。长达 45 年的合作使他积累了宝贵的医学艺术财富，成为世界各国的医生和其他医务工作者十分熟悉的医学绘画艺术家。

2000 年 7 月，Icon 公司获得了奈特博士的图集，并根据新的资料对奈特博士的原作不断进行修正，并增补一些新的插图。而这些插图都是由接受过奈特博士风格训练的画家所制作的。

奈特博士的作品是用图画形象地传授医学知识的典范。13 卷《奈特医学图集》收录了奈特博士创作的 20000 多幅插图中的大部分，使其著名的医学巨著之一。《奈特人体解剖彩色图谱》于 1989 年首次出版，现已被 11 种语言（中文版也已由人民卫生出版社出版），成为全世界医学及相关科学学生在学习中首选的解剖学图谱。

奈特博士的作品之所以受到人们的青睐，不仅由于其超常的美学水平，更重要的是其丰富的知识内涵。正如奈特博士于 1949 年所说，“……阐明主体是图画的根本目的和最高目标。作为医学艺术作品，不管绘制得多么美，艺术构思和主体表达多么巧妙，如果不能阐明其医学观点，就要失去价值。”奈特博士的绘画设计、对艺术的理解构思、观察和处理问题的方式，以及对事业的追求，全部淋漓尽致地表现在他的绘画作品中，使他的作品达到了艺术性和科学性的完美结合。

奈特博士，这位杰出的医学工作者和艺术家，于 1991 年与世长辞。
目录

第一章 神经系统概述 ... 1
 第一节 神经元及其性质 ... 4
 第二节 大脑 ... 21
 第三节 脑干和小脑 ... 35
 第四节 脊髓 ... 37
 第五节 脑和脊髓的被膜 ... 42
 第六节 脑室和脑脊液 ... 43
 第七节 脑和脊髓的血管 ... 46
 第八节 神经系统的发育 ... 67

第二章 局部神经解剖学 .. 83
 第一节 周围神经系统 ... 86
 第二节 脊髓 ... 141
 第三节 脑干和小脑 ... 150
 第四节 间脑 ... 176
 第五节 端脑 ... 179

第三章 系统神经解剖学 .. 211
 第一节 感觉系统 .. 214
 第二节 运动系统 .. 240
 第三节 自主神经、下丘脑和边缘系统 264
第一章 神经系统概述

第一节 神经元及其性质

神经元的结构特征
图 1.1：神经元的结构
图 1.2：突触类型
图 1.3：神经元类型
图 1.4：神经胶质细胞类型
图 1.5：中枢神经系统和周围神经系统的轴突髓鞘
图 1.6：髓鞘的发生与轴突的形成
图 1.7：中枢髓鞘的高倍镜观察

神经传导
图 1.8：突触的形态
图 1.9：神经化学传导；氨基酸类突触

儿茶酚胺能突触

5-羟色胺能突触

肽能突触

胆碱能突触

电生理特征
图 1.10：神经元静息电位
图 1.11：神经元等级电位
图 1.12：动作电位
图 1.13：动作电位的传导
图 1.14：传导速度
图 1.15：突触前及突触后抑制
图 1.16：空间性及时间性总和

第二节 大脑

图 1.17：颅底内面观
图 1.18：成人颅底的孔裂
图 1.19：前脑的表面解剖：侧脑室
图 1.20：前脑外侧面观：功能区
图 1.21：前脑外侧面观：Brodmann 分区
图 1.22：大脑内侧面（正中矢状面）的结构
图 1.23：大脑内侧面：脑叶和功能区
图 1.24：大脑内侧面：Brodmann 分区
图 1.25：大脑底面的结构：切除脑干和小脑
图 1.26：大脑底面观：功能区和 Brodmann 分区
图 1.27：脑的水平切面：显示基底神经节
图 1.28：前脑边缘系的主要结构
图 1.29：肼胝体：水平面观
图 1.30：肼胝体：主要结构的外侧延伸
图 1.31：海马结构和穹隆
图 1.32：丘脑
图 1.33：丘脑核团
第三节 脑干和小脑
图1.34：脑干表面结构：后外侧面与前内面
图1.35：小脑的结构：外形和内部结构

第四节 脊髓
图1.36：脊髓的解剖
图1.37：脊髓的大体解剖（原位）
图1.38：脊髓、被膜和脊神经根
图1.39：脊髓的横切面解剖（原位）
图1.40：脊髓的灰质和白质

第五节 脑和脊髓的被膜
图1.41：脑膜与大脑的关系

第六节 脑室和脑脊液
图1.42：脑室
图1.43：第四脑室
图1.44：脑脊液循环

第七节 脑和脊髓的血管
图1.45：脑膜的动脉及其与颅骨和硬脑膜的关系
图1.46：大脑及其被膜的血液供应
图1.47：大脑的动脉分布：底面观
图1.48：大脑的动脉分布：冠状面和冠状面
图1.49：大脑动脉示意图
图1.50：大脑基底动脉环（Willis环）示意图
图1.51：大脑的动脉分布：外侧面观和内侧面观
图1.52：大脑动脉分布区彩色示意图
图1.53：颈内动脉的血管造影
图1.54：基底动脉的血管造影
图1.55：基底动脉系统
图1.56：交感脑和垂体的血液供应
图1.57：脑膜和大脑浅静脉
图1.58：大脑浅静脉、脑膜静脉、板障静脉和导静脉
图1.59：静脉窦
图1.60：大脑深静脉的回流
图1.61：大脑深静脉的回流与脑室的关系
图1.62：脑干和小脑的静脉回流
图1.63：脑膜的血液供应：纵向观
图1.64：脑膜前、后动脉及其分布
图1.65：脑膜的血液供应：横切面观
图1.66：脑膜的静脉回流

第八节 神经系统的发育
图1.67：神经板、神经管、神经嵴的发生
图1.68：神经管的形成
图1.69：神经管的发育和神经嵴的形成
图1.70：神经管壁的增殖和分化
图 1.71：神经管和神经嵴的演化
图 1.72：大脑的早期发育：28 天胚胎
图 1.73：大脑的早期发育：36 天胚胎
图 1.74：大脑的早期发育：49 天和 3 个月胚胎
图 1.75：前脑的发育：7 周至 3 个月胚胎
图 1.76：6 个月和 9 个月的中枢神经系统
图 1.77：脑室的发育
图 1.78：5 周半胎儿与成人中枢神经系统各区域的比较
图 1.79：脑干与脊髓的运动神经核和自主节前神经核的发育
图 1.80：脑干翼板和基板的演化
图 1.81：第四脑室的发育
图 1.82：周围突的发育
神经系统概述

图1.1: 神经元的结构

神经元的结构反映了每个神经元的功能特点，传入信息主要是通过轴突末端到达神经元的胞体和树突。这些突触彼此是分离的，并受星形胶质细胞的突起保护。树突为神经元提供了最大表面积，树突分支处的突起是轴突-树突触的特征位点。每种类型神经元的轴突都有独特的分支形式。神经元胞体的直径从几微米到100微米不等。神经元的细胞质含有大量的粗面内质网，这反映了蛋白质的大量合成对维持神经元功能是必须的。高尔基体涉及信号分子的转运和释放。大量的线粒体保证了神经元的能量消耗，特别是在离子泵和细胞膜电压方面。每个神经元只有一个（偶尔没有）轴突。在轴丘处胞体逐渐变细形成轴突，轴突的起始部含有钠离子通道，是轴突电位激发的第一位点。轴突由胞体处向外伸展不同的距离。轴突直径为1-2微米，这些轴突由周围神经系统的施万细胞或中枢神经系统的少突胶质细胞提供髓鞘。一个轴突可以分支为500,000个轴突末端；也可以高度集中在特定的位点或区域（如感受精细触觉的躯体感觉反射区）。或者投射到脑内特定区域（如去甲肾上腺素轴突投射至蓝斑）。巨型神经元（高尔基型I型神经元）的轴突终止在远离胞体和树突的部位；小型神经元（高尔基型II型神经元，局部环路神经元或中间神经元）终止在胞体和树突附近。尽管锥体细胞或灰质运动神经元常常被作为“典型的”神经元来描述，但由于每一种类型神经元都有自己的特点，故实际上不存在所谓“典型的”神经元。
图 1.2：突触类型

突触是传导动作电位的位点，动作电位通过兴奋-分泌耦联触发钙离子流入，单个或多个神经递质释放到突触间隙（典型的突触间隙约 20 微米）。神经递质作用于神经元细胞膜的受体上，激发静息状态的膜电位为细胞膜动作电位。突触后电位被叫做“等級”电位。大多数突触携带信息通过轴－树突触或轴－体突触作用于靶神经元。特有的突触，如交互性突触或突触间的复合排列对靶神经元的兴奋具有特定的调控作用。树－树突触有助于激发或抑制相关神经元的活动（例如支配膈的神经元共同兴奋引起膈肌的同步收缩）。
图 1.3：神经元类型

该图展示了局部中间神经元和投射神经元在形状大小、树突分支和轴突投射的特点。在中枢神经系统，神经胶质细胞（星形胶质细胞、小胶质细胞、少突胶质细胞）为神经元提供支持、保护和维持作用。在周围神经系统则由施万细胞和卫星细胞提供同样的功能。初级感觉神经元经过刺激换成电信号传入至中枢神经系统。中枢神经系统传出纤维中，运动纤维（红色）通过神经肌肉接头到骨骼肌纤维：自主神经的节前纤维（红色）到自主神经节，换元后支配心肌、平滑肌、分泌腺、代谢细胞或免疫系统的细胞。
图 1.4：神经胶质细胞类型

星形胶质细胞使神经元及其突触在结构上保持独立性，并为神经元提供钾离子整合、营养支持、生长支持和信号功能。少突胶质细胞形成中枢神经系统内的髓鞘。小胶质细胞是清除细胞、参与吞噬作用、炎症反应、胞浆移动和生长因子的分泌。以及中枢神经系统的免疫反应。血管周细胞在血管附近参与同样的活动。施万细胞为周围神经元提供髓鞘的形成、营养支持和生长活动的维持，并修复周围的神经元。激活的 T 淋巴细胞可以进入中枢神经系统进行 24 小时的免疫监控。
图1.5：中枢神经系统和周围神经系统的轴突鞘

在中枢神经系统，轴突鞘是由少突胶质细胞形成的。一个少突胶质细胞形成的髓鞘节段内可以包含彼此独立的几条轴突纤维。在周围神经系统，感觉、运动以及自主神经节前纤维的轴突由施万细胞形成。一个施万细胞只形成一个节段的轴突鞘。无髓的感觉纤维和自主神经节后纤维亦由施万细胞包裹。该施万细胞的细胞膜呈管状包裹在每条轴突的周围。在两个相邻的髓鞘节段之间（朗飞结）的轴突细胞膜含有钠通道，可使传播过程中动作电位再激发，该过程称作神经冲动的跳跃式传导。
图1.6：髓鞘的发生与轴突的形成

髓鞘的形成是神经元和它的支持细胞之间相互作用的结果。周围神经无髓纤维富有单层的施万细胞细胞膜。当直径至少1μm的周围神经纤维有髓鞘形成时，单个施万细胞形成多层细胞膜紧紧密围该轴突，形成一个髓鞘节段。少突细胞伸展形成多个细胞质膜，从而进一步包裹彼此独立的多条神经纤维在同一节段内。
图 1.7：中枢髓鞘的高倍镜观察

包裹在一段中枢轴突周围的少突细胞膜的融合层可阻止离子通过整个有髓段轴突的细胞膜。在两个相邻髓鞘节段之间的结（郎飞结）无轴突细胞膜，含有 Na⁺通道。这些结是动作电位传播的再激活位点。
图1.8：突触的形态

突触是神经元与神经元、神经元与效应器或靶细胞之间相联系的部位。上图展示了典型的神经元的胞体和树突上的突触联系。传入纤维（轴突）失去髓鞘并形成许多的分支，末端作为突触与靶神经元（此处为运动神经元）。图的下部分展示了放大的轴-体突触，化学递质在突触囊泡里进行包装，当动作电位到达末端区域时，去极化引发Ca^2+内流，许多突触囊泡与突触前膜融合，释放神经递质进入突触间隙，这些神经递质与突触后膜上的受体结合，从而导致等级兴奋或抑制性突触后电位，或作用于靶细胞内具有神经调节作用的细胞内信号系统。一些神经末梢还为它们释放的神经递质提供突触前受体，这些受体的激活可调节神经递质的释放。
图1.9：神经化学传导：氨基酸能突触

存在突触囊泡内的氨基酸可作为神经递质释放。谷氨酸（图中所述）是中枢神经系统中最丰富的兴奋性神经递质，从突触囊泡中释放后，一些谷氨酸结合到突触后膜受体。释放出的谷氨酸作为没有活性的氨基酸被突触前或突触后神经元摄取，并在此进入三羧酸循环或被重新再利用。
神经元及其性质

儿茶酚胺能突触

儿茶酚胺是由食物中摄取的蛋白质合成，由载体制系统竞争性传入到大脑。在细胞质中，儿茶酚胺通过酶促及酶解合成 L-2 氰基丙氨酸，其中的羟胺酶是一种抑制性合成酶。剩余儿茶酚在细胞质中通过芳香型 L-2 氰基丙氨酸转化成多巴胺，多巴胺暂时存储在突触囊泡中。在去甲肾上腺素神经末梢，β-羟化酶水解器在突触囊泡中进一步水解多巴胺合成去甲肾上腺素。在肾上腺素神经末梢，去甲肾上腺素通过 N-甲基苯基乙酰胺转移酶甲基化生成去甲肾上腺素，接着释放，儿茶酚胺能神经递质与位于突触后膜上的受体（多巴胺、α 和 β 肾上腺素受体）结合，引发突触后膜的兴奋性，儿茶酚胺也可以激活突触前膜受体，并调节突触前膜的兴奋性。儿茶酚胺主要通过突触前膜高亲和力的摄取载体的重摄取和代谢（MAO 脱甲基作用和 COMT 甲基化）及扩散来失活。

5-羟色胺能突触

5-羟色胺是由食物中摄取的色氨酸合成的。通过载体系统竞争性传入大脑。色氨酸在色氨酸水解酶（限制性水解酶）的作用下生成 5-羟色胺，在细胞质中 5-羟色胺通过 ALAAD 脱羧酶转化为 5-羟色胺（血清素）。5-羟色胺暂时贮存在突触囊泡中，释放后可以与突触后膜的受体结合，引发突触后膜的兴奋性及第二信使的激活。5-羟色胺可以作用于突触前膜受体，调节突触前未梢的兴奋性。但 5-羟色胺主要与突触前高亲和力的摄取载体重摄取和代谢及扩散来失活。

肽能突触

肽能由激素前体合成，大的肽段通过 mRNA 模板在胞体内合成。合成的肽段在核糖体合成并转化为肽段，然后在突触囊泡内进行包装，再通过轴浆顺行转运。这些囊泡贮存在神经末梢，通过适宜的兴奋-分泌耦联而释放，后者是由动作电位所引发，神经肽与突触后膜上的受体结合。在中枢神经系统内，在肽能的神经末梢的位置与肽能反应的细胞膜受体之间经常有解剖学的错配现象，从而表明释放的数量和扩散的程度是神经肽神经递质中的重要因素，释放的神经肽通过肽酶失活。

胆碱能突触

乙酰胆碱是由食物的胆碱和乙酰辅酶 A 合成，来源于葡萄糖经过胆碱酶乙酰基转化酶的代谢。乙酰胆碱贮存于突触小泡，释放后与突触后膜的胆碱受体（烟碱型或毒蕈碱的），进而影响突触后膜的兴奋性。通过乙酰胆碱酯酶的快速水解使乙酰胆碱失活。
图 1.10：神经元静息电位

由于细胞膜对不同离子渗透性的差异，阴阳离子不均匀地分布在细胞膜上。细胞膜对离子的透过性随着细胞膜极化（趋于0）和超极化（远离0）而改变。离子的分布依靠电位差以及扩散的势能。神经元的静息电位为 -90mV。细胞外钠离子浓度为 145mEq/L 比细胞内高 8mEq/L，细胞外钾离子浓度为 3.5mEq/L，而细胞内为 130mEq/L。神经元的静息电位接近于钾离子的平衡电位（细胞膜对钾离子具有通透性）。钠离子主动泵出而钾离子泵入，两者通过膜上 Na^+ - K^+ - ATP 酶进行交换，以上显示的 K^+ 和 Cl^- 等电位电路图是用 Nernst 方程进行计算的。
当冲动达到兴奋突触小结的时候，它可以引起突触间隙内递质的释放，增加突触后膜的离子通透性。由于电化学梯度的巨大差异，导致钠、钾离子之间的交换，钠离子进入突触后膜多于钾离子的外流。

在抑制性突触过程中，递质的释放加大了突触后膜对钾离子和氯离子而不是钠离子的通透性。

如果去极化在轴丘达到诱发电位水平，其净离子流将使突触后膜细胞去极化，动作电位就会在突触后膜细胞产生极化水平。

如果离子流使突触后膜细胞超极化，即使兴奋性突触去极化更困难，要这样达到诱发电位水平就需要更高的去极化水平。

图1.11：神经元等电位

兴奋或抑制性神经传递是由细胞释放神经递质，作用于突触后膜的受体，引起局部膜电位变化的过程：（1）由于细胞膜对阳离子通透性的增加而导致的Na⁻内流使膜电位趋于0（去极化，兴奋性突触后电位）；（2）由于细胞膜对Cl⁻通透性的增加而导致的Cl⁻内流及补充性K⁺内流使膜电位远离0（超极化，抑制性突触后电位）。产生的兴奋性突触后电位和抑制性突触后电位有局部的影响，随时间和距离而消散，但同时对神经元总的兴奋性和离子分布产生影响。如果兴奋性的影响在轴突起始部产生的去极化高于阈值，则可以产生动作电位。
图 1.12：动作电位

动作电位是全或无的、不衰减的电位，可使电信号长距离传导，并通过化学传偶联（兴奋-分泌偶联）触发神经递质释放。动作电位通常在轴突起始部发动，这时兴奋性突触后电位的不可逆性总和产生了足够的兴奋（去极化）来开放 Na⁺通道，使细胞膜电位达到阈值。此时 Na⁺经通过的内流量不能被K⁺的外流所抵消。达到阈值后就产生了动作电位。伴随动作电位的上升相轴突迅速去极化，轴突膜 K⁺电导率增加这使 K⁺内流增加，抵消快速去极化，使膜电位恢复到静息水平。
图1.13：动作电位的传导

当动作电位在轴突膜的特殊部位产生后（通常是起始部），Na⁺的内流改变了细胞外离子环境，导致来自相连轴突的局部离子流。这样产生了邻近部分轴突的去极化状态，使这个区域达到了阈值，再次引起了动作电位。有髓纤维沿轴突髓鞘反射性再次形成动作电位，这样就加速了动作电位传导速度。动作电位沿轴突从一个朗飞节到另一个朗飞节的传导称为跳跃式传导。
图1.14: 传导速度

动作电位通过使邻近的细胞膜去极化而沿轴突传导，引起动作电位的再起始，传播速度随轴突直径的增加而增加。存在髓鞘时传播速度也增加，因为在有髓轴突的传导是从朗飞结到朗飞结的跳跃传导。
图 1.15：突触前及突触后抑制

抑制性突触调节神经元兴奋性。图中显示与运动神经元相联系的突触前抑制（左图）及突触后抑制（右图）。突触后抑制在突触后膜产生超极化。突触前抑制包括兴奋性轴突终末的去极化，这将会降低伴随兴奋性轴突终末去极化时 Ca^{2+} 内流，从而降低了兴奋性突触后电位。
神经系统概述

图1.16：空间性及时间性总和

神经元接受多个兴奋及抑制性传入，时间性总和发生在一条兴奋性纤维的一系列阈下的兴奋性突触后电位使突触后细胞产生动作电位时。这是因为多个兴奋性突触后电位在细胞膜局部区域完全恢复到静息水平时在时间性上进行了叠加。时间性总和发生在两个或多个阈下的兴奋性突触后电位由于协同作用诱发了动作电位。时间性总和与空间性总和都可被同时输入的抑制性冲动所调节。抑制性和兴奋性神经元拥有多种神经递质，其作用依赖配体-受体相互作用的离子通道。
图 1.17：颅底内面观

前、中、后颅窝分别容纳额叶、颞叶、小脑及脑干。颅窝被骨性结构和脑膜所分离。颅内的肿胀和组织损伤可导致各个颅窝内压力的增加。嗅神经根丝穿过筛板的筛孔到达嗅球，颅脑损伤可发生嗅神经纤维的撕脱。
图 1.18：成人的颅底孔裂

本图描述的是颅底的孔裂，每个孔裂内有大的神经和血管通过。压力、牵引和肿物可使经过这些狭小孔裂的结构受到损伤。
图 1.19：前脑的表面解剖：侧面前脑的表面解剖

大脑皮质的脑回使得大脑扩展的皮质紧密折叠在较小的容积内，这种适应性变化在灵长类特别突出。依据主要的表面标志（外侧裂、中央沟、顶枕裂）把前脑分成三叶。外侧裂把下面的额叶与上面的顶、枕叶分开。中央沟把顶叶和额叶分开。脑回的命名与特定功能活动相联系，如中央前回为运动皮质、中央后回为第一感觉皮质。脑岛为脑皮质的第五叶，位于外侧皮质的深面，分开外侧裂即可看到。
图 1.20: 前脑外侧面观：功能区

某些被划定的大脑皮质功能区和特定的功能活动相联系，包括运动皮质、辅助和前运动皮质、听区、初级视觉皮质与联络感觉皮质。部分听皮层可在外侧裂的下边缘看到。视皮质位于枕叶。语言区包括 Broca 区和 Wernick 区。这些皮质的损伤会导致特定功能的丧失。在功能区和命名的脑区之间有些重叠不是绝对的（如运动区和中央前回）。

图 1.21: 前脑外侧面观：Brodmann 分区

Brodmann 分区反映了独特的大脑皮质厚度和分层的组织学特征。最初由 Brodmann 于 1909 年创立。这种皮质区的编号现在仍然被用来描述功能区或皮质区。特别是那些和感觉功能有关的区域。功能区之间可有一些重叠的地方。如运动皮质为 4 区，第一感觉区包括 3、1、2 区，第一视觉区为 17 区。
图1.22：大脑内侧面（正中矢状面）的结构

图中我们可看到从脊髓通过脑干、间脑、端脑的神经连接。肼胝体为连接两个半球的纤维束，其从丘脑、穹隆上方及前脑皮质下把两侧大脑皮质分开。脑室系统包括室间孔、第3脑室、中脑水管，第4脑室。其内的脑脊液可与蛛网膜下腔脑脊液相通，对大脑起到保护作用。丘脑为通向皮质的门户。下丘脑与正中隆起、垂体相紧邻，其在调节神经内分泌功能中起到重要作用。从下图我们可以看到从颞叶海马结构至脑区和下丘脑成C形的穹隆。通过脑干正中矢状面切开可看到中脑的上、下丘，也可叫做视丘顶盖。
图 1.23：大脑内侧面：脑叶和功能区

扣带回皮质位于边缘叶，与其他脑皮质的边缘结构和控制自主神经系统的关系十分密切。在矢状位上可清楚地看到功能区皮质，尤其是视皮质。与低级神经相联系的感觉和运动皮质位于内侧，由大脑前动脉供应血液。此区的血管或组织损伤可导致对侧低级神经末端的运动和感觉丧失。

图 1.24：大脑内侧面：Brodmann 分区

上图显示的是正中矢状位的大脑皮质 Brodmann 分区。重要的分区有：第一区 17 区；联合视皮质 18、19 区；第一运动区 4 区及在中线的第中脑小叶上的第一运动区 3、2、1 区。
图 1.25：大脑底面的结构：切除脑干和小脑

通过切除脑干和小脑的中脑切面，可见到深面的大脑皮质。间脑和前脑的基底部。下丘脑基底部从侧脑室吻侧包括松果体、灰结节、垂体、视交叉。从垂体组至视交叉的区域很重要，因为视交叉的损伤可导致两侧视偏盲，而这种损伤可能是垂体肿瘤的早期症状。
图 1.26：大脑底面观：功能区和 Brodmann 分区

在大脑左半球的颞叶内侧可见到海马结构、杏仁体和嗅觉传导系统。在大脑的右侧则可见到 Brodmann 区。
图1.27: 脑的水平切面：显示基底神经节

通过前脑的两个水平切面显示了基底节、内囊、丘脑（底面观）的主要解剖学特点和它们之间的相互关系。C形的尾状核从额叶延伸到颞叶。在内囊的前肢、后肢和膝部含有出人大脑皮质的主要联系纤维。基底节、内囊、丘脑之间的关系对于理解影像学资料以及在血管损伤或卒中时牵涉到的特定功能十分重要。在本切面中从内向外所标记的结构依次是外囊、尾状核、最外囊和尾状皮质。这些结构常被用来作为影像学的标志。图中的穹隆在脚部和柱部已被切开。
图 1.28：前脑边缘系的主要结构

边缘系统的许多结构和它们的连接通路围绕间脑形成一个环。它们参与情感行为和对内、外刺激的感知。海马结构及其通路、穹隆弯曲环绕间脑前极。杏仁体核发出终纹（一个 C 形的投射至下丘脑和前脑基部的结构）。嗅球直接和皮质和其他前脑结构相连，其经过丘脑从隔核至松果体及细的联系把前脑边缘和脑干相互联系在一起。杏仁体核和海马结构深入至皮质。
图1.29：胼胝体：水平面观

胼胝体是大脑两半球间的主要联系纤维，在想象学习中作用明显。此图是从上表面背侧切除组织后观察。在更深层的水平切面（偏腹侧）将显示前部的胼胝体膝和后部的胼胝体压部（参阅图1.27）。

图1.30：胼胝体：主要结构的外侧延伸

胼胝体的许多交叉纤维（尤其是胼部）连接颖区和枕区，他们越过中线后向吻侧和尾侧弯曲，这些纤维使得大脑两半球间相互联系起来，这些联系对协调两半球的活动是非常重要的。
图1.31：海马结构和穹隆

上图已切除皮质、外质及脑室系统，侧脑室已打开，尾状核头及丘脑被解剖至中线。这可以由上向下观察海马的结构，同时也包括齿状回和穹隆。上图可以显示海马齿状回间的联系，穹隆的两肢并排行走向上内侧延伸，其最背侧的位置位于胼胝体下方。穹隆整体成弓形及C弯的纤维束在左下图中予以描述。海马结构占据侧脑室下角大部，齿状回靠近海马区（CA1和CA3）的海马趾（CA）下结构，海马下托和内侧皮质。CA1区的椎体细胞对缺血性损伤敏感，而与其对应的CA3区椎体细胞则对高浓度皮质醇的损伤敏感。
图1.32：丘脑

此图为丘脑上面观，邻近丘脑的大脑外侧面已被除去。尾状核头被水平切，脑干体及丘脑背侧所有的组织也被切除。第三脑室已从其背侧面切开。松果体位于中线上第三脑室尾侧，松果体分泌可以调节昼夜节律、睡眠及免疫反应的褪黑激素。中脑背侧面可以显示上丘和下丘。在左半图中，侧脑室下角的海马结构已被暴露，显示这些结构与丘脑的联系。终静脉和脉络丛在丘脑背侧边缘与终纹伴行，颞纹缘侧丘脑内侧面走行。
图 1.33：丘脑核团

上图显示的是丘脑被髓质划分的核团，内侧核、外侧核、前核。许多核团是特异性的丘脑核团，他们与大脑皮质的各个区均有联系。某些核团，例如位于内髓板的核团（正中核、束旁核等板内核团），外侧核团（丘脑网状核）均与大脑皮质有弥散性、非特异的联系。
图1.34：脑干表面结构：后外侧面与前面观

图中整个端脑、部分间脑和小脑已被去掉以显示脑干的背面。三个小脑脚（上、中、下）被切除，小脑也被去除。后根神经和脑神经脊髓根在此进入脊髓，继而进入脑干。滑车神经是唯一存在于脑干背面的脑神经。第四脑室底的结节和三角以其深面的核团命名。下图左侧脑切除后显示脑干腹侧面。分别显示大脑脚、内囊后肢向尾侧的延伸、带质纤维束和皮质核纤维从内囊带入脑干和脑干。锥体交叉是延髓远端与颈髓的分界标志。
图1.35：小脑的结构：外形和内部结构

上两图显示小脑的上（前）下（后）面观。小脑腹面是第四脑室顶。小脑前叶、中叶、后叶及小结叶为传统的解剖学分化区，并以此可较好的描述小脑损伤的综合征。小脑蚓、蚓旁和外侧半球是小脑的皮质区，与小脑深部核团（小脑蚓、顶核、外侧前庭核、蚓旁、球状核、栓核、外侧半球和齿状核）有特定的纤维联系，并与特定的上运动神经元相连而调节特殊的运动类型。下图为显示主要的内部结构。小脑皮质外侧区折叠成许多小叶，白质位于脑叶深面与小脑皮质相连的传入与传出纤维。小脑深部核团位于白质深面，这些细胞团接受大部分从小脑皮质经丘脑中脑核的传出投射纤维和接收从丘脑纤维、脑干纤维传至小脑轴突。这些大量的纤维束将小脑与脑干和丘脑相互连接。
图 1.36: 脊柱的解剖

骨性脊柱的前、后、侧面观显示了椎间盘和椎体的关系。椎间盘接近椎间孔，为理解髄核突出压迫神经根提供了解剖学依据。这种压迫可引起锐痛。压迫神经根可引起放射痛，压迫腹侧根可影响肌肉的运动功能。在成人，髄核向尾侧延伸至L1椎体，我们可从L1以下（腰池，即蛛网膜下隙）进行脑脊液的抽取。
图1.37 脊髓的体解剖（原位）

上图中椎骨的后部已被除去，可以看到脊髓的后（背面）面。颈膨大和腰膨大反映了四肢的神经支配。脊髓经枕骨大孔向尾侧延伸，上接延髓。脊髓圆锥位于L1以下。在生长发育过程中脊柱的生长快于脊髓，导致成人的脊髓终止位置高于婴儿，而相关的神经根要在椎管中走行较长的距离才能到达相对应的椎骨孔。腰骶部有神经根聚集，形成马尾。腰骶处可对脊髓液重吸收。终丝止于骨髓尾侧的尾骨。
图1.38：脊髓、被膜和脊神经根

上图显示了完整而可翻转的脊髓。软脊膜紧贴脊髓的表面，蛛网膜覆盖着脊髓的外部并贴着硬脊膜，它是比较硬的纤维状保护膜。这些膜向外延伸到神经根，其中齿状韧带为纤维状结构，它有助于脊髓的固定。脊髓后动脉邻近脊神经后根基部沿正中裂下行，供应脊髓背侧。下图为剥去脊膜后的脊髓。前、后根是由许多小根丝汇聚而成并在整个脊髓也呈连续的前、后根形式分布。
图1.39：脊髓的横切面解剖（原位）

（上图）椎管中的脊髓被脊膜包被。前、后根穿过椎间孔。硬膜外腔及其脂肪是麻醉用药的部位。动、静脉脊神经和神经根相互伴行。一些节段性血管成为动脉与脊髓前、后动脉系统的吻合支，从而加快了脊髓血流，保证整个脊髓的血液供应。紧贴椎体的交感神经链的椎旁神经节对于应激反应很重要。脊神经的前、后支分布到特定的区域，棘突向脊侧延伸，在体表可以触及。在腰椎的蛛网膜下隙里含有终丝和马尾。
图1.40：脊髓的白质和灰质

上图七个不同水平的脊髓断面可显示出每一断面的灰质大小和形状的多样性，与肢体相连的平面含有较多的灰质。白质在数量上从尾端至头端绝对量增多，反应了上行纤维逐层增加而下行纤维逐层减少。下图描述灰质前、后角的组成，在T1～L2节段出现中间外侧柱（外侧角）含有交感神经节前神经元。白质也分为前、后、外侧索，均含有多种纤维束。这些纤维束向吻侧通过前外侧索、脊髓丘脑/脊髓网状结构系统传递痛、温觉。通过后索传递精细触觉。在每一断面都存在后根传入区和腹根传出区。
图1.41：脑膜与大脑的关系

脑膜对中枢神经系统具有保护和支持作用。最内侧的为软膜，贴附在神经组织表面并延伸至脑沟、叶及内囊，并于星形胶质细胞的终足突起相粘连。蛛网膜薄而透明，位于软脑膜外，亦延伸至神经沟和褶。蛛网膜下腔内流动的脑脊液，对大脑提供浮力缓冲而保护大脑。动脉和静脉通过蛛网膜下腔进入中枢神经系统。大脑动脉瘤的破裂可引起蛛网膜下腔出血。硬膜为坚硬的外膜，贴近内面的蛛网膜，在某些区域分成两层形成静脉窦，为静脉血引流的通道。蛛网膜颗粒（为单向瓣膜）从蛛网膜下腔延伸至静脉窦（特别是上矢状窦），使脑脊液从大脑进入静脉窦而最终回流至心脏。阻塞或回流不畅（如急性化脓性脑膜炎）可导致颅内压升高。静脉血经主静脉窦汇入静脉窦，创伤可导致这些静脉壁破裂而进入静脉窦。特别是伴有脑萎缩时会引起脑静脉血在硬膜下腔积聚，使其内层与蛛网膜断裂并分离。硬膜下血肿引起的颅内压升高、水肿以及硬膜下血肿本身血液积聚均可危及生命。
图1.42 脑室

侧脑室整体呈C型，它在额叶内向上、后、然后朝下、前行，表明了与端脑的发育有关。侧脑室与尾状核头、体的位置关系在许多情况下（脑积水、Huntington病时的尾状核萎缩，肿瘤时中线移位）是重要的放射影像学标志。脑脊液经Monro孔至狭窄的第三脑室，然后经大脑导水管至第四脑室。导水管阻塞将因上述脑室肿胀导致脑水肿。脑脊液经Magenide孔和Luschka外侧孔流至蛛网膜下腔，这两个部位的阻塞将使脑脊液回流受阻。延伸至脑室的脉络丛产生脑脊液。
图 1.43：第四脑室

第四脑室呈菱形，延伸至脑桥和延髓。第四脑室 Magendie 孔和 Luschka 孔需保持通畅以使脑脊液正常引流至脑池。第四脑室底双侧的对称突起，四陷及沟界定了脑干深面相应区域的解剖特征。脑干重要的心血管、呼吸和代谢功能中枢位于第四脑室外侧，肿物等造成的损伤将使这些功能受损。第四脑室外侧被宽大的小脑脚所包围，小脑脚将小脑与脑干和端脑相连。上述关系对于理解排列紧密的脑干各区影像学特征十分重要，这些区域发生的肿瘤和血管损伤在临床诊断过程中极富挑战。
流经脑室的脑脊液（侧脑室-第三脑室-大脑水管-第四脑室）在其循环途径之处可因梗阻而造成脑室性脑积水，从而导致颅内压增高。脑脊液由第四脑室进入蛛网膜下腔后，形成缓冲区保护中枢神经系统免受小的损伤。一些脑池（腰池）提供脑脊液聚集的位置（腰穿）。脑脊液由蛛网膜下腔通过蛛网膜粒到静脉的引流过程是由脑膜驱动的。脑脊液的产生、流动、吸收必须处于一个精确的动态平衡之中，这个过程的破坏会导致脑室性脑积水。脑脊液在脑室中的循环也可以作为一种特殊介质（如前列腺素、白细胞介素）的液态输送系统，同时还可作为某些靠近脑室结构的旁通路。
图1.45：脑膜的动脉及其与颅骨和硬脑膜的关系

脑膜动脉走行在硬脑膜表层并分支供应硬脑膜血供。它协助供给血供颅骨，并和大脑动脉间有交通支。颅骨内表面有沟或凹陷以容纳脑膜血管走行。这种位置关系可导致颅骨破裂而引起严重的后果。颅骨破裂可撕裂脑膜动脉（通常是脑膜中动脉），使动脉血在硬脑膜外聚集，硬脑膜血肿属于占位性，能导致颅内压升高，尤其是当血肿出现在小脑幕上方时，很容易引起脑疝。即使非常轻微的颅骨破裂也会存在这种危险的后果。
图1.46: 大脑及其被膜的血液供应

颈内动脉和椎动脉沿颈部上升入颅供应脑部血液。在这些动脉的弯曲及分支处，例如颈总动脉分支为颈内动脉和颈外动脉处，易形成涡流，可产生动脉粥样硬化。颈总动脉分叉处尤其容易形成纤维斑块和闭塞，造成脑部主要动脉梗阻。研究通过这些动脉的血液改变是重要的诊断依据。大多数情况下，核磁共振血管成像、多普勒血流分析已取代了过去的脑血管彩色造影术。
图1.47: 大脑的动脉分布：底面观

（上图）显示的是大脑前部循环（大脑中、前动脉）和后部（椎-基底动脉系统及其终末支和大脑后动脉）的循环。右侧脑被切掉后可以显示大脑中动脉通过外侧裂的走行。Willis环（两侧大脑中、前动脉和大脑后动脉以及前、后两条交通动脉）的结构似乎能使血液沿两侧的前、后部循环，但并非如此，在阻塞性它通常没有充分的侧枝循环。（下图）显示的是Willis环和脉络膜动脉的走行。供应大脑的动脉为终末动脉，与其他动脉没有充分的吻合支，因而大脑某一特定区域动脉供血的阻塞性可使此区域血液供应不充分，影响该区域的功能并导致功能损伤。
图1.48：大脑的动脉分布：前额观和冠状切面

大脑前动脉沿半球内侧脚行走，其血液供应与对侧下肢相联系的感觉皮质和运动皮质。因此，大脑前动脉闭塞可影响对侧下肢的功能。大脑中动脉沿外侧行走，还走至整个半球的外凸面。大脑中动脉末梢血液会影响对侧的上肢的功能，若在左侧，还会影响到语言功能。更近端的梗死则影响大脑中动脉至内囊的血供而引起对侧半身瘫痪伴随对侧面部下半的瘫痪。这是因为损伤到内囊后的皮质脊髓束和其他皮质运动纤维以及内囊膝部的皮质延髓束纤维导致的。豆状核状体动脉（基底动脉）是大脑中动脉的小分支，它们穿入基底节和位于前脑内囊区，此区域的卒中产生典型的对侧偏瘫。
图1.49：大脑动脉示意图

本示意图描绘了整个脑部动脉血管及其吻合支。Willis环位于中央。前部（脑膜中动脉、脑膜前动脉）与后部（脑膜后动脉）相对独立的分布区与血液循环在本图中十分清楚显示。
图 1.50: 大脑基底动脉环（Willis 环）示意图

Willis 环环绕视束、垂体柄和下丘脑基底部，是脑动脉瘤最常见发生部位。它包括了 3 个成对的大脑动脉系统，加上前交通动脉连接两侧大脑前动脉，后交通动脉连接大脑中动脉和大脑后动脉。当一支大脑主要动脉闭塞时，通过交通动脉的三部分血液通常不能够充分的分散到脑的各部分。动脉瘤是由于动脉壁固有的缺陷而引起的膨出。动脉瘤破裂可引起蛛网膜下腔出血（SA），并引起相应的脑的中枢神经系统区域的缺血。
图1.51：大脑的动脉分布：外侧观和内侧观

（上图）大脑中动脉沿半球凸面的表面，分支分布于颞叶、顶叶及额叶的前中部。其闭塞将导致对侧躯体的感觉和运动功能缺失，尤其是上半身。如果内囊受累，会累及整个对侧躯体。（下图）大脑前动脉供应颞叶和顶叶中线区域，其闭塞会引起对侧下半身的感觉运动障碍。大脑后动脉供应枕叶和颞叶的下表面，其闭塞主要引起对侧视野的视力障碍。

52
图1.52：大脑动脉分布区彩色示意图

大脑前动脉、大脑中动脉和大脑后动脉的中线与外侧血液供应分布区，显示了这些动脉各自特定的血供范围。并在这些
图 1.53：颈内动脉的血管造影

左图是颈内动脉血液循环的血管造影侧位片。是向颈内动脉注射了一种放射性造影剂之后拍摄的，显示了颈内动脉的主要分支，特别是大脑前、中、后动脉。右图是颈内动脉血管造影正位片，显示了颈内动脉的主要分支。MRI 血管造影常使用于显示大脑动脉的状况，但不能提供标准血管造影所能提供的相同水平的细节。

图 1.54：椎基底动脉的血管造影

上图是在注射了放射性造影剂之后拍摄的，为椎基底动脉循环系统（后循环系统）的正、侧位片。图示了该循环系统的主要分支。下图是展示颈内动脉循环和椎基底动脉循环的 MR 血管造影图。这些动脉的主要分支已被标出。注射对照药剂的血管造影图提供了更详细的解剖信息，但较磁共振血管造影更具侵入性。磁共振血管造影应用更广泛，但是，注射对照药剂的血管造影仍用于特定的诊断目的。
后颅窝的动脉

图1.55：椎基底动脉系统

两侧椎动脉于中线处结合成基底动脉。中央穿支分布于脑干中央区域，供应脑干区域。这些动脉分支的梗死会导致交叉瘫，即对侧肢体运动功能缺失（皮质脊髓束在锥体交叉以上损伤）合并同侧脑干颅神经症状和体征。椎基底动脉分出较大的短和长的周围分支，例如小脑下后动脉（PICA）、小脑下前动脉（AICA）和小脑上动脉（SCA）。这些动脉供血区域的卒中会导致同侧脑干感觉、运动、自主神经症状和对侧躯体感觉症状。例如，小脑下后动脉梗死会导致对侧躯体和对侧面部的痛温觉缺失。基底动脉终支是大脑后动脉，分布于枕皮质和下颞叶，其闭塞会导致对侧偏瘫。
图156：下丘脑和垂体的血液供应

垂体上动脉（来自脑内动脉或后交通动脉）供应下丘脑和漏斗柄，并同垂体下动脉（来自脑内动脉）的分支吻合。该动脉分布的特点是垂体门脉系统，该系统的初级血管从来源于小动脉和毛细血管，然后发出分支进入腺垂体。血管丛允许产生下丘脑释放和抑制因子的神经元释放这些因子进入门脉系统，垂体门脉系统直接将高浓度的因子输入腺垂体的二级血管丛，这样，腺垂体细胞浸溶于高浓度的释放和抑制因子中。这种单独的血管联系通道使下丘脑通过直接的或通过反馈对腺垂体激素的释放有较好的调控。
图 1.57：脑膜和大脑浅静脉

上矢状窦和其他硬脑膜窦接受来自不同静脉的血液，包括引流皮质表面的大脑表浅静脉、引流脑膜血流的脑膜静脉、引流位于颅骨内外层之间通道的板障静脉和连接静脉窦和颅骨表
面的导静脉。这些通道没有瓣膜，允许静脉系统和静脉窦之间自由交通，这是导致颅外感染病灶向静脉窦播散的重要因素。
图1.58：大脑浅静脉、脑膜静脉、板障静脉和导静脉

来自颅骨、脑膜和大脑皮质的静脉血汇入上矢状窦和其他硬脑膜窦。该区域易受到来自表浅静脉网流入中央静脉窦的血液的感染和污染。
大脑镰和小脑幕以及内、外硬脑膜融合成的突起，将颅骨局限为前、中、后颅窝。位于硬脑膜夹层内的外（上矢状窦）和内（下矢状窦）静脉通道将中枢神经系统表面和深部区域的血液各自汇入颈内静脉。大脑大静脉（Galen静脉）和直窦结合合成横窦，后者汇入窦汇，收集中枢神经系统深部和后部区域的血液。感染可通过这些静脉窦进入大脑内循环，静脉窦血栓形成可引起血流停滞（静脉压的下降），并导致血液灌注区域发生供血不足。硬脑膜的突起是坚韧而硬的膜，当颅内压升高时，大脑相应部分可通过这些突起部分形成脑疝。
图1.60：大脑深静脉的回流

（上图）丘脑和基底节上面观展示了由前脑深部区域进入后脑静脉的静脉回流。（下图）脑干去除后的底面观展示了前脑和中脑静脉血流汇入大脑大静脉（Galén静脉），然后汇入直窦。
图1.61：大脑深静脉的回流与脑室的关系。

中枢神经系统室管膜下区的静脉血回流入下矢状窦（左）；上矢状窦（右）。上矢状窦汇入直窦，该区域静脉闭
图 1.62：脑干和小脑的静脉回流

脑干和小脑的静脉回流呈现解剖上的多样化；后颅窝的静脉引流小脑和脑干的血液；上组静脉将小脑上部和上部脑干的血液向后注入大脑大静脉（Galen 静脉）、直窦；或向外侧注入横窦和岩上窦。前组静脉或岩部静脉将脑干前部和小脑半球上、下表面以及第4脑室外侧区域静脉血汇入岩上窦。后组静脉或幕静脉将小脑髓下部和上、下小脑半球的中间部分的血液汇入横窦和直窦。
图1.63：脊髓的血液供应：纵向观

脊髓主要的动脉血供来源于脊髓前动脉（ASA）和成对的脊髓后动脉（PSAS），这两条动脉都是椎动脉的分支。然而，这些动脉的血液来源于后循环，它们不足以供应脊髓颈段以外的脊髓。根动脉起源于主动脉，是脊髓前动脉和脊髓后动脉的主要吻合血管，并补充脊髓的血流。这些重要的根动脉的血流受损，特别是外科手术过程中动脉血流的中断会导致脊髓梗死。
图1.64：脊髓前、后动脉及其分布

脊髓前、后动脉行于蛛网膜下腔，发出分支至脊髓。脊髓前动脉发出阶段性分支进入前正中裂供应脊髓前2/3区域，该动脉闭塞将导致同侧受累节段所支配的肌肉软瘫，受累水平以下同侧痉挛性瘫痪（上运动神经元轴突受损），对侧受损水平以下痛、温觉缺失（前外侧脊髓丘脑系统/脊髓网状系统的损害）。脊髓后动脉的分支供应脊髓后1/3区域，该动脉闭塞会引起同侧受损水平以下精细触觉、振动觉和关节位置觉的损害（深束、楔束和后角的损害）。
图 1.65：脊髓的血液供应：横切面

脊髓的主要动脉血液供应经根动脉源于主动脉（上图），根动脉由肋间动脉发出，后者还分布至相邻的骨和肌肉组织。供应脊髓的穿支动脉起源于脊髓前动脉的中央支和围绕脊髓外侧的软膜血管丛。
图1.66：脊髓的静脉回流

内、外静脉丛沿脊柱的长轴延伸，形成一系列围绕每一椎体并相互吻合的静脉环。自脊髓椎体和椎体的血液引流入这些静脉丛。胸内压变化和脑脊液压力变化可通过这血静脉丛传
递，影响静脉容量。这些静脉丛都通过椎间静脉引流入椎静脉，助间后静脉、腰和肋外侧静脉。
图1.67：神经板、神经管、神经管的发生

神经板、神经管、神经管在胚胎发育的第18天形成。其表面的脊索诱导神经板和中线的神经沟形成。隆起的外缘形成神经板，之后形成外周神经各种结构的神经管由此演化。在胚胎发育早期，神经前体细胞对毒素和其他刺激敏感，易受损伤。
图1.68：神经胚的形成

在21至22天的胚胎中，神经板和其中线的神经沟增厚，沿着两缘卷曲隆起，使两缘在中线融合形成完整的神经管。中央管位于神经管的中央，是未来脑室系统所在的部位。神经管在其形成过程中向头、尾两个方向发展，如果在头侧终止即形成无脑畸形，在尾侧终止则形成脊柱裂。
神经系统将形成中枢神经系统的两个组成部分，脑和脊髓。神经管将形成所有周围神经的神经元，神经节和神经丛。周围神经的神经细胞体位于中枢神经之外。

神经管的衍生结构包括：
中枢神经系统的神经元
中枢神经系统的支持细胞
周围神经的躯体运动神经元

周围神经的衍生结构包括：
周围神经的感觉神经元
节后自主神经元
施万细胞（神经鞘细胞）
背根腹膜质细胞
海德氏间充质
皮肤的黑色素细胞
脑脊膜的蛛网膜和软脑膜
（硬膜来自中胚层）

图 1.69：神经管的发育和神经管的形成

在神经管的末端，神经管的神经细胞，联合起来变成背根，位于神经管上方的神经管。神经管和神经管从原始的外胚层分离。神经管在周围神经里分化出许多类型的细胞。
图 1.70：神经管壁的增殖和分化

在胚胎发育早期（五周），被衬中央管的室管膜层内的成神经细胞，向着软膜表面方向运动、复制。在神轴管的不同部位，神经移植后形成明显的分布模式。在脊髓内，神经元移进内侧套层，将外层的边缘层留给神经轴突建立通路。在小脑皮质，一些神经元迁移至小脑外层软膜表面，形成外颗粒层。从这里颗粒细胞向内迁移与小脑皮层深层的神经元形成突触联系。在大脑皮层，神经元向外迁移在白质的外面形成灰质。这些发生模式无论是成年后解剖结构，还是血液供应都对多种损害极为脆弱。
图 1.71：神经管和神经管的分化

神经管内管壁细胞分化出成神经细胞，中脑神经内神经元由成神经细胞生成。成神经细胞同样生成神经胶质细胞。成熟的室管膜细胞，星形胶质细胞，少突胶质细胞都由成神经胶质细胞演化。微神经胶质细胞、中脑神经内细胞，主要来自中胚层的前体细胞。神经胶质细胞是生成中枢神经肿瘤的主要细胞。神经嵴细胞演化出许多周围神经的结构，包括初级感觉神经元，自主神经节后神经元（交感神经和副交感神经），肾上腺髓质的嗜铬细胞，软脑膜细胞和嗅网膜细胞，施万细胞（周围神经的支持细胞），和其他的特化类型的细胞。神经管细胞在某些疾病中可被选择性的破坏（如家族性自主神经功能异常）。神经嵴细胞的衍生细胞也可分化为特殊细胞类型的肿瘤，如嗜铬细胞瘤。
28天的中枢神经系统

神经营管的某些部位向不同方向膨出，使得该管产生弯曲。这些弯曲又将神经营分为头侧和尾侧部分。头侧的头曲、尾侧的颈曲都是由于不同的膨膨形成。出现了三个细胞快速增生的区域，头侧的前脑、中部的中脑和尾侧的后脑。脑室系统弯曲膨隆以适应神经的快速增长。脑侧的尾侧部分，相当于后来的间脑，向外侧增生膨出形成视泡。再发育成视网膜和视神经。
图1.73：大脑的早期发育：36天胚胎

至第36天时，大脑迅速膨胀发育，形成间脑和端脑。间脑包括间脑和下丘脑。端脑包括基底节和前脑边缘系。嗅觉系统和大脑皮质。在这快速增长过程中，位于端脑中的狭窄的第三脑室形成。同时端脑内的原始中央管的上端发育形成c形的侧脑室。侧脑室继续分化成两个不同的部分：后脑以及进一步发育成大脑和端脑）和大脑（发育成端脑）。当大脑侧室和运动神经元在分化时，明显的不同的大脑额叶和脑岛也在形成，并与它们在外侧的皮质形成连接。
图 1.74：大脑的早期发育：49 天和 3 个月胚胎

在胚胎的 49 天时，端脑和间脑演化成各个不同的结构。分别是背侧的丘脑、腹侧的下丘脑、嗅叶和未来的腺脑半球。后脑（脑桥）和末脑（延髓）进一步发育、屈曲，在背面被脑桥区分开。在 49 天和 3 个月之间，迅速发育的端脑遮掩并包裹了间脑。当神经元向后移位，从后脑的菱形窝向后生长就形成了小脑。覆盖于未来脑桥背面，实际最后覆盖于大部分脑干的背侧。中脑向后隆起形成上、下丘（四叠体）。脊髓继续生长，当它与正在发育的四肢组织接触时，形成了颈膨大和腰膨大。
图1.75：前脑的发育：7周至3个月胚胎

发育中的细脑神经元向头侧和背侧迁移，然后绕着间脑向着额叶的前侧转移，形成类似一个C形。海马在其背侧和前部的位置形成，并以C形行程迁移进入额叶前侧。留下室间室作为它的移动轨迹。杏仁体的发育经历同样的模式，留下一个C形的终纹。从解剖的角度来看，侧脑室也有同样的发育过程。尾状核也绕着端脑沿着C形的轨迹延伸。头骨位于前方，纤细的体部和倒悬于两个胚胎的C样结构，头颅侧终室在侧脑室的额叶内的下角里。侧脑室和前连合连接两侧大脑半球。双侧内囊在前脑的核心部位向中央集中，向尾侧延伸形成大脑脚。
图 1.76：6 个月和 9 个月的中枢神经系统

至 6 个月时脑干已经分化出延髓、脑桥和中脑，小脑在其背侧。虽然间脑发育很快，但其表面的端脑以更快的速度向头顶、然后向尾侧、向下、向前发育延伸入颞叶。从第 6 个月到第 9 个月大脑皮质形成了独特的折叠现象，构成沟和回。小脑皮质形成了明显的皱褶、分叶。在前脑内，基底神经节、边缘结构（杏仁体、海马）、嗅觉系统；还有大脑皮质都迅速发育。在出生时，绝大部分的神经元已经存在，具有小脑的颗粒细胞层的一部分，海马的齿状回，大脑皮质的一部分尚未发育成熟。这些部分在出生后会对应环境的刺激而发育成熟。胎儿在宫内和出生后，环境对其神经系统的发生发育影响极大。
图1.77：脑室的发育

脑干和前脑的快速发育改变了脑室前后一致的外形。C形的侧脑室是环绕前脑的发育而形成，通过室间孔，这一缩窄的通路与第三脑室相通。在菱脑的上部，大脑导水管很细，开口于室腔的，膨胀的第四脑室。在第四脑室的外侧缘和中央部，通过中央孔和外侧孔脑室系统开口于发育中的蛛网膜下腔，蛛网膜下腔通过蛛网膜颗粒逐渐向外脉络膜下腔的蛛网膜下池。脑脊液通过蛛网膜颗粒进入静脉，蛛网膜颗粒有单向弥散作用，使得脑脊液回流总是从蛛网膜下腔流到硬膜静脉窦，特别是上矢状窦。
在5个半周神经开始增长时，相对来看脑室系统变小了。成人的脑室中脑室实际上被封闭的。第四脑室在上方外侧部开口，界沟标记出内侧的运动核区和外侧的感觉核区。大脑导水管仍然很小。第三脑室两边收缩成一条缝隙。侧脑室中间形成C形。基板形成了运动和内脏运动结构，它们的轴突离开中枢神经系统。翼板在背侧和脑干中形成感觉性衍生物结构，并向腹侧移位（即下橄榄核、脑桥核和红核）。菱脑的翼板衍生物有脑中脑的菱状核，该结构发育成小脑。间脑和端脑也是翼板的衍生物。
图1.79：脑干与脊髓的运动神经核和自主节前神经核的发育

在脊髓内，下位运动神经元在前角形成灰质柱。自主神经节前运动神经元在侧角的位置形成灰质柱。这些灰质柱向头侧延伸进入脑干，相互之间保持大致相同毗邻关系，组成一系列分开的，但排列成行的神经核。在菱脑干三分之一的核团分化成躯运动神经元，后者支配咽弓肌肉。躯体运动和感觉运动神经元都划归与下级运动神经元，都有从中枢神经系统发出的轴突与肌肉纤维形成突触。
图 1.80：脑干翼板和基板的演化

在脑内所见的翼板和基板演化结构模式延伸进入脑干，翼板的演化结构是感觉神经核和前脑部，后者分化成小脑。感觉核向腹侧移动形成如下橄榄核，脑桥核，红核等结构，基板分化形成运动神经核团和自主神经的脑干神经核团。
图 1.81：第四脑室的发育

从原始的菱脑中央室逐渐扩张，形成成熟的第四脑室是一复杂的过程。界沟在发育早期（5周半）就很明显，当顶板向两侧扩张时，原始的外侧壁向外、下水平膨胀（3个半月），在延髓第四脑室底部的界沟变成一标志线，分出了内侧的运动性和外侧的感觉性区域。第四脑室外侧室开口于蝶筛隐窝，还有一种外侧孔是脑脊液内外循环的主要通道，该孔的通畅可以有效预防脑积水发生。
神经系统概述

图1.82 周围突的发育

周围突的发育是一个复杂的过程，包括轴突延伸、营养和退化因子、以及神经所支配的靶组织对轴突的引导与维持。后根神经节细胞是双极细胞。周围突与简单或复合型感受器细胞联系，中枢突伸入中枢神经系统。下位运动神经元通过脊神经前根或运动性脑神经，把轴突分布至发育中脊髓肌。形成神经肌接头。交感神经、副交感神经的节前轴突经过脊神经前根传出，终止于交感干神经节。膝前节或椎旁交感神经的壁内神经节。节后轴突与肥大组织建立联系，包括平滑肌、心肌、分泌性腺体、某些内分泌细胞（胰岛细胞）和淋巴器官的免疫细胞。如果这些联系破坏，感觉、运动或自主神经的周围神经系统症状就会出现。
第二章 局部神经解剖学

第一节 周围神经系统

周围神经系统基本结构
图Ⅱ. 1：脊髓与周围神经（感觉神经、运动神经、自主神经）的示意图
图Ⅱ. 2：脊神经根与椎骨的关系
图Ⅱ. 3：感觉路径：反射
图Ⅱ. 4：感觉路径：小脑
图Ⅱ. 5：感觉路径：丘系
图Ⅱ. 6：运动路径：上、下运动神经元的基本结构
图Ⅱ. 7：自主神经路径
图Ⅱ. 8：皮肤感受器
图Ⅱ. 9：环层小体
图Ⅱ. 10：内感受器
图Ⅱ. 11：皮肤及其神经
图Ⅱ. 12：神经-肌肉的兴奋传递
图Ⅱ. 13：神经-肌肉接头

躯体神经系统
图Ⅱ. 14：脊神经节段性分布
图Ⅱ. 15：颈丛
图Ⅱ. 16：膈神经
图Ⅱ. 17：胸神经
图Ⅱ. 18：臂丛
图Ⅱ. 19：上肢的皮神经分布
图Ⅱ. 20：肩胛神经、腋神经和桡神经（肘部以上）
图Ⅱ. 21：桡神经（前臂）
图Ⅱ. 22：肌皮神经
图Ⅱ. 23：正中神经
图Ⅱ. 24：尺神经
图Ⅱ. 25：腰丛
图Ⅱ. 26：骶尾丛
图Ⅱ. 27：股神经与股外侧皮神经
图Ⅱ. 28：闭孔神经
图Ⅱ. 29：坐骨神经与股后皮神经
图Ⅱ. 30：胫神经
图Ⅱ. 31：腓总神经

自主神经系统
图Ⅱ. 32：自主神经系统概况示意图
图Ⅱ. 33：免疫系统和代谢器官的神经支配
图Ⅱ. 34：反射通路
图Ⅱ. 35：胆碱能和肾上腺素能突触
图Ⅱ. 36：胆碱能和肾上腺素能递质在运动神经和自主神经的分布
图Ⅱ. 37：自主神絃在头、颈部分布：面内侧
图Ⅱ. 38：自主神经在头、颈部分布：侧面
图Ⅱ. 39：自主神经在头、颈部分布示意图
第二节 脊髓
图II.57：脊髓灰质的细胞构筑
图II.58：脊髓平面：颈、胸、腰、骶
图II.59：脊髓的下运动神经元调控
图II.60：脊髓的躯体反射通路
图II.61：肌肉、关节感受器和肌梭
图II.62：肌肉牵张反射及通过γ运动神经元的中枢控制

第三节 脑干和小脑
图II.63：脑干的断面解剖
图II.64：脑神经：感觉、运动和自主神经分布
图II.65：脑神经与脑神经核（上面观）
图II.66：脑部的神经及脑神经节：背面观和海绵窦断面
图II.67：脑部的神经支配（III、IV、VI）和锥状神经节
图II.68：三叉神经（V）
图II.69：面神经（VII）
图II.70：前庭蜗神经（VIII）
图II.71：舌咽神经（IX）
图II.72：迷走神经（X）
图II.73：副神经（XI）
图II.74：舌下神经（XII）
图II.75：口腔和咽的神经分布
图II.76：网状结构：脑干核团的分布模式
图II.77：网状结构：脑干和间脑的核团
图II.78：网状结构的主要传入联系
图II.79：网状结构的主要传出联系
图II.80：睡眠—觉醒控制
图II.81：小脑结构：小叶和分区
图II.82：小脑的解剖：小叶
图II.83：小脑解剖：小脑深核和小脑脚
第四节 间脑
图Ⅱ.84：丘脑的解剖及其与大脑的相互联系
图Ⅱ.85：下丘脑和垂体
图Ⅱ.86：下丘脑核团示意图

第五节 端脑
图Ⅱ.87：前脑的水平切面
图Ⅱ.88：前脑的冠状切面
图Ⅱ.89：大脑皮质的分层
图Ⅱ.90：皮质神经细胞的分类
图Ⅱ.91：垂直柱：大脑皮质的功能单位
图Ⅱ.92：大脑皮质的传出联系
图Ⅱ.93：大脑皮质传出联系的起始神经元
图Ⅱ.94：皮质的联络通路
图Ⅱ.95：皮质的主要联络束
图Ⅱ.96：去甲肾上腺素能通路
图Ⅱ.97：5-羟色胺能通路
图Ⅱ.98：多巴胺能通路
图Ⅱ.99：中枢胆碱能通路
图Ⅱ.100：嗅神经和鼻的神经
图Ⅱ.1：脊髓与周围神经（感觉神经、运动神经、自主神经）的示意图

周围神经包括初级感觉神经元、下运动神经元、自主神经节前、节后神经元及其轴突。紧邻初级感觉神经轴突周围有感受器，轴突的近侧部进入中枢神经系统，终止于与反射、小脑、丘系通路有关的二级感觉神经核团。脊髓前角的下运动神经元经过脊髓前根发出轴突，形成周围神经达骨骼肌，并在此处形成神经肌肉接头。自主神经节前神经元发出轴突，穿过前根，终于自主神经节。节后神经纤维发出轴突达内脏神经和周围神经，在平滑肌、心肌、分泌腺、代谢细胞和免疫细胞细胞处形成神经效应器接头。
图2.2：脊神经根与椎板的关系

脊髓节段的后根和前根由成组的周围神经组成，并有骨膜覆盖。当轴突进入周围神经系统后，施万细胞与之相伴，完成髓鞘化并由此得到支撑。神经根自椎间孔穿出，而突出的椎间盘使得椎间孔紧密的开口中的神经根受到压迫，产生感觉和运动方面的症状。感觉和运动轴突进入周围神经的后支与脊根。来自前根的自主神经节前神经元轴突进入白交通支，节后神经轴突则进入灰交通支。
图2.3：感觉路径：反射

初级感觉神经元轴突与反射、小脑、丘脑通路的二级感觉神经元形成联系, 后者将周围信息传至中枢神经系统。反射通路是初级感觉轴突与目标神经之间的相互联系。中间通过一个或多个突触, 形成一个非意识性的从感觉传入到运动反应的反射弧。这些反射能脱离与大脑联系, 在一个孤立的脑叶节段完成。单突触反射通路直接将脊髓的初级感觉轴突与有关肌紧张反射的前角细胞联系起来。这也是在人类中枢神经系统中所见的唯一单突触反射通路。多突触反射通路主要是完成屈肌（回缩）反应, 通过一个或多个神经元, 产生协调的肌肉运动模式, 使身体的某部分避免潜在的危险或主动性刺激。这种多突触通路能通过多个节段向两侧或对侧扩展。

图2.4：感觉路径：小脑

初级躯体感觉轴突携带来自肌肉、关节、肌腱、韧带和皮肤等非意识性整体感觉信息经后根与位于脊髓、脑干末梢的二级神经形成突触联系并进入中枢神经系统。这些神经元将信息从外围通过脊髓小脑通路形成二级神经感觉轴突反射, 位于后根和前根的脊髓小脑后束、脊髓小脑前束传递T6节段及其以下感觉信息。吻侧脑桥小脑束和楔小脑束传递T6节段以上身体感觉信息。多突触的间接连接的脊髓小脑通路（脊髓-橄榄-小脑和脊髓-网状结构-小脑）同样存在。
初级感觉神经元轴突传递来自表浅和深部组织的意识性感觉信息。这些轴突经脊髓后根进入中枢神经系统并终止于位于脊髓或脑干的二级神经元。二级神经元轴突起自这些神经核并于中枢交叉，上升形成丘系通路，并终止于对侧丘脑。丘脑核团再投射至第一感觉皮质的特定区域，该区皮质对传入的意识性感觉信息进行精细的分析。躯体感觉信息进入浅感觉或本体感觉通路。本体感觉信息（精细触觉、振动觉、关节位置觉）通过一级感觉神经元有髓轴突传递至位于延髓的薄束核（下半身，T6 节段以下）和楔束核（上半身，T6 节段以上）。薄束核和楔束核发出内侧丘系，即交叉的二级感觉通路，终止于丘脑腹后外侧核。丘脑核团与中央后回（Brodmann 3、1、2 区）的皮质神经元有往返纤维联系。浅感觉信息（痛觉、温度觉、触压觉）通过一级感觉神经元节细胞、经纤维的、有髓、无髓纤维投射至脊髓后角的神经元。这些脊髓神经元发出轴突形成脊髓丘脑束（脊丘束），在二级感觉通路，终止于丘脑腹后外侧核内的不同区域。这部分腹后外侧核同第一感觉皮质和位于中央后回外侧核的躯体感觉辅助区相联系。一些无髓的感受痛觉的原始感觉纤维终止于脊髓后角，并与脊髓内中间神经元相联系，后者主要投射至脑干网状结构（脊髓网状通路）。这种更弥散的疼痛系统是通过丘脑非特异性神经核传递的，可引起剧烈的长时的痛觉。
图Ⅱ.6 运动路径：上、下运动神经元的基本结构

下运动神经元位于脊髓前角或脑干的运动神经核内。它们的轴突经前根或脑神经支配骨骼肌。下运动神经元与肌纤维形成神经肌肉接头，并释放神经递质乙酰胆碱（Ach），作用于骨骼肌纤维的烟碱受体。一个运动单位由一个下运动神经元、轴突和轴突支配的肌纤维组成。下运动神经元被脑内的上运动神经元调节和协调。脑干的上运动神经元调节基本肌张力和姿势。皮质的上运动神经元（来自皮质脊髓束和皮质核束）调节有意识的运动或意向性运动。小脑和基底核通过与上运动神经元联系来辅助运动形式的选择和协调。它们不直接与下运动神经元联系。
图II.7：自主神经路径

交感神经节前神经元位于脊髓胸腰段（T1～L2）侧角（中间外侧柱）。副交感神经节（PSNS）节前神经元位于第Ⅲ、Ⅶ、Ⅸ、X对脑神经核和S2-S4脊髓中间灰质内（颅神经系统）。节前神经元经过神经节后入中枢神经系统并终止于交感干或椎前神经节（SNS）。或终止于位于所支配的器官旁（PSNS）或壁内神经节。节后神经元支配平滑肌、心肌、分泌腺、代谢细胞，和免疫细胞。交感神经节前系统是对应急事件作出反应的应激系统。副交感神经节是一个体内平衡修复系统，起更安静的消化或排泄功能。节前反应被上运动神经元的同等结构，即脑干（自主神经中心）、下丘脑和前脑边缘结构所调控。这些中枢调节系统调节自主神经反应，既影响内脏功能也影响神经内分泌激素的释放。
图 B.8: 皮肤感受器

光滑无毛的皮肤和有毛发的皮肤都存在各种各样的感受器。包括感受作用于体表的机械刺激、温度刺激和伤害刺激（有意识的疼痛刺激）的感受器。这些感受器包括毛细神经末梢（疼痛感受器、温度感受器）和触觉小体，后者包括环层小体（感受振动或迅速摩擦的快适应机械感受器）、Merkel

盘（感受持续变形或皮肤的持续触压的慢适应机械感受器）、Meissner 小体（感受运动触压的快适应机械感受器）、Ruffini 末梢（感受作用于有毛发皮肤的稳定的触压的慢适应机械感受器）、毛囊感受器（快适应感受器）和 Krause 终末球（可能是温度感受器）。初级感觉神经元轴突起始段直接与感受器相连。
图 II. 9: 环层小体

环层小体是机械感受器，它将机械力或粗大的初级感觉轴突的传位转换成动作电位。机械刺激被环层小体的薄层粘胶特性以及相关的辅助细胞所修正。当电位累积至足够大小使轴突起始部电位达到阈值时就产生动作电位。机械变形的开始和终止增加轴突的离子通透性，这完善优化了环层小体对震动刺激所产生的生理反应。

A. 在脉冲的开始和终末，施加于薄层囊的“全或无”压力变化传导至中枢并诱发电位产生，继而引起动作电位。中央核对压力梯度的缓慢变化无反应。同样，启动电位可被囊的粘滞特性快速消散。（动作电位可被施加于某一结上的压力或药物所阻断）。

B. 无囊的轴突对压力的快慢变化均有反应，驱动电位缓慢消散，并且无“无”反应。

直接对轴突终末或经囊对轴突终末的压力引起膜对Na通透性增加，这样就产生了通过第一个朗飞结的离子启动电流。

如果在第一结产生去极化达到阈值，动作电位就发生在并延伸神经纤维扩散。
图 2.10：内感受器

内感受器包括体内的疼痛感受器。化学感受器和牵张感受器是本体状态信息传递给大脑。颈动脉体是特殊的化学感受器，能感受二氧化碳在很短时间内变化（如缺氧状态）以及血液 pH 降低而导致呼吸加快。其传入冲动由第 IX 对脑神经投射至延髓的孤束核细胞。颈动脉窦是颈动脉体的薄壁区域，含有囊状和游离神经末梢，这些牵张感受器作为压力感受器对动脉压升高做出反应，引起反射性心动过缓和血压降低。该反射通过第 IX 对脑神经将冲动传递给孤束核细胞完成。
图 II.11：皮肤及其神经

皮肤上有许多类型的感受器（见图 II.8），它们缓慢和快速地将机械刺激和外形变化转换成初级传入神经纤维的冲动。游离末梢主要与疼痛感受器、外周树突状无髓轴突相联系。某些疼痛感受器和温度感受器与稀的有髓轴突联系。这些轴突将躯体感觉信息收集传导到浅感觉传导路即脊髓丘脑束或脊髓前角丘系。更复杂的囊状感受器将躯体感觉信息传递给传导本体感觉的脊髓后柱或内侧丘系，并与较大的有髓轴突相联系。
图2.12：神经-肌肉的兴奋传递

下运动神经元的轴突同骨骼肌纤维形成突触，形成的末端膨大结构称为神经肌肉接头（运动终板）。运动神经元轴突失去髓鞘，并膨大伸入位于肌纤维凹槽内的扩大的终板，并被施万细胞胞浆层所覆盖。突触后膜形成许多褶皱，当动作电位传递到运动神经元终末时，数百个突触囊泡同时释放出囊内的乙酰胆碱（Ach）进入突触间隙。Ach结合肌肉膜上的烟碱受体激发运动终板电位（EPP），当EPP的大小足以引发动作电位时引起肌纤维的收缩。一个肌纤维只有一个神经肌接头，但一个运动神经元轴突可支配多条肌纤维。
图 1.13：神经-肌肉接头

自主性神经节后轴突与心肌、平滑肌（A）、内分泌腺（B）、代谢细胞如肝细胞及免疫系统细胞（C）形成神经效应器连接。这些神经末梢主要应用去甲肾上腺素于交感神经系统，应用乙酰胆碱于副交感神经系统。这些神经末梢不形成典型中枢神经系统或运动终板突触而是形成神经效应器连接，释放神经递质到间隙内。允许神经递质作为一种旁分泌物广泛扩散，通过细胞上适当的受体，启动突触后反应（包括许多类型免疫细胞）。有一些相似情况也被发现，比如终止于淋巴细胞的交感神经。平滑肌细胞通过缝隙连接，当被刺激的平滑肌收缩时，未被刺激的平滑肌可同时收缩。
图 1.14：脊神经节段性分布

一个皮肤节段是指一条神经根所支配的皮肤区域，支配该区域的神经元胞体位于后根细胞节。根据与脊髓节段的联系，脊神经节分布与相对应的脊髓节段分布区一致，但相邻的神经根之间的皮肤支配则呈重叠分布。因此，单一神经根被切断或功能障碍只会导致该皮肤节段区域皮肤感觉功能减弱而不是感觉功能缺失。皮区功能缺失至少需损伤 3 条后根：中间一条、上、下各一条。解剖皮肤节段分布对于辨认外周神经根损伤的位置以及区别外周神经损伤和神经根损伤都是极为重要的。
图II.15：颈丛

颈丛位于胸锁乳突肌深部，其运动纤维至许多颈部肌肉和膈肌。其感觉纤维传递来自部分头皮、颈部、胸部的外界刺激信息和来自肌肉、肌腱和关节的本体感觉信息。支配腹肌和血管运动的交感神经纤维，颈丛分布到血管和腺体。皮支穿出颈筋膜支配皮肤结构，深支主要支配肌肉和关节。

枕大神经（源于C2背侧支）
胸锁乳突肌
耳大神经
分布到内、外侧头直肌，头长肌和颈长肌的神经
分布到头长肌、颈长肌和肩胛提肌的神经
斜方肌
分布到颈长肌、前、中斜角肌的神经
臂丛交通支
颈前神经营
肩神经
胸锁乳突肌（下端）
斜角肌

运动纤维
感觉纤维
本体感觉纤维
图2.16：膈神经

左、右膈神经来自C3、C4和C5前根，支配双侧膈肌的运动神经。膈神经也含感觉神经纤维，支配心包纤维层、纵隔胸膜和隔胸膜的中央区域。交感神经节后纤维也伴随神经走行，膈神经损伤可引起呼吸停止，导致呼吸衰竭。
图12.17：胸神经

12胸神经发自脊髓相应节段的后根和前根。这些神经不形成丛，它们发出皮支至胸部皮肤节段，发出其他感觉纤维至深部的肌肉结构、血管、骨膜、壁腹膜、腹膜和乳腺组织。胸神经内发运动纤维至胸、腹壁肌肉，并与交感神经节前、节后纤维相伴随交感神经干。
图2.18：臂丛

臂丛是由C5、C6、C7、C8和T1的前根及C4的一部分组成而成。感觉神经纤维和交感神经纤维也与臂丛伴行分布。

神经根合成3干，分成3个前支和3个后支，再合成3束，还有数量较多的终末神经分支。臂丛神经在分娩时较易发生损伤，（高位臂丛麻痹），出现三角肌、肱二头肌、肱肌、肱桡肌的麻痹，手功能丧失。整个三角肌区的皮肤感觉丧失及前臂和手的烧侧感觉丧失。颈肋的压迫能导致低位臂丛损伤（C8、T1损伤），致使小的手内肌和手的屈肌麻痹，以及手尺侧感觉丧失和可能的Horner综合征。
图 2.19：上肢的皮神经分布

上肢的皮神经支配来源于肌皮神经、腋神经、桡神经、正中神经和尺神经。这些神经是臂丛的终末支。与后根不同，这些周围神经的上肢皮肤感觉分布不相互重叠。因此，一条周围神经的损伤或受压会导致分布区域的感觉缺失。
图 2.20: 肩胛神经、腋神经和桡神经（肘部以上）

肩胛背神经（C5）支配肩胛提肌和菱形肌；它辅助肩胛的上提和向脊柱方向的内收。该神经损伤会导致肩胛骨的脊柱缘外展畸形和菱形肌的萎缩。肩胛上神经（C5、C6）支配冈上肌和冈下肌；它辅助上肢的上举和外旋。该神经损伤会导致上肢外展在最初 15 度无力及上肢外旋无力。腋神经（C5、C6）支配三角肌和小圆肌，它辅助上肢外展至水平位和上肢的外旋。该神经损伤会导致三角肌萎缩和上肢在外展从 15 至 90 度时无力。桡神经（C5、C6、C7、C8）支配肱三头肌、肘肌、肱二头肌、挠侧腕伸肌、指伸肌和旋后肌；它辅助肘的屈伸。桡神经损伤会导致肘的屈伸不能和前臂的旋后不能。
图 II. 21: 桡神经（前臂）

桡神经（C6, C7, C8）支配前臂的（1）桡侧腕伸肌、（2）指伸肌、（3）小指伸肌、（4）尺侧腕伸肌、（5）旋后肌、（6）拇指长展肌、（7）拇长短肌、拇长伸肌和（8）示指固有伸肌。桡神经支配上臂后部、前臂后部长条状的区域和手背。拇指和桡侧 2 个半手指、手背桡侧的皮肤。桡神经损伤会导致肘的伸屈障碍、前臂旋后不能、腕、手不能伸，拇指外展不能以及桡神经支配的前臂后面和手背的感觉丧失。
图II.22：肌皮神经

肌皮神经（C5、C6）支配肱二头肌、喙肱肌和肱肌；它辅助上臂和前臂的屈曲、前臂的旋后和上肢的举起和内收。该神经也传导前臂外侧皮肤感觉。该神经损伤会导致所支配肌肉功能丧失，上肢旋后屈曲无力，前臂外侧感觉丧失。
图2.23：正中神经

正中神经（C5-T1）运动纤维支配：（1）桡侧腕屈肌，（2）旋前圆肌，（3）指长肌，（4）指浅屈肌和指深屈肌，（5）拇长屈肌，（6）拇短展肌，（7）拇短屈肌，（8）拇对掌肌和（9）食指及中指指伸肌。它提供感觉神经分布于手掌和邻近的拇指、食指和中指，第四指的外侧皮肤。损伤（腕管综合征）可致手指弯曲功能、拇指的外展和对掌功能减弱，感觉丧失或手的桡侧产生痛觉。高位损伤也可造成前臂旋前功能减弱。
尺神经（C8 - T1）的运动神经纤维支配（1）尺侧腕屈肌，（2）指深屈肌，（3）拇收肌，（4）小指外展肌，（5）小指对掌肌，（6）小指短屈肌，（7）骨间背、掌侧肌和（8）第4指及小指的蚓状肌。尺神经提供感觉神经支配手掌背侧和掌侧内侧皮肤及小指和第四指内侧部。损伤可致手部肌肉萎缩，屈腕力减弱，手部出现尺侧偏斜，手指内收和外展力减弱、“爪形手”、手指掌关节过度伸展和指间关节屈曲，以及手的尺侧半感觉丧失。
图2.25：腰丛

腰丛位于腰大肌后方，由L1～L4脊神经前支组成。L1及部分L2脊神经前支形成髂腹下神经、髂腹股沟神经和生殖股神经。这些神经支配腹横肌及腹内、外斜肌。腰丛其余的脊神经前支形成股神经、闭孔神经和股外侧皮神经。由于受到腰大肌的保护，腰丛的损伤并不常见。损伤可以导致大腿屈曲、内收无力，不能伸小腿，以及大腿前区及小腿感觉障碍。
骶尾丛位于梨状肌前面，由 L4-S4 胫神经前支组成，主要分支包括臀上神经（L4-S1）、臀下神经（L5-S2）、股后皮神经（S1-S3）、阴部神经（S2-S4）、坐骨神经（L4-S3）及骶丛及分支神经。骶尾丛支配会阴肌和括约肌，使骸肌和直肠的括约肌收缩。骶尾丛损伤可导致大腿后部、小腿以及足部的肌肉无力、大腿后部、肛周/鞍区的异常感觉。
图 2.27：股神经与股外侧皮神经

股神经主要由 L2 ~ L4 脊神经前支组成，支配髋腰肌、缝匠肌和股四头肌，可使髋关节屈曲和旋外，小腿屈曲和旋内以及通过膝关节伸小腿。股神经感觉纤维还分布至大腿前面、小腿和足的前内侧面。股神经损伤可导致伸小腿障碍、屈大腿和屈小腿无力，股四头肌萎缩及其分布区感觉障碍。股外侧皮神经分布至膝以上的股外侧面和前面的皮肤与筋膜。损伤后可导致该区域的感觉障碍。
图II.28：闭孔神经

闭孔神经（L2-L4）支配耻骨肌、大腿收肌（长收肌、短收肌及大收肌）、股薄肌及闭孔外肌。闭孔神经支配的肌群使大腿内收、旋外，同时有感觉纤维分布至大腿内侧。闭孔神经损伤可导致大腿内收障碍，行走时大腿呈外展位，并伴有旋外障碍以及大腿内侧皮肤感觉障碍。
图 2.29：坐骨神经与股后皮神经

坐骨神经由 L4～S3 的脊神经前支组成。在形成坐骨神经之前 L4～S3 同时发出臀上、下神经。臀上神经支配臀小肌、臀中肌、阔筋膜张肌和梨状肌，可使大腿内展、内旋和部分外旋，并使小腿和大腿部分屈曲。臀下神经支配臀大肌、闭孔内肌以及上、下孖肌和股方肌，可伸髋及外旋大腿。臀下神经损伤上楼或起立时困难。坐骨神经支配股后肌，半膜肌和半腱肌，可使小腿屈曲。由于坐骨神经向下分为胫神经、腓总神经，其主干的损伤可导致小腿屈曲障碍及膝关节以下肌无力；大腿、小腿后部和外侧部以及足底的感觉障碍。股后皮神经分布至股后区、外阴部以及臀下部皮肤感觉区。
图 II.30 腓神经

腓神经（L4, L5; S1, S2, S3）支配部位包括：（1）腓肠肌和比目鱼肌（主要是屈踝）；（2）胫骨后肌（屈足趾及足内侧肌）；（3）趾长屈肌（足趾屈、足趾屈）；（4）趾长屈肌（足趾屈、足趾屈）；（5）足部肌肉（包括小趾展肌、小趾屈肌、踝展肌、踝屈肌和骨间肌、第3、4蚓状肌）。腓神经感觉支分布至小腿后外侧部、足部、足跟内侧以及足底部。腓神经损伤将导致足趾屈、足趾和足内侧障碍，小腿后外侧和足底部感觉丧失。
图11.31：腓总神经

腓总神经（L4-L5）分布于腓深神经和腓浅神经。腓深神经支配区包括：（1）胫骨前肌（足背屈及内翻）；（2）趾长伸肌（足背屈及外翻）；（3）趾长伸肌（足背屈及伸趾）；（4）趾短屈肌（伸趾）。腓浅神经支配腓骨长、短肌（足趾及外翻），感觉支分布至小腿外侧及足背侧皮肤。腓浅神经受损将导致足背屈和伸趾障碍；小腿下部外侧和足背的皮肤感觉丧失。
图2.32：自主神经系统概况示意图

自主神经系统含有2个神经元链，节前神经元分别起自脑干或脊髓，至交感神经的交感干和椎前结，以及副交感神经的壁内节与节后神经元形成突触联系。交感神经起自T1 - T12（胸段）灰质侧角神经元，可引发机体的应激反应。而副交感神经起自骶干神经元（骶部第Ⅲ、Ⅶ、Ⅺ、X脑神经）以及骶部脊髓（S2-S4）中间灰质，主要调节机体修复、自体环境平衡及消化功能。自主神经系统支配平滑肌、心肌、外分泌腺和代谢细胞（肝细胞、脂肪），并可对免疫系统的细胞起作用。通常情况下，交感与副交感神经共同调节内脏活动（如呼吸、心血管功能、消化）和内分泌功能。
图II.33: 免疫系统和代谢器官的神经支配

自主神经系统支配血管、平滑肌组织以及主要由交感神经分支支配的免疫系统器官。在骨髓和胸腺中，交感神经可调控细胞增殖、分化和动员。在脾和淋巴结中，交感神经还可调控先天性免疫反应以及获得性免疫反应的时机和程度，尤其是由细胞介导（Th1细胞因子）对体液（Th2细胞因子）免疫的选择。自主神经纤维调节免疫反应以及与肠、肺和皮肤有关的粘膜淋巴组织的炎性反应。源于自主神经系统和初级感觉神经元的神经肽能纤维在淋巴器官实质内也广泛存在。交感神经节后纤维还支配肝细胞和脂肪细胞。
图2.34：反射通路

自主神经反射通路包括感觉传入、中枢神经系统的中间神经元和自主神经传出纤维，后者支配与传入刺激有关的周围组织。传入冲动可以是自主性的（来自迷走神经），经脑干核团（如孤束核）整合；也可以是躯体性的（本体感觉），由脊髓灰质神经元整合。中间神经元可激发交感神经和副交感神经元以产生自主神经反射（如收缩血管平滑肌以调节血压、增加心律和心收缩力）。由于自主神经复杂的传出通路，传出联系可由内脏神经或躯体神经交替进行。
自主神经系统含有两个神经元链。所有交感和副交感神经的节前神经元在神经节处形成的突触均以乙酰胆碱（ACH）为其神经递质。这些胆碱能（C）突触主要激活神经节细胞的烟碱（N）受体。副交感神经节后神经元释放 ACH，主要兴奋靶组织的毒覃碱（M）受体；而交感神经节后神经元则主要以去甲肾上腺素来兴奋靶组织的α和β受体。虽然 ACH 与去甲肾上腺素是自主神经的主要神经递质，但也有许多共存的神经递质和其他神经递质（包括神经肽 Y、P 物质、生长抑素、脑啡肽、组胺、谷氨酸等）。

图 II.35: 胆碱能和肾上腺素能突触
图Ⅱ.36：胆碱能和肾上腺素能递质在运动神经和自主神经的分布

所有交感和副交感神经系统的节前纤维都以乙酰胆碱（ACH）为其神经递质。神经节细胞主要以烟碱（N）受体对节前纤维胆碱释放作迅速反应，而神经节细胞中的毒蕈碱（M）和多巴胺受体则可调节较长时间的兴奋性。交感神经节后纤维主要以去甲肾上腺素（NE）为神经递质，周围靶组织有不同的肾上腺素能α或β受体对NE起反应。交感神经至汗腺的节后纤维则以乙酰胆碱（ACH）为神经递质。副交感神经节后纤维也以ACH为神经递质，其周围靶组织则主要以毒蕈碱（M）受体对ACH起反应。
图 2.37：自主神经在头、颈部分布：内面观

头皮部的自主神经包括交感和副交感两种成分。副交感神经与动眼神经（睫状神经节）、面神经（翼管神经节、下颌下神经节）、舌咽神经（耳神经节）相联系。尽管迷走神经及其相关神经节位于颈背，但它们在头颈部并无效应组织。交感神经大部分与颈上神经节相联系，少部分与颈中神经节相联系。

小脑神经节（面神经）、岩神经节（舌咽神经）和结状神经节（迷走神经）整合味觉信息，它们常常被认为是自主神经系统传入成分，而不是自主神经的传出成分。
图11.38: 自主神经在头、颈部分布：侧面观。

头颈部的副交感神经纤维调节瞳孔收缩以适应视力物（通过动眼神经和睫状神经节至瞳孔括约肌）；还可调节泪液的产生（通过面神经和翼腭神经节至泪腺）和唾液的分泌（通过面神经和下颌下神经节至下颌下腺；通过舌咽神经和耳神经节至腮腺）。分布于头颈部的交感神经主要来自颈上神经节，与瞳孔开大肌、汗腺、血管平滑肌、胸腺有突触联系。
图2.39：自主神经在头、颈部分布示意图

头颈部的自主神经膜交感纤维起自脑干的副交感神经核，包括E-W核（动眼神经）、上泌涎核（面神经）、下泌涎核（舌咽神经）；副交感纤维起自T1-T2脊髓中间外侧柱的神经元。本图描述了相关的神经节和靶器官。
图 II. 40：自主神经在眼的分布

起自 E-W 核的副交感神经节前纤维在睫状神经节换元后支配睫状肌（适应视近物）、瞳孔括约肌（缩瞳）。起自 T1-T2 中间外侧柱的交感神经节前纤维在颈上神经节换元后支配瞳孔开大肌。瞳孔对光反射是一项重要的神经病学检查。当任何一眼感受光刺激时，通过视神经传入，再从顶盖前区至两侧的 E-W 核（通过后连合）；传出通路则通过内脏神经至双侧瞳孔括约肌。
图 2.41：四肢的神经支配

支配四肢的自主神经来自于交感神经系统。起自胸腰脊髓中间外侧柱的交感神经节前纤维至交感干，换元后发出的节后去甲肾上腺素纤维通过灰交通支进入周围神经，随其分布于血管平滑肌（血管运动纤维）、汗腺（腺体运动纤维）和与毛囊相连的竖毛肌（毛囊运动纤维)。
图 2.42：胸交感干和脑神经

交感干是交感神经节的集合，它接受来自胸腰段脊髓节前纤维的传入冲动。这些神经节通过神经干相互联系，位于椎骨侧面，自颈部至尾骨连成一列。起自交感干的节后去甲肾上腺素能纤维分布于外周的效应器。一些节前神经纤维在通过交感干时不形成突触，这些纤维经内脏神经与椎前神经节形成突触，再发出去甲肾上腺素能节后纤维支配内脏效应器。
气管支气管的平滑肌上同时有交感（去甲肾上腺素能）和副交感（胆碱能）神经分布。其交感神经来源于交感干，副交感神经来源于迷走神经器壁内神经节。交感神经兴奋使支气管扩张，副交感神经则使其收缩。此外，神经肽能纤维（某些作为共存的或独立的自主神经纤维，某些作为初级传入纤维）沿上皮和腺泡间分布，它们影响先天性免疫反应和炎症介质的产生。
图2.44：心脏的神经支配

交感去甲肾上腺素能纤维（来自交感干）和副交感胆碱能纤维（来自迷走神经心内神经节）支配心房、心室、窦房结、房室结和束支。交感去甲肾上腺素能纤维也分布于大血管和冠状动脉。交感神经纤维可提高心肌收缩力和心率，增加排血量，扩张冠状动脉。而副交感神经纤维可降低心肌收缩力和心率，减少排血量。
图2. 45：腹腔神经和神经节

腹腔和盆腔内大量的交感神经支配消化系统和泌尿生殖系统及伴行血管、腹膜和肾上腺。腰段交感干的分支和内脏神经椎前节（腹腔神经节、肠系膜上、下神经节、肝神经节、主动脉肾神经节、肾上腺神经节、下腹下丛等）的分支共同支配平滑肌、腺体、淋巴组织和腹腔、盆腔脏器的细胞代谢。多数椎前节（丛）也来自迷走神经及相关神经节的副交感神经纤维成分。
图2.46：胃、十二指肠近端的神经支配

胃和十二指肠近端的交感神经大部分来自于腹腔神经节和肠系膜上神经节，少部分来自胸交感神经节。腹腔神经节的神经节受内脏大、小神经的节前纤维传入。胃和十二指肠近端副交感神经来自迷走神经胸段支。交感神经纤维使胃肠蠕动和分泌活动减少，而副交感神经则增加胃肠蠕动和分泌活动（如胃泌素和HCL）并使相关的括约肌松弛。
图Ⅱ.47：小肠和大肠的神经支配

小肠与大肠的自主神经支配来自于交感神经和副交感神经。交感神经纤维起自 T5-L2 段脊髓中间带外侧柱，并分布到相应的椎前节（肠系膜上、下神经节；腹腔神经节）。副交感神经纤维来自迷走神经和 S2-S4 段脊髓中间灰质。经过迷走神经与盆内脏神经丛分布至肠壁内神经节和神经丛。交感神经通常能减弱肠蠕动与分泌功能（如降低肠液分泌），而副交感神经则加强肠蠕动，使相关括约肌松驰，肠分泌增加。肠的外部和内部神经支配是协调统一的。
图 12.48：肠神经系统：纵向观

小肠和大肠的内部神经分布来自肠神经系统，主要包括肠肌神经丛和黏膜下神经丛。肠肌神经丛主要控制肠动力，而黏膜下神经丛主要控制肠液分泌和吸收。虽然肠神经系统内很多神经元不受自主神经影响，但神经元之间以及与自主神经系统神经元突起之间仍有相互联系。在肠道神经元中已发现 20 多种不同的神经递质（如 ACH、P 物质、5-羟色胺、血管活性肠肽、一氧化氮、生长抑素），其中，ACH 和 P 物质是平滑肌的兴奋因子，而血管活性肠肽与一氧化氮是平滑肌的抑制因子。胃肠道完善的功能需要内分泌、旁分泌以及神经介质之间的相互协调。
图Ⅱ.49：肠神经系统：横切面观

在肠肌神经丛与粘膜下神经丛内，一些神经元既接受来自交感干、椎前节的交感神经纤维支配，也接受来自迷走神经或盆内脏神经的副交感纤维支配；而另一些神经元则不受自主神经调节。自主神经节后纤维和肠神经胶质纤维可分布于巨噬细胞、T淋巴细胞、浆细胞以及其他有神经支配的免疫系统细胞。这就提供了一个有关胃肠道自我防御和肠相关淋巴组织免疫反应的调节网络。
图2.50：肝和胆道的神经支配

肝脏的交感神经纤维起自脊髓 T7-T10 节段，主要随腹腔神经节及其相关的神经丛进行分布；而肝胆的副交感神经则来自下腹腔的迷走神经。节后去甲肾上腺素能交感神经直接终止于肝细胞，可在应激反应时，促使糖原分解、血糖升高并减少糖异生。自主神经有助于调节肝脏的血流、分泌以及吞噬细胞的功能。胆囊特别是囊括括约肌和胆总管括约肌区受自主神经纤维支配。交感神经纤维可促进括约肌收缩和胆囊舒张；而副交感神经纤维则引起括约肌开放和胆囊收缩。
图2.51：肾上腺的神经支配

起自脊髓 T10-L1 中间带外侧柱神经元的交感神经节前纤维经交感干，随内脏神经直接分布于肾上腺髓质的嗜铬细胞，后者的功能同交感干神经节细胞。肾上腺髓质系统可直接把血液从皮质传递至髓质。由下丘脑 - 垂体 - 肾上腺轴产生的高浓度的肾上腺皮质激素作用于嗜铬细胞，诱导了苯乙醇胺氮位甲基移位酶的产生，后者可促进肾上腺素的合成。由肾上腺髓质所产生的儿茶酚胺类激素约 70% - 80% 是肾上腺素，其余的为去甲肾上腺素。肾上腺素和去甲肾上腺素都可以被高亲和力的载体带入至交感神经节后去甲肾上腺素能神经末梢，随后予以释放。
图 II. 52：盆腔的自主神经和神经节

盆腔的交感神经纤维起自交感干神经节和下腹上丛，它们沿内脏神经和血管神经到达结肠、输尿管以及一些大血管（如肠系膜下血管、髂总血管）。盆腔的副交感神经纤维起自脊髓 S2-S4 的中间灰质，经盆内脏神经与下腹下丛的分支一起分布。副交感神经节位于其所分布的器官壁内或壁旁。
肾脏和上部输尿管的交感神经起自脊髓 T10-L1 节段的中间外侧细胞柱，节前神经元，经下腹段和上腹段的内脏神经分布至腹腔神经节或主动脉肾节。节后纤维呈束状，与肾血管的上部输尿管支、背支、盆支、背腰支以及节段支相伴行。其副交感神经通过穿行于其他神经丛的迷走神经和盆内脏神经分布至肾泌尿实验。交感神经纤维可刺激肾素分泌（肾素-醛固酮系统）、降低肾小球滤过率、刺激近端肾小管和集合管对氯化钠的重吸收以及输尿管的收缩；而副交感神经纤维则可引起盆腔、肾盏以及上部输尿管平滑肌的舒张。
图2.54：膀胱和下部输尿管的神经支配

膀胱和下部输尿管的交感神经主要起自脊髓L1-L2节段的节前神经元，经骶内脏神经分布至腹下部。其副交感神经起自骶髓S2-S4节段的中间灰质，经盆内脏神经分布至膀胱壁的壁内神经节。交感神经松弛尿道，收缩膀胱三角及内括约肌；而副交感神经则可收缩逼尿肌，松弛膀胱三角和内括约肌，从而促进膀胱排尿。

138
图2.55：男性生殖器官的神经支配

男性生殖器官的交感神经起自T10-L2节段的中间带外侧柱的神经元，经胸段及腰段内脏神经分布至腹下丛；而其副交感神经起自脊髓S2-S4节段的中间灰质，经盆内脏神经达到下腹下丛。交感神经可促使输精管和前列腺囊的收缩以及膀胱括约肌的收缩，从而防止逆流射精。此外，交感神经还可促进与阴茎勃起有关的阴茎海绵体的血管反射活动。β受体阻滞剂可导致勃起功能障碍。副交感神经能舒张血管，启动并维持阴茎勃起。交感与副交感必须同时作用以完善性功能和生殖功能。
图II.56：女性生殖器官的神经支配

女性生殖器官的自主神经系统起源类似于男性生殖器官。交感神经可刺激子宫收缩，但子宫收缩的程度也受到激素受体反应性和神经递质受体表达的影响。交感神经分布于阴道动脉、前列腺腺和勃起组织；而副交感神经则分布于阴道和尿道的肌肉层与黏膜层，刺激前庭球的尿道勃起组织和阴道海绵体兴奋，还可分布至前列腺腺。
图2.57 骶髓灰质的细胞构筑

脊髓灰质位于脊髓中央，呈蝴蝶形，可分为3个角：（1）后角；感觉功能区；（2）中间带包括外侧带；含有交感（胸髓）和副交感（腹区）节前纤维以及中间神经元；（3）前角：含有下运动神经元以及对其控制的下行纤维和集合反射。在灰质的某些区域的神经元具有同源性，形成一些彼此分离的细胞核团（如Clarke核、胶状质）。Reved板层是20世纪50年代确立的细胞构筑分类法，它将脊髓灰质划分为10个板层。这一方法广泛应用于脊髓后角和中间带灰质（I层至VII层）的划分，该区域与脊髓整合、某些反射以及至小脑的信号处理有关。这些板层在每个脊髓节段具有各自的特征，但也有一些相似性。在颈膨大部和腰骶膨大部脊髓灰质的绝对量比其他节段多，这与该节段对肢体的神经分布有关。
图2.58：脊髓平面：颈、胸、腰、骶

Rexed 栅区结构贯穿整个脊髓。前角和后角在颈膨大和腰骶膨大处更明显。外侧角出现于L1-L2。某些核团（如具有交感节前神经元的中间外侧柱（T1-L2 外侧角）、Clark 核（C8-L2）以及副交感节前神经元（S2-4）只出现在特定的区域。白质从尾部至吻部逐渐增加，后索在T6 以下只有薄束、T6以上出现楔束。脊髓丘脑束/脊髓网状束从尾部至吻部逐渐减少。皮质脊髓束在颈部脊髓节段形成突触后，其数量减少了一半。
图 II.59: 脊髓的下运动神经元调控

下运动神经元位于脊髓颈、胸、腰、骶部的前角，具有从内至外、由背侧至腹侧特定的构筑形式。支配躯干肌的下运动神经元位于内侧和腰侧，支配四肢肌的则位于背侧和外侧。这种结构形式在上运动神经元对下运动神经元的支配过程中尤为明显。支配手及手指精细运动的上运动神经纤维来自皮质脊髓束，止于骨外侧下运动神经元。调节躯干基本张力及姿势的上运动神经纤维来自网状脊髓束和前庭脊髓束，止于前内侧下运动神经元，通过单突触反射（肌肉牵张反射传入）或多突触反射（屈肌或皮肤反射传入）等多种反射通路调节下运动神经元的活动。这些反射活动加强了下行的上运动神经元对下运动神经元的控制与协调。
图 II.60：脊髓的躯体反射通路

在肌肉牵张反射中 la 类传入纤维直接兴奋同侧的下运动神经元，通过 la 抑制性中间神经元抑制拮抗性的下运动神经元。高尔基反射则抑制同侧的去施动下运动神经元，同时兴奋拮抗性的下运动神经元。屈肌反射如兴奋下运动神经元，抑制拮抗性的下运动神经元，这样可以产生对有害刺激的保护性反应。这些反射可以沿着脊髓传导。当下运动神经元产生动作电位时可以兴奋 Renshaw 细胞，而后者又可以抑制下运动神经元，以确保下运动神经元的适度。Renshaw 细胞可以同时接受支配屈肌和伸肌的下运动神经元轴突侧支，产生对支配屈肌的下运动神经元的抑制及支配屈肌的下运动神经元的兴奋，因此 Renshaw 细胞易化屈肌运动和抑制伸肌运动。
图 II.61：肌肉、关节感受器和肌梭

关节分布有众多传入感受器：深神经末梢、高尔基膜末梢，环层小体、Ruffini 末梢以及其他囊状末梢。分布在肌腱上的高尔基膜在拉伸时会刺激肌梭，以此对外运动神经元的去甲乙刺激。深运动神经元可使同侧肌肉收缩。肌肉内的肌梭和其他复杂感受器与梭外肌（骨骼肌）纤维平行排列，这些感受器包括随肌肉牵张而伸长的小梭内肌纤维。来自肌梭的 Ia 传入纤维通过单突触兴奋同侧的下运动神经元，并对梭外肌的长度和收缩速度（与时间相关的长度）起反应。这些肌反射有助于保持肌肉在收缩时的体位平衡以及调节运动时的协调性。
图 2.62：肌肉的牵张反射及通过γ运动神经元的中枢控制

在被动牵张过程中，肌肉的牵张反射兴奋同侧下运动神经元以维持肌肉收缩的稳定。如果肌肉的主动收缩没有γ下运动神经元的参与，则肌梭没有“负荷”，梭内肌纤维紧张性降低，导致la纤维和Ⅱ类纤维传入信号的减少。但是当下运动神经元的兴奋是因为脑干上运动神经元的激活或皮质脊髓束自主的兴奋。α与γ下运动神经元将同时兴奋。α与γ下运动神经元同时兴奋这一过程保证了在梭外肌发生收缩时（α神经纤维支配），可迅速调节肌梭的紧张性（由梭内肌的γ神经纤维支配）。在正常的生理环境中，α与γ下运动神经元是同时活动的，虽然它们分别受不同中枢神经环路的调节。如果γ下运动神经元在病理环境下被异常的激活，将导致肌肉的持续性收缩和痉挛。
平面1：延髓脊髓交接处—锥体交叉

平面2：延髓—脊髓核水平

图II.63：脑干的断面解剖
平面 3：延髓一脑桥水平

平面 4：延髓一下橄榄核水平
平面 5：延髓—迷走神经和前庭核水平

平面 6：延脑脑桥连接处—耳蜗核水平
平面7：脑桥—面神经核水平

平面8：面神经膝水平
平面11：中脑-下丘平面

平面12：中脑-上丘平面
图2.64：脑神经：感觉、运动和自主神经分布

脑神经和视神经均为感觉神经，与端脑和间脑相连。第Ⅲ～Ⅷ对脑神经均与脑干相连，可发出感觉纤维（第Ⅴ、Ⅵ、Ⅷ对脑神经）、躯体运动纤维（第Ⅲ、Ⅵ、Ⅸ、Ⅹ对脑神经）和自主运动纤维（第Ⅲ、Ⅶ、Ⅸ、Ⅹ对脑神经）至头颈部器官。所有与脑干相连的脑神经均分布于同侧的靶器官。其脑神经核（除滑车神经核、动眼神经核以外）也位于脑神经的同侧。虽然副神经的脊髓部起自脊髓前角的运动神经元，但是其可经枕骨大孔上升后加入副神经和迷走神经，因此也被认为是脑神经。
图2.65：脑神经与脑神经核（上页观）

脑干的下运动神经元排列成两个柱：内侧柱（第Ⅲ、Ⅳ、Ⅵ、Ⅶ对脑神经）和外侧柱（第Ⅴ、Ⅶ对脑神经、疑核[第Ⅸ、X对脑神经]、第XI对脑神经）。副交感核包括偏内侧的E-W核（第Ⅲ对脑神经）和迷走神经背柱以及偏外侧的上泌涎核（第Ⅶ对脑神经）和下泌涎核（第Ⅸ对脑神经）。二级感觉核包括三叉神经主核和背束核、前庭神经核和蜗神经核（第Ⅶ对脑神经）以及孤束核（第Ⅸ、X对脑神经）。上丘和外侧膝状体可接受视束的二级感觉纤维投射，而下丘则接受听觉神经核和其他听觉相关核团的传入。位于延髓的薄束核和楔束核接受从后根神经节的传入，可参与精细本体感觉（包括精细触觉、震动觉和关节位置觉）的传导。
图2.66：颈部的神经及睫状神经节：背面观和海绵窦断面

视神经可传递来自同侧视网膜的视觉信息，其中来自颞侧半视网膜的纤维在同侧。而来自鼻侧半视网膜的纤维于视交叉处交叉至对侧，然后所有这些纤维组成视束。动眼神经（来自动眼神经核）、滑车神经和展神经可支配所有的外眼肌。三叉神经中司眼部感觉的部分可传导角膜和眼球的一般感觉，并组成角膜反射的传入部分。而神经中的运动纤维可支配负责闭眼的轮匝肌，并组成了角膜反射的传出部分。由E-W核发出的副交感节前纤维分布至睫状神经节。该节后支配瞳孔括约肌和睫状肌（调节看近物）：由上泌涎核发出的副交感节前纤维分布至翼腭神经节。该节后支配泪腺的分泌。由颈上神经节发出的交感神经节后纤维可支配瞳孔开大肌和上睑提肌（损伤后可出现轻微的睑下垂）。动眼神经、滑车神经、展神经及三叉神经的眼神经和上颌神经均横穿海绵窦，并且在海绵窦炎时易被累及。
图 II.67: 眼外肌的神经支配（Ⅲ、Ⅳ、Ⅵ）和睫状神经节

眼外肌可支配外直肌，损伤后出现同侧眼球向外凝视不能。滑车神经可支配上斜肌，损伤后出现眼球向内下不能（尤其在上、下台阶及立床看书时更为显著）。动眼神经（起自动眼神经核）可支配内直肌、上直肌、下直肌和下斜肌（损伤后出现同侧眼球向内凝视不能），此外，还可支配提上睑肌（损伤后出现严重的睑下垂）。由睫状神经节发出的副交感节后纤维可支配瞳孔括约肌和睫状肌。损伤后可出现瞳孔开大、瞳孔对光反射消失，并在视近物时不能做出相应的调节。
图2.68：三叉神经（V）

三叉神经（第Ⅴ对脑神经）传导来自面部、鼻旁窦、牙和口腔前部的感觉信息。可分为3个分支：（Ⅰ）眼神经——感觉神经；（Ⅱ）上颌神经——感觉神经；（III）下颌神经——含感觉神经纤维和支配咀嚼肌、鼓膜张肌的运动神经纤维。传导精细辨别觉的三叉神经节细胞的感觉纤维终止于三叉神经感觉主核和三叉神经脊束核的吻侧。传导痛觉和温度觉的纤维终止于三叉神经脊束核的尾侧。三叉神经还可传导咀嚼肌和口周围肌的本体感觉。三叉神经中脑核内的这些初级感感觉神经元组成中枢神经系统中唯一的初级感感觉神经核。
面神经（第 VII对脑神经）含有躯体运动、副交感和感觉三种纤维成分。其躯体运动纤维可分布于面部表情肌、头皮和外耳部肌肉、镫骨肌、茎突舌骨肌以及二腹肌后腹，损伤后可导致同侧包括颊区的面部表情麻痹（Bell麻痹）。镫骨肌能够缓冲较大噪音对听小骨的影响，所以面神经的损伤也可导致听觉过敏。由上泌涎核发出的副交感纤维进入翼神经营节和下颌下神经节，换元后分别支配泪腺、下颌下腺和舌下腺。传导舌前2/3（经鼓索）和软腭（经岩大神经）味觉的神经纤维是由膝神经节的轴突组成的，并传至延髓内部的孤束核的吻侧。
前庭蜗神经（Ⅷ）

前庭蜗神经（第Ⅷ脑神经）起于前庭神经节和蜗神经节内的初级感觉神经元。前庭神经节内神经元的周围突分布于能够感受直线变速运动的椭圆囊、球囊以及感受曲线运动的半规管壶腹中的毛细胞。椭圆囊、球囊和半规管可为姿势的调节和平衡以及头颈部的运动提供信息。前庭神经节内神经元的中枢突则终止于延髓、脑桥内的前庭内侧核、前庭外侧核、前庭上核和前庭下核以及小脑。蜗神经节内神经元位于内耳道，其周围突分布于Corti器的毛细胞，中枢突则可将听觉信息传至蜗轴侧核和蜗脊侧核。一侧前庭蜗神经的损伤可导致同侧的耳聋、眩晕和平衡失调。
图2.71：舌咽神经（IX）

舌咽神经（IX）为混合神经，含有躯体运动、副交感和感觉三种纤维成分。其躯体运动纤维来自疑核，可支配茎突咽肌和部分咽部肌肉。下泌涎核发出的节前纤维随舌咽神经至耳神经节，换元后分布于腮腺和一些粘液腺。由下神经节发出的特殊感觉纤维可传导舌后1/3和部分软腭的味觉，终止于孤束核侧端。由下神经节内其他的初级感觉神经元发出的纤维可传导来自舌后1/3、咽、咽峡、扁桃体、鼓室、咽鼓管和乳突小房的一般感觉，其中枢核则止于三叉神经脊束核。咽部的一般感觉纤维参与组成了咽反射的传入部分。另有一些感觉神经元分布于颈动脉小球和颈动脉窦，其中枢核则止于孤束核侧端。上神经节内的初级感觉神经元可分布于耳后的某一区域，并将此区的一般感觉传至三叉神经脊束核。
图2.72 迷走神经（X）

迷走神经（第X对脑神经）为混合神经，含有躯体运动、副交感和感觉三种纤维成分。由疑核发出的躯体运动纤维可支配控制舌和背的软腭部肌肉和咽肌。其损伤后可导致声音嘶哑、吞咽困难和反射性下降。由延髓内的迷走神经背核发出的副交感前根纤维可传至胸腺、腹腔脏器的壁内神经节，从节内发出自主神经分布于心脏、肺以及至降结肠的胃肠道。由下神经节发出的特殊感觉纤维可传导咽后壁（主要见于儿童）的味觉。并通过中枢传至背核，而由下神经节发出的特殊感觉纤维可将喉、咽和胸、腹腔脏器的一般感觉传至背核。
图2.73：副神经（XI）

副神经（第XI对脑神经）为运动神经，由颅部和脊髓部两部分组成。颅部由疑核最尾侧的下运动神经元发出，其纤维可通过一内侧支与迷走神经喉核支和至软腭部的神经一起分布，这部分纤维通常被认为是迷走神经的一部分。脊髓部则由上4～5 颈髓节段外侧部的运动神经元发出，其纤维位于脊髓侧缘，以细根的形式在齿状韧带后方上升，最后融合成一单独的神经。该神经可通过枕骨大孔上升加入迷走神经，随之穿颈静脉孔出颅，支配胸锁乳突肌和斜方肌的上2/3。此部的损伤可导致头部旋转和耸肩无力。
图11.74：舌下神经（XII）

舌下神经（XII）为运动神经。位于延髓尾侧的舌下神经核发出的纤维经延髓腹侧的橄榄前沟（位于延髓锥体和橄榄之间）穿出，支配舌外的舌骨舌肌，茎突舌骨肌、小角舌肌、颏舌肌以及舌内的舌上、下纵肌、舌横肌和舌垂直肌。舌下神经损伤可导致同侧的舌肌萎缩，伸舌时偏向患侧，这是因为有神经支配的对侧的颏舌肌收缩的结果。
图 8-75：口腔和咽的神经分布

三叉神经的上领神经和下頦神经（来自三叉神经节）中的初级感觉纤维可支配口、牙、牙龈、前鼻窝和舌前 2/3 的一般感觉。而舌后 1/3、咽和喉的一般感觉则由舌咽神经（下神经节）发出的初级感觉纤维传导的，另外迷走神经（来自下神经节）也可传导一小部分咽、喉的一般感觉。来自面神经（来自膝神经节）的纤维可传导舌的 2/3 的味觉。而舌后 1/3 的味觉则由舌咽神经（来自下神经节）传导。此外，迷走神经（来自下神经节）还可传导咽喉壁的味觉。
图2.76：网状结构：脑干核团的分布模式

网状结构位于脑干的中央，由许多具有典型的有规则结构的神经元构成。网状结构由脊髓中间区下丘脑一直延伸至隔区。网状结构中的神经元是一些有突触树的大细胞（这些神经元的轴突终末与其胞体和树突相隔很远），而不是中间神经元。在网状结构中的大多数神经核位于以下三个区：即由感觉功能的主要核团位于外侧柱，司运动功能的位于内侧柱，5-羟色胺能神经元则组成中缝核团。这些5-羟色胺能神经元可对其靶点有调节作用。儿茶酚胺能神经元（蓝斑核、被盖部的去甲肾上腺素和肾上腺素能神经细胞群）分布于网状结构区域内，可广泛投射并调节其靶点。中脑的多巴胺能神经元也在其中，但对其是否为网状结构神经元尚有争议。
图 II. 77：网状结构：脑干和间脑的核团

那些已命名的网状结构核团主要位于延髓、脑桥和中脑内。重要的网状结构内侧核群包括延髓巨细胞网状核和脑桥内的脑桥尾侧网状核、脑桥侧网状核等。这些核团可参与脊髓下运动神经元网状股脑调节系统的组成。此外，还包括辨脑桥网状结构和水平（外）凝视中心。外侧网状区及其核团能行使多种感觉功能，网状结构中管理呼吸和心血管的神经元位于延髓，儿茶酚胺能神经元位于脑桥核和被盖核群内。中缝核位于中线和向外延伸的细胞突起中。网状结构的中心从脑干外侧区向斜延续至下丘脑外侧区，并经过下丘脑一直延展到隔核。板内核、中缝核、丘脑网状核群均属于网状结构。
图 II.78：网状结构的主要传入联系

大量来自脊髓躯体感觉区和所有脑干的感觉信息（尤其是痛觉）被传送至网状结构外侧柱。嗅觉的传入可通过嗅束投射至前脑区。边缘系统和下丘脑结构的许多信息传至网状结构，特别是有关内脏和自主调节功能的信息。大脑皮质、苍白球和小脑也将信息传入至调节运动的网状结构内侧柱。

网状结构

图 II.79：网状结构的主要传出联系

网状结构的上行网状激活系统管理意识与觉醒。其通过丘脑非特异性核团投射至皮质，损伤后可导致昏迷。网状结构有大量的纤维投射至脊髓内核感觉、躯体运动和自主运动的区域，这些区域可分别调节痛觉传入、下位运动神经元传出、内脏运动的节前传出。网状结构与脑干内核团（如孤束核）、自主神经调节中枢及核团（调节内脏功能）也有大量的纤维联系。网状结构内投射至下丘脑、隔核、前脑边缘区的传出纤维可参与调节内脏自主运动功能、神经内分泌、情绪反应和行为；而投射至小脑和基底节的传出纤维则参与调节上位运动神经元对下位运动神经元的控制。
睡眠是一个伴有周期性短暂意识丧失的正常生理状态，它很容易被适当的感觉刺激所逆转。睡眠是一个活动进程，它也可被若干内在一些具有化学特异性的神经元联合作用所激发。这些神经元包括脑干内的蓝斑核（去甲肾上腺素能）、延髓和脑干内的中缝核（5-羟色胺能）、延髓内的孤束核、脑干被盖区的胆碱能神经元、网状结节外侧柱（尤其是位于脑干网状结构的外侧柱）、下丘脑的前区、后区、视前区和丘脑网状核。在这些结构中，部分是通过主动抑制网状结构外侧感觉区（维持觉醒和意识状态）的活动起作用的，血液循环中的物质（如白介素1β）可通过作用于脑干、脑干的关键部位来影响睡眠。白介素1β和其他炎症介质可增强慢波睡眠，从而引发异常行为。被下丘脑和其他区域的神经元所激发的慢波睡眠（非快速眼动睡眠）是与睡眠和胆碱能神经元的减弱活动相伴随的。在快波睡眠时，蓝斑中的去甲肾上腺素能神经元和5-羟色胺能的中缝核神经元的活动减弱，这阻止了大脑皮质对外部刺激的接受，做梦可能是由所储存信息刺激大脑皮质所引发的。
解剖学的分区小脑可分为3个主要的叶：前叶、后叶、绒球小结叶，各叶的损伤会出现明显不同的症状。而功能分区则将小脑垂直划分成半球：蚓部、蚓旁部、小脑半球外侧部。每一个功能区都与其深部特异性核团有关（分别为顶核、球状核和枕状核），它们分别调节网状脊髓束和前庭脊髓束（顶核）、红核脊髓束（球状核和枕状核）、皮质脊髓束（齿状核）。在小脑内，至少有三个躯体代表区与大脑皮质相接：小脑皮质有大量整齐的小叶称为叶质。
图2.82：小脑的解剖：小叶

从小脑的10个叶中切面和横切面上均可观察到，至小脑皮质3层结构的传入纤维主要为苔藓纤维；由下橄榄核发出的锥体束纤维可终止于蒲肯野细胞；由蓝斑核发出的弥散广泛的传入纤维可到达小脑皮质的许多区域。与小脑皮质的精细调节所不同的是，小脑核可进行粗调节。小脑皮质的传出纤维通过其抑制性蒲肯野氏纤维（GABA能）投射至相应的小脑核，换元后又投射至上运动神经元。小脑的传入和传出纤维均通过小脑脚，它可以小脑与脑干、间脑联系起来。下表描述了通过小脑三个脚的主要传入和传出纤维。
在脑干解剖学中，小脑的深核和小脑脚

图 11.83：小脑解剖：小脑深核和小脑脚

在经解剖学和面神经核颅侧的脑桥横切面上，可观察到
小脑核位于第四脑室顶。顶核接收桥部的传入信息并投射至
网状核和前庭核，它们是网状脊髓束和前庭脊髓束的起始部，
部分核和换球小结节的浦肯野细胞可直接投射至前庭外侧核
（一些专家称之为第五个小脑核）。球状核和栓状核接收眶部
的传入并投射至中脑（发出中脑脊髓束），齿状核可接收小脑
半球外侧的传入并投射至丘脑腹后核和腹外侧核，换元后再投
射到皮质脊髓束和皮质小脑束的起始细胞。小脑的 3 个脚在图
中也可以观察。
丘脑可以将有关感觉、躯体运动、自主运动的信息从脑干和脊髓传至大脑皮质，其核团又与大脑皮质相关区存在相互联系。丘脑的特异性核团可投射至大脑皮质的特定局部区域。这些核团包括：

1. 感觉投射核（腹前外侧核—躯体感觉，腹后内侧核—头面部感觉，外侧膝状体—视觉，内侧膝状体—听觉）
2. 运动相关核（腹外侧核和腹正中核—小脑，腹前核和腹外侧核—基底节）
3. 自主运动和边缘系统相关核（前核和背外侧核—扣带皮质，背内侧核—额叶、扣带）
4. 联络区相关核团和后外侧核—顶叶皮质

丘脑的非特异性核团（板内核、束旁核，腹前内侧核）可与大脑皮质的大部分区域和其他丘脑核广泛联系，而丘脑网状核则可参与调节丘脑投射核的兴奋性。丘脑损伤可导致严重的疼痛和疼痛，即丘脑综合征。
下丘脑是中枢神经系统中负责神经内分泌和内脏功能调节最重要的结构。其功能具体为：体温调节、食欲调节、口渴和水平衡、生殖和性行为、分娩和哺乳、呼吸和心血管调节、胃肠道调节、压力反应和自我修复。下丘脑可分为吻尾部（视前区、视上区、结节区、乳头区）和内外带（室周带、内侧带、外侧带）。这些区域有部分分散的核团，但更多的则是弥散状的中心，也称为区。下丘脑的神经内分泌部分由以下结构构成：①室旁核的大细胞部分和视上核，可发出纤维直接到达神经垂体；②释放因子和抑制因子神经元，可发出纤维至正中隆起的垂体门脉系统；③结节漏斗系。
下丘脑及其核团与内脏和神经内分泌功能有关。视上核、室旁核的大细胞神经元可分泌催产素和加压素至垂体后叶，从而进入血液循环。室旁核的小细胞神经元内有促肾上腺皮质激素释放激素，可投射至正中隆起的垂体门脉系统，从而促使促肾上腺皮质激素的释放。室旁核的下行纤维投射至脑干，脊髓的末梢神经元以及相关核团，从而调节自主神经系统的传出。下丘脑前区和后区可分别调节交感和副交感的传出；下丘脑背内侧核、腹内侧核和下丘脑外侧区可调节食欲、喝水和生殖行为；下丘脑视前区可调节神经内分泌循环和体温调节；下丘脑交叉上核则可接收视束传导的视觉信息以及调节生物钟。此外，还有一些下丘脑区域可调节睡眠。
图 II.87：前脑的水平切面

在这些切片中，我们将解剖切面、核磁共振扫描图像和 CT 扫描图像进行了对比。这些切片所采用的是水平面面不是以往的 25 度偏角。在所描述的切面中，最重要的解剖关系是：结构均围绕在内囊周围。具体内容如下：在内囊前肢内侧的尾状核头构成了侧脑室前角的外侧端；丘脑位于内囊后肢内侧，而苍白球和壳侧位于楔形内囊的外侧；在内囊后肢中的纤维有下降的皮质脊髓束、皮质轮状束、皮质网状束和上升的躯体感觉纤维和三叉神经系感觉纤维，其最后部分则有投射到皮质的视、听辐射；内囊膝有皮质核束的纤维经过；内囊后肢中有皮质到纹状体和脑桥核（脑桥小脑系）的投射纤维。因为水平切面的核磁共振影像为 T2 加权，信号强度高，所以脑室（脑脊液）在图像中是发亮的。
图 II. 88：前脑的冠状切面

这些平面将解剖冠状切面和核磁共振扫描图像进行了比较，并描述了内囊、基底神经节和丘脑之间的重要关系。图片显示了前脑基本结构（如伏核、无名质和基底神经节）、丘脑核与颞叶的重要结构（杏仁核、海马结构）以及髓质纤维（弓隆、终纹）。冠状切面的核磁共振扫描图像是 T2 加权的，并采用了一种可使脑室呈现黑色的反转技术（FLAIR）。

189
局部神经解剖学

端脑

切面
（经尾状核头/基核）

切面

扣带回

嗅旁皮质

尾状核头

内囊前肢

肝

屏状核

岛叶皮质

外侧裂

颞极

外侧裂

杏仁核

视神经

尾状核头/基核
图 II.89：大脑皮质的分层

大脑皮质各区均有其特定的功能。如躯体感觉皮质、躯体运动皮质，它们的组织学特点可反映其功能的不同。感觉皮质有发达的颗粒细胞层（颗粒皮质），可接受广泛的传入信息；而运动皮质则有不发达的颗粒细胞层和发达的锥体细胞层，可反射广泛的传出信息。特异和非特异的传入纤维可分别终止于大脑皮质中哪些结构特异的区域。单胺类传入纤维比特异传入纤维有着更为弥散的终止区域，这表明它们具有调节和增加其他神经元系统活力的作用。
图2.90：皮质神经细胞的分类

大脑皮质的多种细胞在解剖形态上具有其特征，它们都有各自典型的胞体，树突分支分布和轴突分布。颗粒细胞为局部环路神经元，具有胞体小、短树突和局部分布的特点，主要接受来自丘脑和其他区域的传入，调节其他皮质神经元的兴奋性。锥体细胞具有更多样的胞体形状和大的支状树突，还具有垂直伸入皮质表面并在上层中呈树枝状分支的尖状树突。锥体细胞作为投射神经元（例如皮质脊髓束神经元），其轴突离开皮质后与靶神经元形成突触前可达1米以上。神经元在解剖上的这些特征可以得出这样的结论，即神经元的结构解释了神经元的功能。
图2.91：垂直柱：大脑皮质的功能单位

对大脑皮质感觉区的实验研究为一些理论提供了解剖学和生理学上的依据：来自特定区域或者传递某种特殊功能的信息是在大脑皮质的柱状垂直区整合。该垂直区贯穿新皮质的整个6层结构。这些垂直柱的直径在0.5-1.0mm之间，其直径符合柱内大锥体细胞的水平延伸。丘脑和皮质的传出纤维在垂直柱内成树枝状，与星形（颗粒）细胞和锥状神经元的树突形成突触。垂直柱的信息可以通过皮质-皮质传出纤维到达相连或邻近的柱，也可以通过连合纤维（至对侧皮质）及投射纤维（至皮质下结构）到达较远的结构。本图描述了垂直柱内的细胞结构。
大脑皮质的传出联系

大脑皮质神经元发出的传出纤维可至3个主要区域：短的和长的联络纤维至同侧半球其他皮质区（短的至邻近区，长的至远较区域）；连合纤维通过肼胝体或直接从对侧半球的皮质区；投射纤维至同侧、脑干和脊髓等皮质下结构。这些联系纤维主要的终止部见上图。
图 2.93：大脑皮质传入联系的起始神经元

同侧大脑半球的联络纤维主要起自大脑皮质第 II、III 层中的小锥体细胞和第 VI 层中的梭形细胞；到达同侧大脑半球皮质区的连合纤维主要起自大脑皮质第 III 层中的小锥体细胞和第 VI 层中的梭形细胞；而投射纤维则大多起自大脑皮质第 V 层中的大锥体细胞和第 V 层、第 VI 层中的小锥体细胞和梭形细胞。只有少数起自第 V 层中巨大的 Betz 细胞。
图2.94：皮质的联络通路

大脑皮质神经元与其他皮质下区（投射神经元）、对侧大脑半球（交叉神经元）、同侧大脑半球其他区域（联络纤维）有较为广泛的纤维联系。皮质的联络纤维一方面可将初级感皮质与邻近的联络区（如视皮质、躯体感觉皮质）联系起来，另一方面也可将大脑皮质多个区整合为复杂的联络区（多种感觉整合区）。此外，还可联系参与语言功能、认知功能及情感活动与分析的重要区域。这些通路及相关皮质区的损伤可导致特定的感觉与运动功能障碍、失语（语言障碍）、失认（辨认不能）和失用（运用不能）。
图 II. 95：皮质的主要联络束

联络纤维是指把一侧半球的皮质区与同侧半球的邻近或较远区联系起来的纤维，可分为短联络纤维（弓状纤维）和长联络纤维。在解剖学上，长联络纤维被认为是一些特定的联络束，可有许多纤维进出和穿行。其中，重要的已被命名的束包括钩束、上纵束、上枕额束、下枕额束和扣带。大多数单胺类（多巴胺、去甲肾上腺素、5-羟色胺）投射纤维和部分乙酰胆碱类投射纤维可通过扣带传至其分布广泛的靶点。
脑干内的去甲肾上腺素能神经元可投射至中枢神经系统的广泛区域。这些神经元存在于蓝斑（A6群）、延髓、脑桥网状结构内的几个细胞层（A1、A2、A5、A7群）。由蓝斑发出的投射纤维可分支至大脑皮质、海马、下丘脑、小脑、脑干核团和脊髓。蓝斑一方面可作为其他投射系统的兴奋性调整器（如谷氨酸系统），另一方面也可参与调节注意力、警觉性和睡眠-觉醒周期。网状结构可与脊髓、脑干、下丘脑和边缘系统相联系，参与神经内分泌控制、内脏功能（体温调节、摄食、摄水行为、生殖、自主神经调节）和情绪的调节。延髓网状结构中散在分布的一些肾上腺素能神经元也可相互联系，网状结构与蓝斑在应激反应中共同发挥作用，从而调整警觉性、神经内分泌活动和自主神经反应。中枢神经系统内的去甲肾上腺素和肾上腺素能神经元及其受体是许多用于治疗抑郁、疼痛、高血压药物的作用靶点。
图2.97 5-羟色胺能通路

5-羟色胺能神经元存在于脑干中缝核及其临近的细胞群，可广泛投射至中枢神经系统的每个主要区域。中缝核与中央上核的神经元可向其他投射至大脑皮质、部分边缘结构（海马、杏仁）、基底节、部分下丘脑核和丘脑区等。中缝大核、脑桥、苍白核、隐核等结构内的神经元则更多地向尾侧投射至脑干、小脑和脊髓。从中缝大核至脊髓后角的投射可影响内侧痛觉传导过程。上行的5-羟色胺系统可参与情感和大部分下丘脑功能（如神经内分泌、内脏运动）的调节。5-羟色胺能神经元可影响睡眠-觉醒周期和快速睡眠时相中电活动的终止。至大脑皮质的5-羟色胺能投射纤维可调整传入的信息（如：来自视皮质的信息）。而下行的5-羟色胺能神经元则可增强镇痛剂的作用。而且在阿片镇痛剂的作用过程中也是必要的。另外，这些纤维也可调节自主神经节前神经元的兴奋性和运动神经元的兴奋性，许多药物（包括抗抑郁剂和其他治疗认知情感行为、头疼、疼痛的药物）的靶点就在5-羟色胺神经元及其受体上。
图 II.98：多巴胺能通路

多巴胺能神经元主要存在于中脑和下丘脑。在中脑黑质腹侧致密部的神经元主要投影到底状体（尾状核、壳），也有一些部分投射至苍白球和下丘脑。黑质纹状体投射纤维参与组成基底节环路，可辅助皮质控制活动的计划和执行，特别是在运动系统中。黑质纹状体损伤可导致帕金森氏病，所以抗帕金森氏病药物（如左旋多巴）作用部位就位于黑质纹状体及其受体。位于腹侧被盖区和中脑网状结构的多巴胺神经元发出的中脑边缘投射纤维可至腹隔核、杏仁核和海马，发出的中脑皮质投射纤维则至额叶皮质和一些皮质联络区。至杏仁核的中脑边缘通路参与动机形成、奖赏、生物攻击和成瘾（特别是药物滥用）；而至边缘结构的投射则可引起刻板的、重复的行为与活动。中脑皮质投射纤维可影响前额皮质在计划、执行和注意机制方面的认知功能。中脑边缘系统和中脑-皮质系统是各种精神药物作用的靶点，在精神分裂症、妄想症、注意力分散等多动症和其他行为障碍的治疗中发挥着重要的作用。下丘脑的多巴胺神经元参与组成结节漏斗多巴胺通路，此通路可从弓状核投射至正中隆起的接触区，而在此接触区中，多巴胺可作为催乳素抑制因子。下丘脑内的多巴胺神经元也可影响其他神经内分泌功能以及下丘脑控制的内脏自主神经功能。
中枢胆碱能神经元主要位于 Meynert 基底核和隔核，基底核神经元发出的胆碱能纤维投射到大脑皮质，隔核胆碱能神经元发出的胆碱能纤维投射到海马结构。这些胆碱能纤维的投射参与大脑皮质的活动和记忆功能，尤其在巩固短期记忆中发挥重要作用。在早老性痴呆（Alzheimer’s）疾病中，胆碱能投射纤维常被破坏，提高胆碱能神经元功能的药物被用来增强记忆。位于脑干被盖的其他胆碱能神经元投射到丘脑、脑干和小脑。至丘脑的投射具有调节唤醒和睡眠觉醒周期，并在眼动周期（REM）睡眠的启动中起重要作用。分布在纹状体内的胆碱能中间神经元，可能参与基底神经节对肌张力、姿势、运动发起或运动方式选择的调控。乙酰胆碱是所有自主神经节前神经元及脊髓和脑干中下运动神经元的主要神经递质。
图2.100：嗅神经和鼻的神经

嗅神经及其向中枢神经系统的投射是前脑功能的重要组成部分。嗅上皮内的双极细胞为初级感觉神经元，其周围突是一个化学感受转换器，能对进入鼻腔的空气所散发的独特化学分子刺激产生反应。双极神经元的中枢突集合成大约20条嗅神经，穿过筛板进入同侧的嗅球小球，嗅神经极易受到撕裂伤，导致嗅觉缺失。与其他感觉系统的神经元不同，嗅神经双极神经元能分裂增殖和再生。嗅觉刺激在嗅球经过加工处理，经幔状和前额神经元的轴突由嗅束直接或间接地投射至包括隔核和杏仁核在内的前脑边缘结构，进而影响下丘脑，并对神经内分泌和内脏/自主功能进行调节。嗅觉系统参与区域的识别和防御、食物和水的摄取、社会行为、生殖行为以及危险信号的识别。
第三章 系统神经解剖学

第一节 感觉系统

躯体感觉系统
图Ⅲ.1：脊髓的躯体感觉传入
图Ⅲ.2：躯体感觉系统：脊髓小脑通路
图Ⅲ.3：躯体感觉系统：背侧柱系统以及皮肤精细觉的传导
图Ⅲ.4：躯体感觉系统：脊髓丘脑系统、脊髓网状系统以及皮肤粗略觉的传导
图Ⅲ.5：脊髓内的脊髓丘脑束和脊髓网状束的痛觉调节
图Ⅲ.6：神经性疼痛和持续性交感神经疼痛的机制
图Ⅲ.7：上行躯体感觉系统的下行控制

三叉神经感觉系统
图Ⅲ.8：三叉神经感觉及其相关感觉系统

味觉系统
图Ⅲ.9：味蕾及其感受器
图Ⅲ.10：味觉通路

听觉系统
图Ⅲ.11：声波的外周通路
图Ⅲ.12：骨迷路和膜迷路
图Ⅲ.13：前庭蜗神经（Ⅷ）在Corti器感毛细胞的分布
图Ⅲ.14：耳蜗感受器
图Ⅲ.15：听觉传入通路
图Ⅲ.16：听觉传出通路

前庭系统
图Ⅲ.17：前庭感受器
图Ⅲ.18：前庭通路
图Ⅲ.19：眼球震颤

视觉系统
图Ⅲ.20：眼球的解剖
图Ⅲ.21：眼的前房和后房
图Ⅲ.22：视网膜和光感受器
图Ⅲ.23：眼的动脉和静脉
图Ⅲ.24：视觉通路：视网膜向丘脑和脑干的投射
图Ⅲ.25：视觉通路：视网膜—视束—距状沟通路
图Ⅲ.26：顶叶和颞叶的视觉通路
第二节 运动系统

下运动神经元

图Ⅲ.27：下运动神经元在脊髓和脑干的分布
图Ⅲ.28：α和γ下运动神经元

上运动神经元

图Ⅲ.29：皮质传出通路
图Ⅲ.30：皮质延髓束
图Ⅲ.31：皮质脊髓束
图Ⅲ.32：皮质脊髓束在脊髓的终末
图Ⅲ.33：红核脊髓束
图Ⅲ.34：前庭脊髓束
图Ⅲ.35：网状脊髓和皮质网状通路
图Ⅲ.36：顶盖脊髓束和中介脊髓束
图Ⅲ.37：主要上运动神经元的下行纤维束在脊髓的终末
图Ⅲ.38：眼运动的中枢调控
图Ⅲ.39：呼吸的中枢调控

小脑

图Ⅲ.40：小脑的功能分区
图Ⅲ.41：小脑神经元环路
图Ⅲ.42：小脑传入纤维联系环路示意图
图Ⅲ.43：小脑的传入通路
图Ⅲ.44：小脑的传出通路
图Ⅲ.45：前庭小脑和小脑前庭通路
图Ⅲ.46：小脑至下运动神经元系统的传出通路示意图

基底神经节

图Ⅲ.47：基底神经节的纤维联系
图Ⅲ.48：基底神经节环路及其神经递质
图Ⅲ.49：通过基底神经节的纤维环路
图Ⅲ.50：伏隔核的纤维联系

第三节 自主神经、下丘脑和边缘系统

自主神经系统

图Ⅲ.51：自主神经系统概况

下丘脑和垂体

图Ⅲ.52：下丘脑的大体解剖
图Ⅲ.53：下丘脑的切面：视交叉前区和视上区
图Ⅲ.54：下丘脑的切面：结节区
图Ⅲ.55：下丘脑的切面：乳头区
图Ⅲ.56：下丘脑重建示意图
图Ⅲ.57：与下丘脑联系的前脑区
图Ⅲ.58：下丘脑的传入和传出通路
图Ⅲ.59：下丘脑主要的传入通路示意图
图Ⅲ.60：下丘脑主要的传出通路示意图
图Ⅲ.61：下丘脑联系示意图
图Ⅲ.62：下丘脑的室旁核：对垂体神经内分泌的作用，自主神经节前传出以及边缘系活动的调节
图Ⅲ.63：细胞因子对下丘脑、其他脑区及行为的影响机制
图 III. 64：室周器官
图 III. 65：垂体门脉系统
图 III. 66：腺垂体激素的分泌调节
图 III. 67：垂体后叶（神经垂体）分泌的激素：催产素和抗利尿激素
图 III. 68：抗利尿激素对水平衡和液体渗透压的调节
图 III. 69：下丘脑与体温调节
图 III. 70：血压的短期调节
图 III. 71：血压的长期调节
图 III. 72：食欲和饥饿的神经调节
图 III. 73：应激反应中神经和神经内分泌的作用
图 III. 74：神经免疫调节

边缘系统
图 III. 75：前脑边缘的解剖
图 III. 76：海马的大体解剖
图 III. 77：海马的神经联系
图 III. 78：海马的主要传入和传出联系
图 III. 79：杏仁体的主要传入联系
图 III. 80：杏仁体的主要传出联系
图 III. 81：杏仁体主要传入、传出及中间联系示意图
图 III. 82：隔核的主要传入、传出联系
图 III. 83：扣带皮质的主要联系

嗅觉系统
图 III. 84：嗅觉感受器
图 III. 85：嗅觉通路
图3.1：脊髓的躯体感觉传入

传导痛、温觉的无髓鞘（UNM）和小髓鞘纤维终止于脊髓的板层I和V（脊髓丘脑束的起始处）。另外一些无髓鞘纤维终止于后角中可以进行多突触反射的神经元及脊髓网状系统的起始神经元。触压觉的有髓纤维终止于脊髓后角，由此后根形成相关的反射联系和脊髓丘脑投射。触压觉的有髓纤维也投射至束和楔束，参与组成传导意识性感觉的丘系传导路。这些触压觉的有髓纤维可直接终止于下运动神经元（LMNs）（通过Ia类纤维传入）和Ia类中间神经元，也终止于脊髓形成脊髓小脑束的神经元。
图3.2: 躯体感觉系统: 脊髓小脑通路

来源于躯体上部和下部（以T6分界），起自关节、肌腱和韧带（以起于高尔基器窄的Ib类传入纤维为代表）的躯体初级本体感觉神经纤维，分别终止于脊髓小脑前束和脊髓小脑后束的起始神经元（边缘细胞、后角神经元）。来自于躯体上部和下部（以T6分界），起自肌梭的躯体初级本体感觉神经纤维（Ia类传入纤维）分别终止于脊髓小脑后束和楔小脑束的起始神经元（Clarke核[外囊核]、延髓的楔核外侧)。脊髓小脑后束、脊髓小脑前束和楔小脑束在同侧上升。脊髓小脑前束左右交叉两次，一次在白质前连合，一次在小脑。
图3.3：躯体感觉系统：背侧柱系统以及皮肤精细觉的传导

传导精细辨别触觉、压觉、振动觉和意识性关节位置觉的脊髓后初级躯体感觉纤维，直接投射至背侧柱系统，并呈躯体局部定位性有序排列（薄束来自于T6以下，楔束来自于T6以上）。这些纤维分别终止于薄束核和楔束核，并由此发出纤维形成内侧丘系。薄束核和楔束核发出的纤维在延髓交叉，并投射至丘脑腹后外侧核（VPL）。丘脑腹后外侧核发出的纤维终止于第一躯体感觉皮质，也呈躯体局部定位性有序排列。脊颈系统将多突触机械感受信息传递给背侧柱系统。
传导疼痛觉（快速局部性疼痛）、温度觉、光和触觉的纤维（C纤维）和小纤维（Aδ纤维）的初级躯体感觉纤维，终止于后角I和V的神经元。这些神经元发出的纤维交叉到对侧形成脊髓丘脑束，并投射至丘脑腹后外侧核（VPL）。丘脑腹后外侧核的神经元发出的纤维进一步投射至第一躯体感觉皮质和第二躯体感觉皮质（SII）。初级感觉的C纤维参与后角内广泛串联网络的形成，并向双侧投射形成脊髓网状束，此系统主要终止于网状结构（RF），并经多突触投射至丘脑的非特异性核团、内侧核和前核。有些脊髓网状纤维终止于上丘深层（脊髓丘脑通路）和中脑水管周灰质，对慢性剧烈疼痛信息的处理与整合区则位于扣带回、岛回和前额叶皮质。
图 III. 5：脊髓内的脊髓丘脑束和脊髓网状束的痛觉调节

传导“快速局限性疼痛”和温度觉的无髓鞘初级感觉传入纤维（C 和 Aδ 纤维），终止于板层 I 和 V。其发出的纤维交叉到对侧，形成脊髓丘脑束。无髓鞘初级感觉传入纤维（C 纤维）也终止于后角中间连接性神经元，这些神经元通过串联集中、会聚和多突触进行联系，进而形成脊髓网状束（大部分交叉），投射至网状结构（RF），再经过突触投射至丘脑的非特异性核团、背内侧核和前核。通过这种会聚作用与联系，扣带回、岛回和前额叶的皮质区域便可感知剧烈疼痛和情感内感。

门控机制（左图所示）是通过初级脊髓柱的侧突在后角抑制痛觉的加工整合。
神经性疼痛的机制
1. 分布于Ⅹ感觉传入未梢和Ⅰ感觉细胞体上的交感神经节后纤维芽突
2. C纤维（感觉过敏）和Aδ纤维（异常疼痛）的兴奋阈值降低
3. Ⅰ感觉传入未梢和Ⅰ感觉细胞体上的α肾上腺素能受体扩增
4. 突触传入被激活
5. 神经元功能持续性兴奋
6. 谷氨酸抑制性神经元死亡（谷氨酸爆发）
7. 控制痛觉的中枢5羟色胺能、去甲肾上腺素能和阿片肽能下行通路功能降低
8. 痛觉传入阈值降低致使机体制动，从而制约物理治疗
9. 脊髓内C纤维芽突
10. 中间神经元间夹伸入至邻近的脊髓板层

图3.6：神经性疼痛和持续性交感神经疼痛的机制

相互串联的后角系统接受感受痛觉的初级C纤维传入，投射至脊髓网状系统，产生剧烈的意识性疼痛感觉和神经性疼痛，如图所示。除了分泌去甲肾上腺素进入血液而引起肾上腺素的分泌外，交感神经还与在神经性疼痛综合征中发挥作用的初级痛觉神经元末梢和胞体形成突触联系。图示中描述了中枢性去甲肾上腺素能和5羟色胺能的下行纤维投射。有关神经性疼痛的特殊机制，特别是复杂的局部疼痛综合征（交感神经营养不良反应），都在号角标注处作了描述。
图Ⅲ.7：上行躯体感觉系统的下行控制

大脑皮质、前脑边缘结构、下丘脑（室旁核、弓状核）、脑干、三叉神经节、三叉神经脊束核和三叉神经脊束核的神经元通过三叉神经痛觉传入纤维和丘脑感觉传入纤维将感觉信息传入脑干。脑干的传入纤维与脑干网状结构、脊髓网状结构及脊髓背根神经节的传入纤维互相联系，调节痛觉信息在脊髓后角的处理过程。中枢性下行的去甲肾上腺素能和5-羟色胺能通路，受脑干网状结构和丘脑内侧核群（PAG）及其他高级中枢的影响，对内源性（和外源性）疼痛的调节具有重要作用。
图III.8：三叉神经感觉及其相关感觉系统

三叉神经感觉功能的神经元的轴突进入脑干，形成下行的三叉神经脊束并终止于三叉神经脊束核。三叉神经节的周边部分位于面部皮肤、口腔前部黏膜、牙和牙龈；膝神经节（Ⅱ）和迷走神经节（上神经节，X）的周边部分位于外耳的一小部分区域；颞骨管神经节（下神经节，Ⅲ）的周围部分位于口腔的后部和咽的一般感觉。三叉神经脊束核发出的轴突终末投射至对侧形成三叉丘系（腹侧三叉丘脑束 [VTT，]），进而终止于丘脑腹后内侧核（VPM）。丘脑腹后内侧核的轴突投射至第一躯体感觉皮质（SI）的外侧份和丘脑板内核，丘脑板内核与痛觉的加工处理有关。三叉神经脊束核的尾侧还有双侧发出纤维投射至网状结构（RF），对抗痛觉感觉进行处理（类似脊髓网状结构系统）。三叉神经精细辨别觉的初级感觉轴突（类似脊髓柱）终止于三叉神经脊束核的头侧和三叉神经感觉主核（三叉神经脑桥核），换元后的纤维参与形成腹侧三叉丘脑束。部分感觉主核（脑桥核）尚投射至身体同侧的丘脑腹后内侧核。三叉神经中脑核是中枢神经系统（CNS）的一级基本神经核，调节咀嚼肌和眼球外肌的肌梭反射。
图3.9 味蕾及其感受器

味蕾是位于上皮内成束的柱状细胞组成的化学感觉转换器。它能将各种不同分子结构如咸、甜、酸、苦分子的感觉在大小不一的初级感觉神经元轴突处转换成动作电位。味蕾分布于舌的前部和后部区域，而在前和会厌处则较少见。对味觉而言，神经纤维具有复杂的电活动反应，这些电活动经许多神经纤维进行传递。味觉是在中枢神经系统内（CNS）综合形成的。
图3.10：味觉通路

舌神经节（第Ⅸ脑神经）的初级感觉纤维、岩神经节（第Ⅸ脑神经）和核状神经节又称下神经节（第Ⅹ脑神经）的初级感觉纤维分别分布于舌前2/3、舌后1/3、会厌和腭的味蕾。这些神经节的中枢突终止于孤束核的头侧，后者发出纤维主要投射至同侧脑桥的臂旁核，臂旁核再发出纤维投射至丘脑腹后内侧核（VPM）、下丘脑（下丘脑外侧区、室旁核）和杏仁核群。非丘脑投射与情绪、动机、味觉和摄食行为相关。
图3. 11：声波的外周通路

声波通过外耳和外耳道至鼓膜，经过中耳至小骨的机械杠杆作用，经卵圆窗引起镫骨内液体的振动。液体的振动引起基底膜的不同运动，并刺激毛细胞发生纤毛释放神经递质，进而刺激螺旋神经节（螺旋神经节）的初级感觉纤维。镫骨基底膜的不同部位感受不同的音调频率，低频率刺激镫骨顶部（蜗孔），高频率刺激镫骨底部。听觉管保证中耳与外界的压力平衡。
图3.12：骨迷路和膜迷路

耳蜗、前庭各结构（椭圆囊、球囊、骨半规管和膜半规管）和膜迷路及其周围结构的相互关系如上图所示。鼓膜的运动通过听小骨（锤骨、砧骨、镫骨）的杠杆作用，引起椭圆窗的振动。椭圆窗的振动引起耳蜗前庭阶内液体的流动，并通过前庭至圆窗，引起第二鼓膜的振动。三个骨半规管分别位于X轴、Y轴和Z轴，相互间呈90°。
图13：前庭蜗神经（Ⅷ）在Corti器毛细胞的分布

螺旋（蜗）神经节的初级感觉纤维分布于基底膜螺旋器（Corti器）上的内毛细胞和外毛细胞。与坚硬筒膜相关的基底膜运动所产生的切力，引起螺旋器顶部表面的毛细胞产生运动并释放神经递质，从而使初级感觉轴突兴奋。这表明外源的声波转化为螺旋神经节轴突的动作电位是一个复杂的转换过程。
图3.14：耳蜗感受器

液体的振动经前庭阶，绕过蜗孔，然后返回鼓阶，同时引起基底膜的运动，基底膜上有Corti器和不同部位的毛细胞。毛细胞顶部盖膜运动所产生的切力，引起毛细胞的运动，毛细胞去极化并释放神经递质。这些递质刺激螺旋神经节细胞的初级传入轴突产生动作电位。橄榄耳蜗束的传出纤维能够调节听觉的转换过程，听觉的中枢性下行通路控制毛细胞的兴奋性。
图3.15：听觉传入通路

蜗状神经节的中枢突投射至蜗背侧核和蜗腹侧核的不同音调区（以不同的颜色在耳蜗示意图中表示）。蜗神经核经听纹投射至（对侧）外侧丘系，但部分纤维在同侧投射，外侧丘系终止于下丘核。在下丘核后发出的纤维经下丘臂投射至丘脑的内侧膝状体，后者将音波振动投射至Heschl 横回（颞横回）的听觉皮质。脑干内的听觉相关核团（确定声音空间位置的上橄榄核、斜方体核 [未显示] 和外侧丘系核）发出交叉和不交叉的纤维经外侧丘系投射。由于声音是双侧传导，单侧的外侧丘系、听蒙丘脑（内侧膝状体）、听辐射或听觉皮质的损伤会引起听力减弱；以及对同时发生的声音刺激，出现对侧听觉忽略。
图Ⅲ.16：听觉传入通路

听觉的下行传导通路分别经听觉皮质、丘脑的内侧膝状体、下丘和睥干听觉脑干至传导路的尾侧结构，最后止于脑神经核和上橄榄核。传出纤维的联系可以对传入的听觉信息进行下行控制。起于上橄榄核的橄榄耳蜗束又返回投射至Golgi器的毛细胞，调节毛细胞和初级感觉纤维之间的转换过程。三级神经运动核和面神经核分别发出的下运动神经元轴突至鼓膜张肌和镫骨肌，具有减弱听小骨对持续性高声的反射作用。
图3.17：前庭感受器

前庭感受器包括位于椭圆囊斑（感受线性加速或重力）和球囊斑（感受低频率振动）的毛细胞以及位于相互垂直的膜半规管（感受头部的角度加速或运动）内壶腹嵴的毛细胞。壶腹嵴和囊斑的丛毛被覆胶质状，后者受重力（椭圆囊）；或通过膜半规管内液体流动的影响（头部运动时）；作用于毛细胞顶部的碳酸钙结晶（耳石）而引起丛毛的运动。丛毛的动纤毛弯曲使毛细胞去极化，引起神经递质释放，刺激前庭（Scarpa’s）神经节初级传入产生动作电位。同时中枢神经系统的传入神经纤维调节上述转换过程。
图3.18：前庭通路

前庭神经节的初级传入纤维终止于上、下、内侧和外侧面神经节，也直接终止于小脑（深部核团和皮质）。前庭脊髓内侧束起于前庭内侧核，下行至脊髓的前运动神经元，协调头部和颈部的运动。前庭脊髓外侧束起于前庭外侧核，下行至各脊髓段的下运动神经元，兴奋伸肌运动。多个前庭神经核纤维投射至小脑，调节和协调维持肌张力和机体姿势（图3.45所示）。该肌肉活动，也为内侧纵束投射至运动眼外肌的下运动神经元，协调眼球、头和颈的运动。部分前庭神经核的上行轴突可以到达丘脑（丘脑侧核和后核附近），进而投射至中央后回的外侧区（2区、运动感知和空间方位）、岛叶和颞顶叶的皮质。
图Ⅲ.19：眼球震颤

眼球震颤是眼球的前后交替运动，它需要中枢协调支配眼外肌的下运动神经元和眼球运动。眼球运动的震颤是眼球跟踪机制的视觉活动。视觉联合皮质经过上丘投射至支配眼外肌运动的下运动神经元，使得眼球返回向前的位置。前庭性眼球震颤的路径包括经内侧纵束至支配眼外肌运动的下运动神经元的前庭反射，随着头部的转动，前庭眼球震颤的慢相（偏移）诱发眼球运动。这是由于半规管感受器、前庭神经核或前庭小脑损伤所引起的对称性人所导致的。快相（扫视运动）诱发眼球返回向前的位置。
图320: 眼球的解剖

眼球主要有3层结构组成。外膜为一层纤维膜，由保护性的角膜（透明的）和巩膜（不透明的）组成。中膜是一层血管膜（葡萄膜），由脉络膜、睫状体和虹膜组成。透明的双凸面的晶状体被晶状体囊所包裹，睫状体的睫状突发出的小带纤维悬吊于晶状体囊。内膜位于眼球壁的内层，由神经视网膜，无色素上皮的睫状体部和虹膜后膜的色素上皮组成。视网膜含有光感受器，能将光能转化成神经活性。房水是从虹膜的血管分泌的液体，由眼后房经瞳孔进入眼前房，在此被吸收进入小梁网，经虹膜角膜角进入Schlemm管（巩膜静脉窦）。当房水回流受阻时，就会出现青光眼。玻璃体液填充于眼球的内部。
图3.21：眼的前房和后房

睫状体肌和瞳孔括约肌受睫状神经节（节前神经节位于 Edinger-Westphal 核，轴突走行于动眼神经内）的副交感神经和交感神经节后纤维的支配。睫状肌收缩，小带纤维松弛，使晶状体变凸，调节近距离的物体。在瞳孔对光反射中，光照射眼睛，光信号经视神经（CN II）（传入路）进人中枢神经系统，并终于顶盖前区。顶盖前区神经元向双侧投射（轴突交叉通过后连合）至 Edinger-Westphal 核（动眼神经副核）。这些核团发出的纤维经动眼神经投射至睫状神经节，引起双侧直接（同侧）或间接（对侧）的瞳孔缩小。瞳孔开大肌受来自于上颈节（节前神经节位于 T1 和 T2）的交感神经双侧节后纤维的支配。
图3.22：视网膜和光感受器

视网膜是含有光感受器的薄膜组织，是中枢神经系统的一部分，被覆一层血管膜，直至视神经。光感受器的外节（视杆和视锥细胞）被色素上皮所包绕，防止反射光线对视网膜外层的刺激。视杆和视锥细胞与双极细胞有突触联系，双极细胞与节细胞（相当于第二级感觉神经元）有突触联系。水平细胞和无长突细胞提供视网膜水平方向的细胞间联系。在黄斑（直径3mm）中央凹（直径0.4mm）的视锥会聚中心点，由感受色觉（光适应）的视锥细胞组成，其轴突会聚程度较低，投射至节细胞。视网膜外周的光感受器主要是由感受弱光（暗适应）的视杆细胞组成，其轴突会聚程度较高，也投射至节细胞。视杆细胞的光转换包括将11-顺视黄醛（来源于视紫红质）转换成11-反视黄醛，引起Ca^{2+}内流去极化，Na^+通透性降低。
图3.23：眼的动脉和静脉

视网膜中央动脉及其分支为视网膜提供血液供应。这个动
脉系统来自于眼动脉（颈内动脉的第1个分支），是局部缺血
或栓塞（短暂的局部缺血发作）的好发部位，如果出现缺血现
象，预示着严重血管疾病的存在。中层血管膜的血供来源于睫
状体动脉，并分支为视网膜供养。如果视网膜剥离，供应视网
膜的血管就会破裂。血管在视神经盘（神经盘）处进入视网
膜。视神经盘位于眼球几何中点的鼻侧稍下方。黄斑位于眼球
几何中点的颞侧稍下方。
图III. 24：视觉通路：视网膜向丘脑和脑干的投射

视网膜投射视神经的视交叉、视束终止于几个区域。外侧膝状体传递有意识的视觉传入信息。视觉的第二条通路是上丘经丘脑至视束联合皮质区，上丘提供视觉刺激的定位信息。上丘同时提供对侧下行的纤维联系（丘脑脑回束）至颈下运动神经元，起着对头和颈部的运动传递视觉反射的作用。

丘脑前区调节瞳孔对光反射。下丘脑的视觉交叉上核整合光通量，调节生理节奏和昼夜循环。视束下部核可能参与调节脑干的视觉脑干反应，可能与T1、T2（调节颈上神经节）内的交感神经节前神经元有联系。
图3.25：视觉通路：视网膜-膝状体-距状沟通路

视觉通路传递对外界精细分析的意识性视觉信息。这条通路由多个结构组成，最后至枕叶的距状皮质。视网膜鼻侧半的节细胞轴突越视交叉中线，而颞侧半的节细胞轴突保留在同侧不交叉。这样，每侧视束都传递对侧视野的信息，损伤可产生对侧视野视力消失。视束终止于外侧膝状体或外侧膝状核，外侧膝状体由6层结构组成。视辐射投射至距状（纹区）皮质（17区）。部分视辐射呈杆状（Meyer杆）通过颞叶，肿瘤或肿块可使其损伤，引起对侧上象限视力消失（象限缺失）。来自于左右侧视网膜的纤维首先在17区的第一皮质产生双侧会聚。
图3.26：顶叶和颞叶的视觉通路

第一视皮质（V1，17区）的神经元发出轴突至联合视皮质（V2和V3，18和19区）。V2和V3也接受来自于上丘的丘脑内侧的传人纤维。V1、V2、V3的纤维投射至颞中区和V4区。颞中区神经元具有方向选择和运动反应的作用，并且进一步投射至顶叶，对空间视觉信息进行处理。顶叶神经元对视野内物体的运动和两个物体之间的位置关系进行分析。V4区神经元参与形状与颜色的识别，其纤维投射至颞叶，颞叶的神经元参与对物体的高级识别，包括面貌、生物体以及物体的类别和方位。
图3.27 下运动神经元在脊髓和脑干的分布

下运动神经元（LMNs）位于所有脊髓平面的前角以及延髓、脑桥、中脑内的运动性脑神经核内。下运动神经元发出轴突经脊髓前角至前根，然后进入脊神经，或从脑干进入脑神经。下运动神经元轴突以神经肌肉接头的方式终止于骨骼肌纤维。
图3.28：α和γ下运动神经元

除面神经核外，其他所有下运动神经元都包含α下运动神经元（α-LMNs）和γ下运动神经元（γ-LMNs）。α下运动神经元支配骨骼肌纤维（梭外肌纤维），γ下运动神经元支配肌梭内的可收缩成分（梭内肌纤维）。面神经支配面部表情肌，表情肌无肌梭，不受γ下运动神经元支配。α下运动神经元调节骨骼肌收缩而产生运动。γ下运动神经元调节肌梭的敏感性，从而使得Iα和II类传入纤维调节α下运动神经元的兴奋性。
运动皮质区（4区）、补充运动区和运动前皮质区（6区）神经元发出纤维至基底神经节（尾状核和壳核）、丘脑（腹内侧核和外侧核）、红核、脑桥核，双侧的运动性脑神经核和大部分对侧脊髓前角。这些纤维形成皮质脊髓束、皮质延髓束、皮质纹状体投射、皮质桥脑投射、皮质丘脑投射以及至脑干上运动神经元（UMNs）（网状结构、红核、上丘）的皮质联系。感觉皮质（3区、1区、2区）区神经元发出的纤维主要至次级感觉神经核，以调节内侧丘系来的意识性感觉投射。额眼区（8区）的神经元投射至上丘，参与水平及垂直凝视运动和（Gual）间核，以调节眼球运动及相关联的头部活动。其他感觉皮质区发出轴突投射至丘脑和脑干结构，以调节内侧丘系传入的感觉信息。
皮质延髓束（CBT）主要起源于第一躯体运动皮质的外侧部（4区），皮质延髓束纤维穿过后内囊进入同侧的大脑脚、脑桥基底部和延髓的锥体。此纤维分布于除部分面神经核外的双侧的运动性脑神经核，面神经核下半只接受对侧的纤维投射，支配下部的表情肌。皮质延髓束（CBT）到舌下神经核的投射主要是对侧的，到副神经核的投射主要是同侧的。Bell'麻痹（面神经麻痹）是同侧整个面部的瘫痪，与此不同，皮质延髓束（CBT）损伤主要引起对侧下面部随意运动的局部瘫痪（中枢性面瘫）。
图31：皮质脊髓束

皮质脊髓束（CST）的运动部分主要起源于第一脑皮运动皮质（4区）及补充运动皮质和运动前皮质（6区）的大小不等的神经元。第一感觉皮质（3区、1区、2区）发出纤维至皮质脊髓束（CST），主要终止于次级感觉神经核，以调节对传入的丘系感觉信息的处理。皮质脊髓束穿过同侧内囊的后肢、大脑脚、脑桥基底部和延髓的锥体。大部分皮质脊髓束在延髓锥体交叉处与同侧交叉的纤维在皮质脊髓侧束下行，直接或通过中间神经元间接与α下运动神经元（α-LMN）和γ下运动神经元（γ-LMN）形成突触。不交叉的皮质脊髓束则延续为皮质脊髓前束，并且在适当平面再交叉到对侧，直接或间接终止于对侧下运动神经元。
图3.32：皮质脊髓束在脊髓的终末

交叉后的皮质脊髓束形成皮质脊髓侧束，与红核糖蛋白束的纤维混合，穿行于外侧索。大部分皮质脊髓侧束的纤维直接或间接终止于支配远侧端肌肉组织的下运动神经元（LMNs），特别是支配手和手指精细运动的下运动神经元。中交叉的皮质脊髓前束纤维主要在白质前联合处交叉，并直接或间接终止于支配躯干肌组织的下运动神经元。小部分皮质脊髓前束终止于同侧的脊髓前角细胞。皮质脊髓束在延髓锥体的孤立性损伤，将导致对侧手和手指精细运动的减弱。皮质脊髓束以及与之混合下行运动系统（内囊、大脑脚、脑桥）的损伤可引起对侧的痉挛性瘫痪；肌张力增高、腱反射亢进，伸肌反射阳性。皮质脊髓侧束的损伤则可以导致同侧损伤平面以下的相同症状。
红核脊髓束

第一躯体运动皮质（4区）

小脑体细胞

大核细胞

经小脑上脚，来自球状核、棒状核的纤维，及部分来自齿状核深部核团的纤维

促进红核脊髓束抑制皮肤屈肌活动

促进红核脊髓束对下肢屈肌的兴奋

中脑

至中脑

未交叉的红核延髓纤维

延髓

延髓网状结构

下橄榄核

红核背侧

抑制性中间神经元

兴奋性中间神经元

至伸肌

至屈肌

外侧网状核

红核脊髓束

抑制性中间神经元

兴奋性中间神经元

红核脊髓束

控制脊髓传入的后角中间神经元

皮质脊髓侧束（已交叉）

红核脊髓束

丘脑

丘脑

下橄榄核

下橄榄核

图3.33：红核脊髓束

红核接受同侧运动皮质的局部定位传入，具有间接的脊髓皮质系统的功能。红核脊髓束的纤维在腹侧交叉，在脑干的外侧部和脊髓的外侧索下降，并与皮质脊髓侧束纤维有广泛的混合。红核脊髓束直接或间接终止于脊髓的α-和γ-下运动神经元，特别是那些支配四肢下端屈肌运动的神经元。红核脊髓束可兴奋下肢末端的屈肌活动，但抑制上肢末端的屈肌活动。红核脊髓束的损伤通常发生于脊髓内与皮质脊髓束的混合处；皮质脊髓束的损伤通常发生在其与皮质脊髓束结合处的外囊和大脑脚。这些损伤可以造成对侧的痉挛性瘫痪。脑干红核尾侧的损伤可以造成去大脑僵直（伸肌痉挛）。
图34: 前庭脊髓束

前庭脊髓外侧束（LVST）起自前庭外侧核（LVN），直接或间接终止于同侧α-和γ-运动神经元，后者与伸肌、尤其是近侧端的伸肌相联系。如果没有红核与小脑的下行纤维束的抑制，拮抗重力的强大伸肌系统将会出现一种持续的伸肌张力亢进状态。前庭脊髓内侧束（MVST）起自前庭内侧核（MVN），对控制颈部和躯干肌运动的α-和γ-运动神经元起抑制作用。前庭脊髓内侧束主要终止于颈髓前角的中间神经元。前庭脊髓内侧束和外侧束具有稳定和协调头部和躯体位置、提供重要反射以及躯干控制肌张力和姿势的作用。前庭脊髓束与网状脊髓束共同控制肌张力和姿势。
图3.35：网状脊髓和皮质网状通路

脑桥网状脊髓束（RedST）起自脑桥内侧网状结构（脑桥核尾侧、头侧）的神经元，该束（RedST）大部分在同侧下行，在所有平面直接或间接终止于α和γ下运动神经元。此束有显著的伸肌（中轴）肌的作用，也具有强化运动脊髓外侧束的作用。大脑皮质对脑桥网状脊髓束的影响很小；但脑桥网状脊髓束受三叉神经和躯体感觉多种感觉传入信息的影响。延髓网状脊髓束起自内侧网状结构（延髓网状巨细胞核），受皮质传入信息的显著影响，尤其是来自运动皮质、运动前皮质／跨运动皮质的影响。延髓（外侧）网状脊髓束直接或间接在所有平面终止于双侧α和γ下运动神经元。它可兴奋屈肌，具有易化皮质脊髓束和红核脊髓束的作用。网状脊髓束对调节基本肌张力和姿势具有重要作用，但无躯体皮层定位关系。
图 III. 36：顶盖脊髓束和中介脊髓束

顶盖脊髓束 (TSF) 起自上丘深层的神经元，在背盖部交叉至对侧，沿中线下行，直接或间接终止于支配头颈部运动的颈髓 α 和 γ 下运动神经元。这条通路与调节反射和视觉跟踪有关，并根据视觉传入信息调整头的位置。中介脊髓束 (IST) 起自 Cajal 间位核，此核团是协调眼球运动的区域和凝视中心。中介脊髓束在同侧内侧纵束 (MLF) 下行，直接或间接终止于 α 和 γ 下运动神经元，支配包括旋转运动在内的躯干中轴肌。
图3.37：主要上运动神经元的下行纤维束在脊髓的终止

皮质脊髓束和红核脊髓束直接终止于支配肢体远端肌肉的下运动神经元。皮质脊髓前束、网状脊髓束和前庭脊髓束直接与支配肢体近端肌和中轴肌的下运动神经元相连。
图3.38：眼运动的中枢调控

眼球运动的中枢调控是通过协调运动眼外肌的神经核团实现的。这些核团发出第III对脑神经（动眼神经），第IV对脑神经（滑车神经）和第VI对脑神经（展神经），共同支配眼外肌的运动。脑桥旁神经核（PPRF）（水平凝视中枢）接受前庭神经核、上丘深层（接受来自VI、V2、V3的纤维）、大脑皮质（额叶区），以及Cajal间位核（纤维来自前庭神经核与额叶区）的纤维传入。脑桥旁神经核通过展神经核中间神经元支配同侧滑车神经核及对侧内直肌运动的动眼神经核，协调眼球的水平运动。Cajal间位核可以协调眼球的垂直及斜向运动。前庭的次级感觉投射也终止于支配眼外肌运动的脑神经核。支配眼外肌运动的脑神经核之间的联系纤维走行于内侧纵束内。
图3.39: 呼吸的中枢调控

吸气与呼气受网状结构核团的调节。脊髓呼吸核（DRN）（孤束核外侧部）发出纤维交叉到对侧，终止于颈髓的隔核下运动神经元和胸髓下运动神经元，支配肋间肌、辅助吸气肌。腹侧呼吸核（疑核后核）发出纤维交叉到对侧，终止于支配辅助吸气肌的胸髓下运动神经元。脊髓呼吸核（DRN）接收颈动脉体化学感受器（通过舌咽神经）、主动脉弓化学感受器（通过迷走神经）和延髓外侧中枢化学感受区的传入纤维。脊侧呼吸核和腹侧呼吸核相互抑制。臂旁侧核（PBN）协同脊侧呼吸核和腹侧呼吸核，起呼吸起搏器的作用。臂旁侧核接受较高中枢如杏仁核和大脑皮质的纤维传入。
图III. 40：小脑的功能分区

传统上小脑分为前叶、中叶和后叶，及小脑＝结叶。各叶损伤可出现躯体同侧症候群，如下肢僵直、前叶损伤、协调失调、意欲性震颤、肌张力减退、共济失调、运动分解（中叶损伤）、躯干运动失衡（F.N.叶损伤）。也可以根据小脑皮质区向其深部不同小脑核团的投射，将小脑按纵向划分为小脑＝结部、绒球小结叶（投射至顶核与前庭外侧核）、泡状部（投射至球状核及栓状核）以及半球外侧部（投射至齿状核）。各部分小脑内部互相联系，形成环路，并与特定的上运动神经元相联系。
图III.41: 小脑神经元环路

小脑由表面3层皮质、白质、深部小脑核团以及与脊髓、脑干和丘脑相联系的小脑脚组成。蒲肯野细胞（主要传出神经元）的树突起于皮质的分子层（或平行的板层排列）；其细胞体位于蒲肯野细胞层，轴突位于颗粒层和深部的白质内。蒲肯野细胞轴突和颗粒细胞轴突平行排列，延伸穿过数百万个蒲肯野细胞树突棘。另外，中间神经元在分子层（外颗粒细胞）、蒲肯野细胞层（篮细胞）调节其内部的相互联系，并调节颗粒细胞层和分子层之间的相互联系（高尔基细胞）。蒲肯野细胞的轴突终止于皮质的3层结构内，调节与之相联系的其他小脑的兴奋性。
图3.42：小脑传入纤维联系环路示意图

小脑的传入纤维包括苔藓纤维、攀缘纤维以及蓝斑-尾核上腺素能纤维。苔藓纤维与小脑深部核团及颗粒细胞形成突触。攀缘纤维绕于蓝带核细胞树突之间。蓝斑-尾核上腺素能轴突终止于小脑皮质的各种细胞。C和D的环路图展示了中间神经元对传入联系的调节和蓝带-尾核传出功能的调节。小脑皮质的这一完整环路为小脑深部核团的初级加工提供精细调节。投射至深部核团的所有蓝带-尾核细胞受到以氨基丁酸（GABA）为神经递质的抑制性调节。
图3.43：小脑的传人通路

小脑的传入纤维呈躯体定位排列，终止于小脑深部核团及其对应的同侧小脑皮质。机体的某些关节在小脑皮质的三个不同区域。行经小脑下脚的传入纤维包括脊髓小脑通路（脊髓小脑后束、脊髓小脑前束等）、背侧束传入纤维、来自外侧网状核及外侧区域的网状结构传入纤维，来自前脑侧下丘和前庭神经节的前庭传入纤维以及部分三叉神经及传入纤维。脊髓小脑后束与小脑束主要传入肌源传出信息，而脊髓小脑前束与小脑束主要传入运动信息。小脑中脚主要通过脑桥-小脑纤维，传递来自对侧皮质-脑桥-小脑的运动信息。通过小脑上脚的传入纤维来自对侧皮质-脑桥-小脑的运动信息。通过小脑中脚的传入纤维来自对侧皮质-脑桥-小脑的运动信息。
图III. 44：小脑的传出通路

小脑的传出纤维起源于小脑深核。来自顶核的纤维投射主要经过小脑下脚，终止于同侧的前庭外侧核及前庭神经核，脑桥与延髓的网状核，调节前庭脊髓束与网状脊髓束。来自球状核与栓状核的纤维大部分经过小脑上脚交叉到对侧，投射至红核，此外尚有小部分投射至丘脑的腹外侧核（VL），主要调节网状脊髓束（RST）的活动。来自齿状核的纤维主要经过小脑上脚交叉到对侧，投射至丘脑的腹外侧核（VL），小部分投射至丘脑的腹前核（VA），主要调节皮质脊髓束（CST）的活动。来自齿状核的少部分纤维也投射至对侧的红核及脑干网状结构。
图3.45: 前庭小脑和小脑前庭通路

前庭的初级感觉传入纤维终止于前庭神经核、顶核、小脑和绒球小结（FN）叶的小脑皮质。前庭神经核也发出纤维投射至小脑和绒球小结（FN）叶的小脑皮质，而小脑和绒球小结叶中的前庭神纤维又返回投射至前庭神经核与顶核。此外，顶核纤维还投射至前庭神经核以及脑桥延髓内侧的网状结构。这样，初级和次级前庭神经元投射到顶核与小脑皮质；小脑皮质与小脑深核再投射返回前庭神经核；这种广泛的交互的前庭小脑环路联系调节着基本的空间位置与机体的肌张力和姿势。
图3.64：小脑至上运动神经元系统的传出通路示意图

小脑半球外侧部通过齿状核与丘脑的腹前核（VA）、腹外侧核（VL）相联系，这些核团是发出皮质脊髓束（CST）的运动皮质和运动前/补充运动皮质区传入信息的主要核团。小脑蚓旁皮质通过球状核和栓状核与红核相联系，红核细胞发出红核脊髓束（RST）。小脑与红核脊髓束和皮质脊髓束起始细胞的联系大部分是交叉的。而且这些上运动神经元（UMN）在终止于下运动神经元（LMN）之前再交叉一次。经过这样两次交叉，小脑与同侧下运动神经元（LMN）相联系。脑部、锥体小结（FN）与顶核、前庭外侧核相联系，而顶核的投射纤维主要至同侧前庭脊髓束和网状脊髓束的起始细胞，通过这些上运动神经元系统发挥对同侧脊髓下运动神经元的影响。
图3.47：基底神经节的纤维联系

基底神经节包括纹状体（尾状核、壳）和苍白球（GP）。黑质（SN）和底丘脑核（STN）与基底神经节存在相互联系，所以它们通常也被作为基底神经节的一部分。来自大脑皮质、丘脑（杏仁核）、黑质致密部（多巴胺能纤维）和侧脑室穹隆核（含血清素）的基底神经节传入纤维，大部分直接投射至纹状体，而来自底丘脑核（STN）的基底神经节传入纤维主要投射至苍白球（GP）。纹状体也投射至苍白球（GP）。苍白球的内侧部再投射至丘脑（丘脑腹前核、外侧核及中央中核），苍白球的侧部投射至底丘脑核。丘脑腹前核、外侧核发出纤维至皮质脊髓束（CST）的起始细胞。基底神经的损伤常产生运动障碍，黑质致密部多巴胺能神经元的损伤可导致帕金森氏病（Parkinson’s）
大脑皮质和丘脑至纹状体的传入纤维是兴奋性的（GLUT，谷氨酸能），而纹状体-苍白球和苍白球-丘脑之间的联系是抑制性的（GABA，氨基丁酸能）。这些抑制性与兴奋性的相互影响，形成了对丘脑皮质（及相关的皮质脊髓）传入纤维的网络控制。广泛的抑制与兴奋环路组成了基底神经节复杂的传出调节，它受苍白球内侧部、黑质和底丘脑核的调控。多巴胺能黑质纹状体联系可同时对纹状体产生抑制和兴奋作用。在帕金森氏病中，由于黑质纹状体的多巴胺能纤维减少，可同时产生阴性症状（运动过缓）和阳性症状（静止性震颤、肌肉僵直、姿势不稳）。其他的中间神经元如纹状体的兴奋性胆碱能神经元也出现于某些基底神经节组织中。
图III. 49：通过基底神经节的并行纤维环路

皮质-纹状体-苍白球和苍白球-丘脑之间的联系构成了运动、边缘系统、认知及眼球运动的平行环路。运动环路经过尾状核；边缘系统环路经过腹侧苍白球及伏隔核；认知环路经过尾状核；眼球运动环路经过尾状核体。经过苍白球和黑质网状部或被盖腹侧区的纤维联系投射至丘脑的特定区域。继而返回大脑皮质的皮质纹状体投射起始神经元。这些经过基底神经节和大脑皮质的并行环路调节特定皮质下通路的活动，这有别于皮质下通路的固有能力。黑质致密部可能作为这些平行环路间的主要中继环节。
伏隔核位于纹状体的前端，后者位于前脑腹侧和背侧的内部。其传入纤维（富含多巴胺能）来自于边缘结构（杏仁核、海马结构、终纹床核）和被盖腹侧区。伏隔核是动机和成瘾行为的中枢，也是脑内与兴奋、快乐、激励相关的奖赏环路中的一个主要区域。伏隔核参与特定的边缘基底神经节环路，有助于情感反应、体态姿势及行为的表达。
图3-51：自主神经系统概况

自主神经系统由2个神经元构成，即交感神经元和副交感神经元。交感神经元经过神经节至内脏器官，包括心肌、平滑肌、腺体分泌。副交感神经元经过神经节至内脏器官。交感神经主要由胸段（T1-L2）侧背侧的交感神经节发出，副交感神经节位于颈段和腹段。
图III.52：下丘脑的大体解剖

下丘脑是一个位于脑部间脑的神经核团与纤维束的集合区，它调节内脏自主功能和神经内分泌功能，尤其是在垂体前、后叶。在下丘脑后界（乳头体）与前界（终板、前连合）之间有许多核团，这些核团基本被分为四个下丘脑区：（1）视前区，（2）前区或视上区，（3）结节区和（4）乳头区或后区。从第三脑室的内侧界到外侧边界，这些核团又被划分为3个基本区：（1）脑室周围区，（2）内侧区及（3）外侧区。腺垂体与前脑隆起和漏斗（垂体柄）与下丘脑底部相连，内侧隆起是神经内分泌转换的重要区域。
图III.53：下丘脑的切面，视交叉前区和视上区

视前区的主要核团包括视前区核和外侧核。终板血管器（OVLT）是一个室周器官，位于下丘脑视上区。视上区（前区）主要核团包括视上核（SON）、室旁核（PVN）、交叉上核、下丘脑前区和下丘脑外侧区（LHA）。室旁核（PVN）等的一些核团具有许多亚区（大细胞和小细胞），这些亚区包含许多具有独立投射和功能特殊的化学性神经元。不同的神经元有时相互混杂于一个神经核的亚区内。
图3.54：经下丘脑切面：结节区

结节区的主要核团包括背内侧核、腹内侧核、室旁核、弓状核、弓状核周围区（β-内啡肽细胞）、结节核、下丘脑背侧区及下丘脑外侧区。起自视丘上的核团（室旁核、视上核、下丘脑外侧区）向尾侧延伸至结节区。正中隆起由此区延伸，含有腺垂体激素释放和抑制因子的神经纤维经漏斗下降至接触区，在接触区将激素释放和抑制因子释放至垂体门脉系统，腺垂体细胞分布于此系统。
图Ⅲ.55 经下丘脑切面：乳头区

乳头区主要核团包括内侧、外侧乳头体核、下丘脑后区及下丘脑外侧区。下丘脑外侧区延伸下丘脑全长的大部分并且具

有脑下网状结构的神经元特征。
图III.56：下丘脑概略图像重建

在矢状面的三维图像重建示意图显示了下丘脑的核团、区和带，它们占据了间脑的部分区域。也显示了许多通路包括穹隆、乳头丘脑束、前脑内侧束、视上垂体束、结节垂体（结节垂体束）以及脑干与下丘脑相联系的通路，其中包括背侧缰束、前脑内侧束下行纤维、乳头体被束及室旁核至自主神经节前核的下行纤维。
图3.57：与下丘脑相关的前脑区

前脑的许多区通过直接或间接纤维投射与下丘脑有密切联系。重要的大脑皮质区包括前脑皮质、颞额皮质、扣带皮质、鸟皮质、海马旁皮质和杏仁核周围皮质。前脑边缘系统重要的皮质下区包括海马（三层皮质）、杏仁核和隔核。重要的丘脑联系包括丘脑背内侧核和丘脑前核。重要的嗅觉联系包括嗅束、嗅神经核和嗅皮质。
图38：与下丘脑相联系的传入和传出通路

下丘脑的传入和传出联系繁多且复杂。大脑皮质的许多区域（额前皮质、眶额皮质）和丘脑（前部）直接发出纤维投射到下丘脑。多条传入通路起于海马结构（海马下托、穹隆）、杏仁核（终纹、杏仁核腹侧通路）和松果体（视网膜间束）。视网膜直接发出视网膜下丘脑纤维到视交叉上核。一些致密弥散的脑干投射纤维经多种通路上升至下丘脑（在此未显示）。发自下丘脑的传出纤维投射至中脑隆起、垂体后部（视下丘脑视中枢系统）、隔核及前脑（前脑内侧束）。还投射至丘脑（乳头丘脑束）、脑干和脊髓某些区域（前脑侧束、前脑内侧束、乳头体视束以及室旁核到视前神经元的直接联系）。
图3.59：下丘脑主要传入通路示意图

下丘脑接受中枢神经系统许多区域的广泛传入纤维联系。下行传入纤维来自于前脑边缘结构（海马、海马下托、杏仁核）、大脑皮质（扣带回前部、眶额部、额前部）和丘脑（背内侧）。上行传入纤维来自脑干自主神经广泛区域（被盖核、导水管周围灰质、臂旁核、孤束核）、蓝斑、下丘脑前核和弓形核、中脑5-羟色胺神经核和脑干网状结构。视网膜的传入纤维直接上传至视交叉上核以及调节昼夜节律的部分下丘脑。血液中流动的一些物质（如细胞因子、激素、葡萄糖、钠离子等）可通过许多途径和机制影响下丘脑。
下丘脑发出广泛的传出纤维，其上行传出纤维投射至前脑边缘结构（杏仁核、隔核、前额皮质）；大脑皮质（额顶皮质和颞顶相关皮质）、丘脑（壳内侧核、前核）。广泛的纤维投射还至正中隆起（控制腺垂体激素的释放因子和抑制因子、弓状核和室旁核的多巴胺能投射纤维）和神经垂体。其他的传出纤维直接或间接投射至交感神经和副交感神经的节前神经元（前脑内侧核、背侧纵束、乳头体被盖核，发自室旁核的直接投射）以及分布至广泛的自主神经核（去甲肾上腺素能神经元、5-羟色胺能神经元、臂旁核、孤束核、导水管周围灰质，被盖核、脚间核）和脑干网状结构。
图3.61：下丘脑联系

下丘脑的外侧区、内侧区、室旁区与大脑皮质、前脑边缘结构、丘脑和脑干的广泛区域有着特殊联系。下丘脑的广泛传出纤维直接调控交感神经和副交感神经节前神经元。垂体前叶和后叶的激素释放，腺垂体激素则调控全身激素分泌和靶器官的功能活动。
室旁核的众多纤维投射有助于调节垂体激素分泌、自主神经节前神经元功能和边缘系统的活动。大细胞神经元发出轴突至神经垂体，后者释放催产素和抗利尿激素进入血液循环。促肾上腺皮质激素释放因子神经元和某些抗利尿激素神经元发出轴突至正中隆起并释放激素进入垂体门脉系统，影响促肾上腺皮质激素的释放。室旁核神经元直接发出下行纤维至副交感神经节前神经元（迷走神经背核）和交感神经神经元（T1-L2的中间外侧柱）；以及孤束核。这些神经元也发出轴突至与边缘系统有关的结构，例如：杏仁核、臂旁核和蓝斑。
细胞因子影响的行为：
疾病
情感
认知
自主神经和神经内分泌调节

大脑脉管系统和血管屏障

白介素-1β
其他作用于脑的细胞因子
白介素6
肿瘤坏死因子
白介素2

1. 细胞因子直接通过血管屏障。
2. 细胞因子进入脑脊髓，或作用于释放前因子2的细胞；或注射到脑内自主神经神经元。
3. 细胞因子释放的小分子（如内源）的作为介质直接进入大脑发挥作用。
4. 细胞因子通过前体神经元进入脑内神经纤维进入脊髓。并影响室管膜和其它部位的多种活动。
5. 细胞因子激活其他传入纤维调节脊髓感觉的后角的处理。
6. 细胞因子激活交感神经末梢的腺素的释放。
7. 细胞因子调节靶细胞内的神经中介细胞内信号。
8. 细胞因子调节脊体激素的释放。

图3.63: 细胞因子对下丘脑和其他脑区行为的影响机制

细胞因子，包括白介素-1β、白介素6、肿瘤坏死因子-α等作用于脑内自主神经的活动和行为。本图描述了白介素-1β进入大脑的途径：1）直接通过血管屏障；2）作用于室管膜（终板血管器）并释放内源性物质如前因子2；3）作用于脑内皮细胞，释放作用于中枢神经系统的氧化亚氮；4）通过前体细胞，

白介素-1β能引起疾病（发热、诱导慢性睡眠、食欲下降、嗜睡等典型疾病症状），影响自主神经和神经内分泌活动。影响情绪、认知功能和行为。
图3.64：室周器官

脑室周器官是“大脑的窗口”，此处血管缺乏通常所见的连接紧密的内皮而代之以有缝隙的脉管系统。因此，室周器官没有血脑屏障。某些器官（器官血管终板、穹隆下器官和最后区）分布有投射到下丘脑和其他内脏结构的神经元。它们还有释放小分子如前列腺素E2至脑脊液的细胞，因此能远距离影响靶器官。神经正体是释放催产素和抗利尿激素进人体循环的结构（室旁核和视上核）。正中隆起则是释放因子和抑制因子进入垂体门脉系统的神经内分泌的转换区。这些因素影响着腺垂体激素的释放，松果体合成以及褪黑素的释放。
图3.65：垂体门脉系统

垂体门脉系统来自于在下丘脑底部进入正中隆起的微动脉。初级毛细血管丛是影响腺垂体激素分泌释放因子和抑制因子的部位，这些释放因子和抑制因子由位于下丘脑和其他中枢神经部位的神经元轴突所释放，以高浓度穿过小静脉壁至次级毛细血管丛并直接作用于合成和分泌腺垂体激素的细胞。
图3.66：腺垂体激素分泌的调控

合成调控腺垂体激素分泌的释放因子和抑制因子的神经元发出轴突终止于垂体门脉系统的初级毛细血管丛（神经内分泌转运区），并将这些因子释放到垂体门脉血液中，继而进入次级垂体门脉血管丛，调控腺垂体激素的释放。这些激素作用于靶器官，影响靶器官激素的释放或影响机体代谢及功能活动。例如，促肾上腺皮质激素释放因子神经元释放促肾上腺皮质激素释放因子（CRF）进入垂体门脉，调控促进肾上腺皮质激素的释放，后者又调控促肾上腺皮质激素的肾上腺皮质激素的释放。至后极视上核的大细胞神经元发出轴突直接至神经垂体，并向体循环释放催产素和抗利尿激素。
图3.67: 垂体后叶（神经垂体）激素：催产素和抗利尿激素

室旁核和视上核的大细胞神经元发出轴突直接经漏斗区和
垂体基终止于神经垂体的血管。室旁核和视上核的神经元合成
并释放催产素和抗利尿激素进入体循环。脑干和前脑通路中的
投射纤维终止于大细胞神经元，调节催产素和抗利尿激素的释
放。大细胞神经元具有广泛的蛋白合成和转运囊泡功能，激素
是在囊泡中被包装并被轴突运输至轴突末梢。激素在轴突末梢
释放并经有隔膜毛细血管直接进入血液循环。
抗利尿激素调节尿量及尿浓度的机制

ADH由下丘脑的视上核和室旁核产生，随神经纤维下行至神经垂体并储存在神经垂体以备释放。

血液渗透压和血容量，是由液体摄入（口服或非肠道）、水和电解质与组织的交换、正常或病理性水肿、肠道丢失（呕吐、腹泻）、体液丢失（失血、出汗）所调节。

ADH的释放可通过影响下丘脑渗透压感受器所致的高渗压压；以及通过影响主动脉、颈动脉的容量感受器所致的低血容量来增加，而低渗透压和高血容量则减少ADH的释放。

由于ADH，使肾髓质的血流减少。由于血液溶质清除减少，肾髓质间隙的渗透压亦提高。

ADH引起肾集合管壁对水的通透性增加，从而使渗透平衡，水被吸收至高渗的间隙；分泌少量的高浓度尿。

图3.68 抗利尿激素（加压素）调节水平衡和液体渗透压

抗利尿激素通过肾脏来调节机体水平衡。抗利尿激素的分泌则通过体液渗透压和血容量与血压来调控。体内液体渗透压的微小变化足以显著改变抗利尿激素的分泌。10%-15%或更多的血容量和血压降低将影响抗利尿激素的分泌。在肺血管、颈动脉窦、主动脉窦发现有血容量和血压感受器。由血容量和血压改变引起的血管壁的牵拉能引起压力感受器反应。图示表明了抗利尿激素作用于肾脏所引起的尿液浓缩和浓度改变的机制。
图3.69：下丘脑和体温调节

下丘脑视前区分布有热敏感神经元，而下丘脑后区有冷敏感神经元。下丘脑视前区及丘脑前核的神经元对散热的反应（副交感神经），下丘脑后区则启动神经元对产热的反应（交感神经）。源于脑干和前脑边缘系统的神经元通过调控温度调节系统的活动。视前区对致热源和炎性细胞因子白介素-1β产生反应，并能提高温度调节点，从而刺激与疾病有关的发热。下丘脑与脑干和脊髓的广泛联系可引起相应的散热或产热反应，同样，适当的行为方式也可使体温调节在理想水平（如到较温暖或较凉爽位置）。
图3.70：血压的短期调节

自主神经系统的交感神经和副交感神经分支共同参与维持血压的稳定。许多来自脑干的下行通路（包括孤束核、迷走末梢、颈交感神经节、延髓头端腹侧核、蓝斑、中缝核、其他延脑网状结构、臂旁核、血管紧张素II-神经元）和下丘脑都调节着与血压有关的自主神经节前神经元。下丘脑和孤束核是整合前脑・边缘结构和皮质对脑干影响的关键部位。脑干影响血压的调节，同时这些脑干部位之间也互相广域联系。本图描述了体位改变对血压调节的影响。（ACH = 乙酰胆碱，E = 肾上腺素，NE = 去甲肾上腺素，MAP = 平均动脉压）
图3.71：血压的长期调节

当血容量和血压改变，肾脏通过保留或排泄NaCl和水以恢复血容量至正常的渗透压。通过增加交感神经活动，血液循环中交感神经末梢和肾上腺髓质分泌的去甲肾上腺素和肾上腺素增多并作用于肾脏以减少NaCl的排泄。
图3.72：食欲和饥饿的神经控制

饥饿和厌食感是多神经通路和睡眠激素参与的复杂过程。这里描述的途径与饥饿感有关。虽然对确切的机制尚未完全了解，但下丘脑在控制食欲和摄食方面起主要作用。当食物被消化时，肠道的神经内分泌细胞分泌胆囊收缩素和高血糖素-1，这些激素抑制食欲并产生厌食感。没有食物摄入时，这些激素水平低下。长期的摄食控制与一种由脂肪细胞产生的 leptin 激素有关。当脂肪储存多时，leptin 释放并作用于下丘脑以抑制食欲。当体内营养储存减少时，leptin 水平降低。
图3.73：应激反应时神经和神经内分泌的作用

本图所描述的是典型的交感神经应激反应，涉及神经内分泌“应激激素”的分泌。该激素包括下丘脑-垂体-肾上腺轴分泌的肾上腺皮质激素以及交感神经末梢和肾上腺髓质分泌的去甲肾上腺素和肾上腺素。交感神经与内脏的联系导致生理变化从而启动应激综合反应。这些变化引起血液从内脏和皮肤流向肌肉、心率和心排血量增加、支气管扩张、瞳孔扩大、胃肠活动减少以及肝糖原分解等。前脑边缘-皮质-脑干传入纤维调节下丘脑的神经内分泌活动和自主神经功能，并在启动应激反应中起重要作用。在应激反应时，脑干交感神经的功能被抑制。
图III. 74：神经免疫调节作用

来自大脑皮质、前脑边缘结构、下丘脑、脑干的纤维联系对自主神经系统功能和内分泌活动起广泛调控作用。这些器官和结构中所产生的神经激素和神经递质作用于淋巴器官和免疫系统细胞。这一通路的行为、情感反应、应激压力以及主动代偿干预提供了物质基础从而影响免疫反应。交感神经纤维后去甲肾上腺素能纤维直接支配所有的免疫器官。迷走神经节后纤维则支配肺和消化道淋巴组织。血液循环中的体液激素和靶器官激素调节淋巴器官的所有免疫反应。肾上腺皮质激素、去甲肾上腺素和肾上腺素在调节与免疫反应有关的慢性应激反应中具有特别重要的作用。血液循环中的、局部的细胞因子和炎性介质作用于脑和垂体以提供免疫-神经信号。
图III. 75：前脑边缘结构的解剖

前脑边缘结构环绕间脑。两侧颞叶、海马、穹隆、杏仁核及其终纹发出的“C”型轴突纤维经皮质；环绕间脑投射至下丘脑和隔区。杏仁核也发出纤维（杏仁核腹侧向通路）直接进入下丘脑。隔核位于下丘脑吻侧经丘脑膝纹向松果体核发出轴突。扣带回、颞前皮质、眶额皮质、内嗅皮质、杏仁核周皮质都与前脑边缘系统的皮质下结构和海马结构相联系，并且被认为属于边缘系统的一部分。边缘系统的功能与情感反映、行为、个体对感觉刺激的反应以及记忆整合有关。
图3.76：海马结构的大体解剖

海马结构由齿状回，海马（海马CA区）和齿状下托所组成。这些结构与相邻的内嗅皮质密切相关。海马呈马状位于颞叶前部的内侧，凸向外侧嵌入侧脑室下角并被分成椎体细胞若干区，称为CA区（CA1-CA4）。颗粒细胞分布在齿状回，后

者和海马皮质可分为三层皮质区。海马结构与皮质、前脑边缘结构如隔核和扣带回有着广泛的纤维联系。参与从短期记忆到长期记忆的巩固，以及与新皮质的广泛联系。
图3.77：海马结构的神经联系

海马结构与内嗅皮质有密切的内在通路联系。内嗅皮质的锥体细胞发出轴突至齿状回的颗粒细胞树突。颗粒细胞树突（苔状纤维）与 CA3 区的锥体细胞树突形成突触。CA3 区的锥体细胞轴突投射至 CA1 区和 CA2 的锥体细胞；CA1 区的锥体细胞轴突投射至海马下托的锥体神经元；而海马下托的轴突投射返回至内嗅皮质的锥体神经元。这一复杂的内在通路表明纤维联系十分广泛，而在该通路上又与新皮质相关区域和前脑边缘结构大量相互重叠的联系。海马下托和 CA1、CA3 区的 CA 区神经元的轴突作为至靶器官的传出投射，海马下托还发出轴突至杏仁核和脑叶相关区域。
图III. 78：海马结构的主要传入和传出联系

在海马下托和海马CA1和CA3区的锥体细胞发出纤维到穹隆。下托经穹隆后连会向下丘脑核（主要是乳头体核）和丘脑核发出纤维。CA1和CA3区神经元发出轴突至隔核、下丘核和视前区和下丘脑前核、扣带皮质和颖叶相关区域。发自隔核的传入纤维通向穹隆至齿状回和海马CA区；大量的来自感觉相关皮质、额前皮质、颖叶皮质、杏仁核和嗅球的传入纤维投射至内嗅区；内嗅皮质被完全整合进入海马结构的内在通路；下托也与杏仁核交互联系并发出轴突至颖叶相关皮质。
图3.79：杏仁核主要传入联系

杏仁核是杏仁状位于壁叶区内侧部，主要与对外部的感官信息和内在状态所导致的情感反应有关。杏仁核可分为皮质内侧核、外侧基底核和中央核，这些核的传出纤维主要至脑干。进入皮质内侧核的传入纤维主要来自皮质下边缘结构，包括嗅球、隔核、下丘脑结构（腹内侧核和外侧区）、丘脑（板内核）、端柱核以及脑干广泛的自主神经单胺类神经核。进入外侧基底核的传入纤维主要来自皮质，包括广泛的感觉相关皮质、额前皮质、扣带皮质和海马下托。
图III. 80：杏仁核主要传出联系

从皮质内侧核发出的主要传出纤维经终纹直接到达皮质下核，如隔核、丘脑背内侧核、下丘脑核、终纹床核、孤核及纹状体皮质。从基底外侧核发出的传出纤维经杏仁腹侧通路至皮质区，包括颞叶、扣带回皮质、额下皮质、海马下托和内嗅皮质；还投射至皮质下边缘结构，包括下丘脑核、隔核和无名质内的胆碱能基底核。杏仁中央核主要接受杏仁内侧核联系并发出传出纤维经杏仁腹侧通路至自主神经核和脑干的单胺能核、丘脑中线核、终纹床核及胆碱能基底核。
图3.81 杏仁体主要传入和传出纤维和内部联系

1) 杏仁体皮质内侧核主要与皮质下前脑边缘结构；与来自脑干自主神经和单胺能神经核的传入纤维相互联系。2) 杏仁体基底外侧核分别与边缘结构和相关皮质；与皮质下前脑边缘结构发出的传出纤维联系。3) 这两组核心团发出轴突至杏仁体中央核，后者发出许多下行传出纤维至自主神经核和脑干的单胺能神经核以及皮质下前脑边缘结构。4) 这些相互联系的纤维通路整合了来自内、外的刺激，对机体启动和控制适当的伤行为和情感反应提供了物质基础。
图3.82：隔核的主要传入和传出联系

隔核属于皮质下神经核。有人曾为控制情绪作过隔核切除和刺激隔核的研究。在实验中发现，隔核似乎在情感行为、性行为、攻击、自主神经功能调节、注意力和记忆功能（来自胆碱能神经元）中发挥作用。进入隔核的传入纤维主要来自海马、杏仁体的皮质内侧核和基底外侧核。中脑被盖腹侧区和下丘脑核。起自隔核的传出纤维主要投射至海马、齿状回（经穹隆）、松果体核、丘脑背内侧核（经丘脑髓纹）、被盖腹侧区（经前脑内侧束）和一些下丘脑核。
图3.83：扣带回主要联系

扣带回皮质位于脑皮质上部，参与调节自主神经功能（呼吸、消化、心血管、瞳孔）、某些躯体功能（运动张力、运动的进行）和情感反应与行为。扣带回皮质损害可导致对疼痛以及与情感有关的其他感觉淡漠。扣带回的传入来自额叶、顶叶、颞叶的相关区域、海马下托、隔核及丘脑核（背侧核、前核）。从扣带回发出的传出纤维投射到额叶、顶叶、颞叶的相关区域、前脑边缘结构，如海马、海马下托、内嗅皮质、杏仁核和隔核。前脑边缘结构向下丘脑发出广泛的投射纤维以调节自主神经、脑干与脊髓的某些躯体功能。
图III. 84: 嗅感受器

嗅觉感受器位于鼻腔根部内外侧壁的嗅区上皮，其特化的双极神经细胞核位于上皮基底部，树突向上皮表面延伸，扩展为具有10到30个纤毛的嗅杆并指向黏膜表面。气味作用于纤毛上的感受器(G-蛋白-耦联)，产生缓慢的去极化启动电位。气味和感受器的相互作用十分复杂，常需要携带气味的结合蛋白穿过黏膜。嗅上皮的双极神经元属于中枢神经神经元，之所以特化就在于双极神经元不断被位于上皮的基底干细胞取代更新，在穿筛板前，嗅神经轴突（上神经元）聚集成束并被施万细胞包裹。筛板损伤可导致嗅觉丧失。
图3.85：嗅觉通路

来自双极神经元的初级感觉轴突经过筛板与嗅球外层的嗅小球形成突触。嗅小球是产生特殊气味信息的功能单位。嗅觉神经微细与假状细胞和球状细胞的树突形成突触产生了嗅束投射的二级感觉神经元。嗅小球周围细胞是中间神经元且与嗅小球相互联系。颗粒细胞调节假状和球状细胞的兴奋性。传出联系（来自中缝的5羟色胺能神经元和蓝斑的去甲肾上腺能神经系统）调节嗅小球和球周细胞的活动。嗅束绕过丘脑投射到嗅前核、伏核、主要嗅皮质、杏仁体、杏仁体周围皮质以及内嗅区外侧皮质。嗅皮质与眶额皮质、岛叶皮质、海马以及下丘脑外侧均有相互联系。
第一章 神经系统概述

第一节 神经元及其性质

第二节 大脑

第三节 脑干和小脑

第四节 脊髓

第五节 脑和脊髓的被膜

第六节 脑室和脑脊液

第七节 脑和脊髓的血管

第八节 神经系统的发育

第二章 局部神经解剖学

第一节 周围神经系统

第二节 脊髓

第三节 脑干和小脑

第四节 间脑

第五节 端脑

第三章 系统神经解剖学

第一节 感觉系统

第二节 运动系统

第三节 自主神经、下丘脑和边缘系统