Few advances in MR imaging have had the impact that diffusion-weighted imaging (DWI) has had in the evaluation of brain. From the time of the early descriptions by LeBihan and colleagues of the ability to image and measure the micromovement of water molecules in the brain to the present time, diffusion imaging and its derivatives have made an impact in the evaluation of multiple disease processes, primarily in ischemia, but also in other conditions of the brain. In most medical centers diffusion imaging is no longer considered a sequence to be used in special circumstances but rather it is employed as part of routine MR imaging of the brain. Because the information derived from diffusion measurements can improve our understanding of pathologic processes and can influence patient care, knowledge of the principles and applications of DWI is critical.

It is therefore of great interest that the group from the University of Rochester (Drs. Moritani, Ekholm, and Westesson) have assembled under one cover a collection of material which covers all the clinical aspects of diffusion-weighted imaging. Those who have attended recent meetings of the ASNR know the quality of the exhibits and presentations which have come from this group. They, early on, demonstrated the wide spectra of diseases which can cause restricted diffusion and they warned us of mimickers of infarction and ischemia.

In this richly illustrated volume the authors take the reader from the basic principles of DWI, through the pulse sequences used, to mathematical concepts behind the derivation of apparent diffusion coefficients. Following explanations of the different types of edema which can effect the brain and the appearance of DW images, this book allows the reader to see the variety of conditions which alter diffusion, including infarction, hemorrhage, cerebral infections, degenerative neurologic disorders, white matter diseases, toxic/metabolic disorders, and tumors. As one can easily see from the table of contents, the authors have systematically covered all major areas of neuroradiology. This will allow cross-referencing to problematic cases which one may encounter. Additionally, knowledge of what represents a normal brain in adults and in the developing brain along with an explanation of artifacts seen in DWI makes this a valuable book. It is noteworthy that the authors have chosen to abundantly illustrate the clinical material, drawing on pathologic correlations in a number of areas.

I believe that this book will benefit not only those who deal routinely with neuro-MR imaging, but also those who want to establish a basis for understanding of diffusion images in the hope of taking these principles of diffusion further into more exotic areas of neuroimaging such as white matter tract mapping with diffusion tensor imaging, analyzing alterations in highly organized structures with fractional anisotropy, or delving into macromolecular alterations with ever-higher b values. The authors are to be congratulated for putting their considerable experience together in this form, and I am sure that the collection of cases herein will serve to educate not only those who are just entering the clinical neurosciences, but also those who daily use diffusion imaging to arrive at a proper clinical diagnosis.

Robert M. Quencer, M.D.
Chairman, Department of Radiology
The Robert Shapiro, M.D. Professor of Radiology
University of Miami/Jackson Memorial Medical Center
Miami, Florida, USA
Editor-in-Chief
American Journal of Neuroradiology
This book is the result of many years of clinical and academic interest in diffusion-weighted MR (DW) imaging of the brain. Researchers and clinicians at the University of Rochester started to collect DW images of a spectrum of abnormalities affecting the brain immediately after this technique became available. Several case series with clinical and radiographic correlations have been presented at the annual meetings of the American Society of Neuroradiology and the Radiological Society of North America via posters and scientific reports. Over time it became quite clear that we had a collection of DW images representing the majority of conditions that affect the brain and we felt a need to put them all together under one cover.

MR imaging has evolved dramatically since its introduction into clinical work in the mid-1980s. Looking back, there are several major steps that took MR imaging of the central nervous system to the next level. One of the first steps was the introduction of the clinical usefulness of contrast agents. Other steps were the development of fat suppression techniques, fast spin echo imaging, and, more recently, the development of a clinically useful DW imaging technique. DW imaging has revolutionized the imaging diagnosis of acute infarction in the brain. It is, however, quite clear from the series of cases shown in this book that DW imaging is useful for many other conditions. The time it takes to obtain a DW image is so short that in many institutions it is now being used as a routine part of any MR imaging of the brain.

The initial chapters on principles of DW imaging, normal DW appearance, and pitfalls and artifacts provide the bases for understanding DW imaging. This technique is complex and is associated with many pitfalls and artifacts. The following chapter on brain edema provides the basis for understanding the pathophysiology of signal alterations in DW images related to various pathological conditions. The images are correlated to corresponding neuropathologic slides and aid the understanding of the DW imaging representation of various types of brain edema. Chapters 5–13 cover DW imaging characteristics of different pathologic conditions and in Chap. 14 (pediatrics) we have collected DW images of pediatric conditions.

The book is organized according to major disease categories. This brings structure to the book, but is not optimal for the clinician sitting in front of a set of images and wondering what they might represent. For that reason we have a summary chapter entitled “How to Use This Book” (Chap. 15), which is organized from the opposite perspective. Thus, in Chap. 15 we have started with DW images and grouped them according to imaging characteristics. In each table we have listed differential diagnoses for each specific set of DW imaging characteristics and added thumbnail images with references to the corresponding chapters. The clinician can go directly to Chap. 15, determine the signal on the DW imaging, combine it with the T2 and ADC signal characteristics, and get a list of the conditions that match these imaging characteristics. The thumbnail images, the reference to corresponding chapter and knowledge about the patient’s clinical presentation should allow the clinician to formulate a relatively narrow differential diagnosis for most clinical conditions. We think that this “reversed” chapter will make the book very useful for everyday work with DW imaging of the brain.

We are grateful for many pathological slides and fruitful discussions with Barbara Germin, MD, Department of Pathology, University of Rochester. We acknowledge the case contribution from the Department of Radiology, Showa University, Japan, collected during the primary author’s time at Showa University. We would also like to thank Masahiro Ida, MD, Department of Radiology, Ebara Municipal Hospital, Japan; Minoru Morikawa, MD, Department of Radiology, Nagasaki University, Japan; R. Nuri Sener, MD, Department of Radiology, Ege University Hospital, Turkey; and Ryutarou Ukisu, MD, Department of Radiology, Showa University, Japan, all of whom contributed case studies. Our deepest gratitude goes to Ms Margaret Kowaluk and Ms Theresa Kubera, Med-
ical Graphic Designers, Department of Radiology, University of Rochester, and Ms Belinda De Libero for her secretary work. We also wish to thank Yuji Numaguchi, MD, PhD, Department of Radiology, University of Rochester and St. Luke’s Hospital, Japan, who gave us encouragement and support.

We want to thank the editorial staff at Springer-Verlag, without whose guidance, skills and knowledgeable advice this book would not have become a reality. We would also like to thank our colleagues, fellows and coworkers at the University of Rochester. Finally, but not least, we thank our families for giving us the time to complete this project.

It is our hope that our readers will find this book on “Diffusion-Weighted Imaging of the Brain” instructinal and clinically useful.

October 2003

Toshio Moritani
Sven Ekholm
Per-Lennart Westesson
Toshio Moritani, MD, PhD
Assistant Research Professor
Division of Diagnostic and Interventional Neuroradiology
Department of Radiology
University of Rochester
School of Medicine and Dentistry
Rochester, New York, USA

Sven Ekholm, MD, PhD
Professor of Radiology and Director of Research Division of Diagnostic and Interventional Neuroradiology
Department of Radiology
University of Rochester
School of Medicine and Dentistry
Rochester, New York
Professor of Radiology
University of Gothenburg
Gothenburg, Sweden

Per-Lennart Westesson, MD, PhD, DDS
Professor of Radiology and Director of Division of Diagnostic and Interventional Neuroradiology
Department of Radiology and Professor of Clinical Dentistry
University of Rochester
School of Medicine and Dentistry
Rochester, New York, USA
Professor of Oral Diagnostic Sciences
State University of New York at Buffalo
Buffalo, New York, USA
Associate Professor of Oral Radiology
University of Lund
Lund, Sweden

Akio Hiwatashi, MD
Assistant Research Professor
Division of Diagnostic and Interventional Neuroradiology
Department of Radiology
University of Rochester
School of Medicine and Dentistry
Rochester, New York, USA

Ramon R. de Guzman, MD
Fellow, Division of Diagnostic and Interventional Neuroradiology
Department of Radiology
University of Rochester Medical Center
Rochester, New York, USA
Fellow, Philippine College of Radiology
Philippines

Jianhui Zhong, PhD
Associate Professor of Radiology, Biomedical Engineering, and Physics
Director of MR Imaging Research
Department of Radiology
University of Rochester
School of Medicine and Dentistry
Rochester, New York, USA
Associate Professor of Radiology
Yale University School of Medicine
New Haven, Connecticut, USA
1 Basics of Diffusion Measurements by MRI

1.1 Diffusion Imaging in MR
1.2 Diffusion Imaging of the Brain
1.3 Magnetic Resonance Principles of Diffusion Imaging
1.4 Apparent Diffusion Coefficient
1.5 Diffusion Represents a Molecular Event
1.6 Requirements in Clinical Diffusion Imaging
1.7 Setting the b-Value in Clinical DW Imaging
1.8 Future Trends in Clinical DW Imaging

References

2 Diffusion-Weighted Imaging of the Normal Brain

2.1 Introduction
2.2 Adult Brain
2.2.1 Low Signal in Basal Ganglia
2.2.2 Diffusion-Weighted Imaging of Gray and White Matter
2.3 Pediatric Brain
2.3.1 Diffusion-Weighted Imaging and ADC of the Pediatric Brain
2.4 Conclusion

References

3 Pitfalls and Artifacts of DW Imaging

3.1 Introduction
3.2 Influence of ADC and T2 on the DW Appearance
3.2.1 Concepts
3.2.2 Apparent Diffusion Coefficient Maps
3.2.3 Exponential Images
3.3 Clinical Conditions
3.3.1 T2 Shine-through
3.3.2 T2 Washout
3.3.3 T2 Blackout
3.4 Artifacts
3.4.1 Eddy Current Artifacts
3.4.2 Susceptibility Artifacts
3.4.3 N/2 Ghosting Artifact (Nyquist Ghost)
3.4.4 Chemical Shift
3.4.5 Motion Artifacts
3.5 Conclusion

References

4 Brain Edema

4.1 Characterization and Classification of Brain Edema
4.2 Definition and Classification of Cytotoxic Edema
4.3 Pathophysiology of Cytotoxic Edema
4.3.1 Energy Failure
4.3.2 Excitotoxic Brain Injury
4.4 Diffusion-Weighted Imaging and Cytotoxic Edema
4.4.1 Conditions that Cause Cytotoxic Edema, and Reversibility
4.5 Vasogenic or Interstitial Edema
4.5.1 Conditions that Cause Vasogenic Edema
Contents

4.6 Conclusion ... 37
4.6.1 Cytotoxic or Cellular Edema ... 37
4.6.2 Vasogenic Edema .. 37
References .. 37

5 Infarction .. 39
5.1 Clinical Significance and Therapeutic Considerations for Brain Infarcts 39
5.1.1 Stroke Mimickers .. 39
5.1.2 Diffusion-Weighted Imaging ... 40
5.2 Diffusion-Weighted Imaging and Pathophysiology of Cerebral Infarction 40
5.3 Apparent Diffusion Coefficient .. 40
5.3.1 Explanation for Restricted Diffusion ... 40
5.4 Time Course of Infarction .. 40
5.4.1 Hyperacute (<6 Hours) ... 40
5.4.2 Acute (6 Hours to 3 Days) ... 42
5.4.3 Subacute (3 Days to 3 Weeks) .. 43
5.4.4 Chronic (3 Weeks to 3 Months) .. 44
5.5 Diffusion-Weighted Imaging and ADC Characteristics of Gray and White Matter Ischemia .. 45
5.5.1 Relative ADC ... 45
5.6 Reversibility and Treatment .. 45
5.7 Watershed Infarction ... 47
5.8 Perfusion Versus Diffusion Imaging .. 48
5.9 Venous Infarction .. 48
5.9.1 Predisposing Factors .. 48
5.9.2 Pathophysiology ... 48
5.10 Small Vessel Infarcts .. 50
5.11 Brain Stem and Cerebellar Infarcts ... 51
5.12 Corpus Callosum Infarcts .. 52
5.13 Hemorrhagic Infarcts .. 53
References .. 54

6 Intracranial Hemorrhage ... 55
6.1 Introduction .. 55
6.2 Intraparenchymal Hemorrhages: Appearance and Evolution 55
6.2.1 Hyperacute Hematoma .. 55
6.2.2 Acute Hematoma .. 59
6.2.3 Early Subacute Hematoma ... 59
6.2.4 Late Subacute Hematomas ... 60
6.2.5 Chronic Hematomas ... 62
6.3 Subarachnoid Hemorrhage .. 62
6.4 Subdural and Epidural Hemorrhages ... 64
6.5 Intraventricular Hemorrhage .. 65
6.6 Intra-tumoral Hemorrhage ... 66
6.7 Hemorrhage Related to Vascular Malformation .. 67
6.8 Hemorrhage Related to Trauma .. 68
6.9 Conclusions .. 68
References .. 69

7 Vasculopathy and Vasculitis ... 73
7.1 Definition .. 73
7.2 Clinical Presentation ... 73
7.3 Treatment .. 73
7.4 Vasculitis of the CNS ... 73
7.4.1 Characterization of CNS Vasculitis ... 73
7.4.2 Primary Angitis of the Central Nervous System 74
7.4.3 Giant Cell (Temporal) Arteritis (Aortitis Syndrome) 78
7.4.4 Takayasu's Arteritis ... 74
7.4.5 Polyarteritis Nodosa ... 80
7.4.6 Churg–Strauss Disease ... 80
7.4.7 Other Small Vessel Vasculitis ... 82
7.4.8 Collagen Vascular Diseases .. 80
7.4.9 Infectious Vasculitis .. 82
7.4.10 Drug-Induced Vasculitis, Including Illicit Drugs 83
7.5 Vasculopathy of the CNS ... 84
7.5.1 Systemic Lupus Erythematosus ... 84
7.5.2 Moyamoya Disease .. 86
7.5.3 Sickle Cell Disease .. 86
7.5.4 Posterior Reversible Encephalopathy Syndrome 86
7.5.5 Hypertensive Encephalopathy ... 87
7.5.6 Preeclampsia/Eclampsia .. 88
7.5.7 Immunosuppressive Drug-Induced Vasculopathy 89
7.5.8 Uremic Encephalopathy and Hemolytic Uremic Syndrome 91
7.5.9 Thrombotic Thrombocytopenic Purpura .. 92
7.5.10 Cerebral Amyloid Angiopathy ... 92
7.6 Conclusion .. 92
References .. 93

8 Epilepsy ... 95
8.1 Definition .. 95
8.2 Classification ... 95
8.3 Mechanisms and Pathophysiology of Epilepsy .. 95
8.4 Magnetic Resonance Imaging of Epilepsy
8.4.1 Diffusion-Weighted Imaging in Epilepsy
8.4.2 Magnetic Resonance Signal Alterations in Epilepsy
8.4.3 Ictal Stage to Periictal Stage
8.4.4 Status Epilepticus
8.4.5 Cytotoxic Edema in Status Epilepticus
8.4.6 Other Imaging Techniques for Epilepsy
8.5 Hemiconvulsion–Hemiplegia Epilepsy Syndrome
8.6 Focal Lesion in the Splenium of the Corpus Callosum in Epileptic Patients
8.7 Conclusion
References

9 Demyelinating and Degenerative Disease
9.1 Demyelinating Disease
9.1.1 Multiple Sclerosis
9.1.2 Acute Disseminated Encephalomyelitis
9.1.3 Progressive Multifocal Leukoencephalopathy
9.2 Degenerative Disease
9.2.1 Wallerian or Transneuronal Degeneration
9.2.2 Creutzfeld–Jakob Disease
9.2.3 Amyotrophic Lateral Sclerosis
9.3 Conclusion
References

10 Toxic and Metabolic Disease
10.1 Toxic Disease
10.1.1 Chemotherapy-Induced Leukoencephalopathy
10.1.2 Heroin-Induced Spongiform Leukoencephalopathy
10.1.3 Cocaine, Phencyclidine Hydrochloride, Amphetamines and Related Catecholaminergics
10.1.4 Central Pontine Myelinolysis and Extrapontine Myelinolysis
10.1.5 Wernicke Encephalopathy
10.1.6 Marchiafava–Bignami Disease
10.2 Metabolic Disease
10.2.1 Mitochondrial Encephalopathy
10.2.2 Phenylketonuria
10.2.3 Other Metabolic Diseases and Leukodystrophies
References

11 Infectious Diseases
11.1 Overview of Brain Infections
11.2 Bacterial Brain Abscess
11.3 Septic Emboli
11.4 Brain Abscess Caused by Unusual Bacteria
11.4.1 Differential Diagnosis
11.5 Bacterial Abscess in the Extra-Axial Space
11.5.1 Differential Diagnosis
11.6 Bacterial Vasculitis
11.7 Toxoplasmosis
11.7.1 Differential Diagnosis
11.8 Disseminated Aspergillosis
11.9 Herpes Encephalitis
11.10 Human Immunodeficiency Virus Infection
References

12 Trauma
12.1 Introduction
12.2 Diffuse Axonal Injury
12.2.1 Location
12.2.2 Computed Tomography and MR Imaging
12.2.3 Diffusion-Weighted Imaging
12.3 Brain Contusion
12.3.1 Location
12.3.2 Computed Tomography and MR Imaging
12.3.3 Diffusion-Weighted Imaging Findings
12.4 Hemorrhage Related to Trauma
12.4.1 Computed Tomography and MR Imaging
12.4.2 Diffusion-Weighted Imaging
12.5 Vascular Injuries
References
13 Brain Neoplasms

13.1 Introduction

13.2 Gliomas

13.2.1 High-Grade Tumors

13.2.2 Peritumoral Infiltration

13.2.3 Treatment Response

13.3 Epidermoid Tumors and Arachnoid Cysts

13.4 Primitive Neuroectodermal Tumors

13.5 Meningiomas

13.6 Malignant Lymphomas

13.7 Craniopharyngiomas

13.8 Metastases

13.9 Conclusion

References

14 Pediatrics

14.1 Water Content of the Pediatric Brain

14.2 Normal Structures

14.3 Anisotropy

14.4 Infarction and Ischemia

14.4.1 Moyamoya Disease

14.4.2 Sickle Cell Disease

14.4.3 Hypoxic Ischemic Encephalopathy

14.5 Trauma

14.5.1 Battered Child Syndrome

14.5.2 Diffuse Axonal Injury and Brain Contusion

14.6 Encephalopathies

14.6.1 Mitochondrial Encephalopathy

14.6.2 Acute Necrotizing Encephalopathy

14.6.3 Hypertensive Encephalopathy

14.7 Infections

14.7.1 Encephalitis

14.7.2 Brain Abscess

14.8 Brain Tumor

14.9 Dysmyelination and Demyelination

14.9.1 Pelizaeus–Merzbacher Disease

14.9.2 Vanishing White Matter Disease

14.9.3 Metabolic or Toxic Leukoencephalopathies

14.9.4 Multiple Sclerosis

14.9.5 Osmotic Myelinolysis

14.10 Conclusion

References

15 How to Use This Book

Table 1 Differential diagnoses for lesions with a high diffusion signal associated with low ADC and iso intense T2 signal

Table 2 Differential diagnoses for lesions with a high diffusion signal associated with iso-high ADC and a high intense T2 signal

Table 3 Differential diagnoses for lesions with a high diffusion signal associated with a low ADC and high intense T2 signal

Table 4 Differential diagnoses for lesions with an iso diffusion signal associated with a high ADC and high intense T2 signal

Table 5 Differential diagnoses for lesions with a low diffusion signal associated with a high ADC and high intense T2 signal

Table 6 Differential diagnoses for lesions with a low diffusion signal associated with a high ADC and iso intense T2 signal

Table 7 Differential diagnoses for lesions with artifacts

Subject Index
Diffusion occurs as a result of the constant movement of water molecules. Water makes up 60–80% of our body weight. The heat associated with our body temperature energizes the water molecules, causing them to “jerk” around randomly. This phenomenon is called “Brownian motion” after the scientist who first described it [1, 2]. It can be demonstrated by adding a few drops of ink to a still bucket of water. Initially, the ink will be concentrated in a very small volume, but it will quickly spread out (diffuse) and mix with the rest of the water. The speed of this process of diffusion gives physicists a measure of the property of water. Similarly, if we could put some “magic ink” into the brain tissue and follow its progress, we would gain knowledge about the brain tissue itself, as well as the kind of changes that may occur in the brain when it is affected by various disease processes.

1.1 Diffusion Imaging in MR

In the measurement of diffusion by MR, the “magic ink” is created by the magnetic field gradients [3]. When the patient enters the large tunnel of a static magnetic field, nuclear spins (small magnets inside each proton nucleus) are lined up along the direction of the big magnet. Magnetic field gradients of certain duration will then add a smaller magnetic field to spins located in different regions within the tissue. This is similar to marking the spins with “magic ink”. By applying another gradient pulse at a later time, information is obtained about how much the spins have spread (diffused) during this time. This is analogous to comparing two snapshots, one taken at the moment when the ink is dropped into the water and one taken later, to obtain information about how the ink has spread in the water. However, the analogy of ink in water and what happens in the brain stops here.

1.2 Diffusion Imaging of the Brain

The brain is complex and full of fibrous, globular and other structures and membranes, which may or may not allow water to move freely. Because water spins will run into constituents of cells of different concentrations in different cellular compartments, they will spread at different rates when labeled with the “magic ink”. In addition, they will not behave in the same way when they are moving in different directions. As described below, the former is measured as the diffusion rate, diffusion coefficient, or simply diffusivity, depending on the unit used, and the latter is more formally described as diffusion anisotropy, with a variety of parameters defined [4–7].

1.3 Magnetic Resonance Principles of Diffusion Imaging

In order to perform diffusion studies, one needs to apply field gradients in addition to the radiofrequency and gradient pulses used for conventional MR imaging. A simplified version of the most commonly used pulse-gradient spin-echo pulse sequence for diffusion imaging is shown in Fig. 1.1. During the time evolution (TE), a pair of field gradients is used to perform “diffusion-encoding.” Each gradient in this gradient pair will last a time δ, with strength G (usually in units of mT/m), and the pair is separated by a time Δ. A more formal analysis will tell us that the intensity of the signal will depend on all these parameters, given by

$$S = S_0 \exp(-b \text{ADC}),$$

where ADC is the apparent diffusion coefficient, and b is the gradient factor, sometimes simply called the b-factor. S_0 is the signal intensity obtained when no diffusion gradients are used. The diffusion coefficient...
calculated in this way is usually called “apparent” because it is often an average measure of much more complicated processes in the tissues, as discussed below. The b-factor is related to the gradient parameters δ, G and Δ (Fig. 1.1), usually in the form $b = (\delta G)^2 \left(\Delta - \delta / 3\right)$, and is set by the experimenter. The formula for the b-factor tells us that we can increase diffusion weighting (DW) by increasing either gradient timing, δ or Δ, or gradient strength, G.

Equation 1.1 suggests that there is a reduction in the measured signal intensity when DW is applied, $b \neq 0$, which can be understood with some simple reasoning. As the diffusing spins are moving inside the field gradient (an additional magnetic field varying in intensity from location to location), each spin is affected differently by the field. The alignment of the spins with each other is thus destroyed. Since the measured signal is a summation of tiny signals from all individual spins, the misalignment, or “dephasing”, caused by the gradient pulses results in a drop in signal intensity; the longer the diffusion distance, the lower the signal (more dephasing; Fig. 1.2).

1.4 Apparent Diffusion Coefficient

From Eq. 1.1 it can be seen that when a fixed DW b-factor is used, tissues with a higher ADC value produce a lower signal intensity. Since brain cerebrospinal fluid (CSF) contains water that can move around freely, its ADC value is much higher than that of other brain tissues (either gray matter or white matter), which contain many more cellular structures and constituents. Consequently, in a DW image one typically sees dark CSF space (pronounced dephasing) and brighter tissue signals (less dephasing). It is also clear from Eq. 1.1 that if we collect a series of DW images with different b-values, we can calculate according to the expression for every pixel and obtain a parametric map of ADC values. The result is sometimes referred to as an ADC map. The calculated ADC map would have image pixel intensities reflecting the strength of diffusion in the pixels. Regions of CSF will therefore have higher intensity than other brain tissues – a reversal of DW images. There are several reasons why it is sometimes desirable to calculate an ADC map instead of just using DW images. One is the so-called T2-shine-through effect, which will be discussed in a later chapter. It can also be noted that S_0 in Eq. 1.1 is equal to the signal when no DW is used.
Figure 1.1 suggests that this is actually the same as would be obtained from a simple spin-echo sequence. In most clinical scanners, a long TE time (tens of milliseconds) is needed to accommodate the diffusion pulses, so \(S_0 \) is often T2-weighted.

1.5 Diffusion Represents a Molecular Event

Even though an image pixel size in the order of millimeters is used in most clinical MR imaging, the information provided by diffusion imaging reflects cellular or molecular events in much smaller scales. This is because the molecular diffusion process is highly modulated by these events. It can be shown that water spins diffuse about tens of micrometers during a typical MR imaging measurement time, which coincides with the dimension of typical cellular structures. If spins experience minimal obstruction from cellular structures during this time (such as for spins in the CSF space), the measured diffusion is “free” and “isotropic”, and ADC is just the intrinsic molecular diffusion coefficient. On the other hand, when diffusing spins run into cellular constituents and membranes, the value of ADC will be reduced when compared with the value in free space. What happens at the cellular level is represented schematically in Fig. 1.3. For patients with neurological abnormalities that change the water distribution in various cellular compartments, or change the ability of water to pass through cell membranes, the measured ADC values will also be altered [4–7]. Therefore the MR diffusion measurement offers a unique opportunity to obtain information about morphology otherwise inaccessible to conventional MR imaging methods. A wide range of pathological conditions can be explored with water diffusion measurements, as described later in this book. The measured ADC may also vary depending on the duration of the diffusion process, the direction in which diffusion is measured, and other factors. For diffusion in an anisotropic environment (such as in brain white matter, where bundles of axons with myelin layers wrapped around them make diffusion along the bundle much easier than across the bundle), diffusion becomes more complicated and a complete description of the process relies on what is called tensor analysis [8, 9].
1.6 Requirements in Clinical Diffusion Imaging

In a clinical environment, certain requirements are imposed for diffusion studies. A reasonable imaging time is often limited to several minutes for each type of measurement (T1 W, T2 W, diffusion, and others). Multiple slices (15–20) are required to cover most of the brain. A good spatial resolution (~5–8 mm thick, 1–3 mm in-plane) is required. A reasonably short TE (120 ms) to reduce T2 decay, and an adequate diffusion sensitivity (ADC ~0.2–1×10⁻³ mm²/s for brain tissues) are also needed. However, most essential is the almost complete elimination of sensitivity to subject motion during scanning. The best compromise so far in most clinical practices of diffusion imaging is the use of the multi-directional (x,y,z), 2 b-factor (b=0, and b~1/ADC) single-shot echo-planar imaging technique. Sometimes fluid attenuation with inversion recovery (FLAIR) is used to eliminate signal in the highly diffusive CSF space. Separation from relaxation effects is achieved with calculation of ADC instead of just using DW, and elimination of anisotropic diffusion is achieved by averaging the diffusion measurements from three orthogonal directions.

1.7 Setting the b-Value in Clinical DW Imaging

In a clinical setting it is advisable to maintain the same b-value for all examinations, making it easier to learn to interpret these images and become aware of the appearance of findings in various disease processes. The studies and discussions presented in this book are limited to DW imaging using b-factors of 0 and 1,000. An upper b-factor around 1,000 has been available for most clinical scanners until now and DW imaging at these standard values has been shown to be a sensitive tool in detecting and delineating restricted diffusion, e.g. in acute ischemic lesions of the brain. However, this technique has become clinically important in many other disease processes, which will be discussed in this book.
1.8 Future Trends in Clinical DW Imaging

Newer DW imaging techniques are using even higher b-values: 8,000 and more. Some recent articles that explore the use of higher b-values imply that they will simplify clinical diffusion imaging [10]. The increased b-values may free up routine DW imaging from its most pressing problem, “T2 shine-through”. At high b-values more attention will be focused on the actual physiological basis of restricted and facilitated diffusion. Clearly, much of the advantage of increased b-values may lie not with the diagnosis of lesions with restricted diffusion, especially acute infarcts, but with allowing a more complete understanding of other types of diseases.

The benefits of improved diffusion contrast at high b values come with the complication of prescription dependent measures of apparent diffusion. The ADC is conventionally derived from images taken at two different b-values. Because tissues are described by fast and slow components, the results of a two-point measurement will depend on the specific b-values chosen. If the lower b-value is set to 0 (a T2-weighted image) and the upper value is allowed to vary, the ADC will vary as a function of the upper value. Specifically, one would expect the measured ADC to decrease as the upper b-value increases.

Another area of DW imaging that will evolve over the next few years is diffusion tensor imaging, which is becoming available in many modern clinical scanners. When these and other techniques become more accessible and technically more mature, they may provide more specific measurements.

References

1. Brown R (1928) A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil Mag 4:161–173
2.1 Introduction

Diffusion-weighted (DW) images are usually obtained in three orthogonal orientations using spin-echo type single-shot DW echo-planar imaging with b-values around 0 and 1,000 s/mm². These three planes are combined into isotropic DW images, and apparent diffusion coefficient (ADC) maps are calculated on a pixel-by-pixel basis (Fig. 2.1). To avoid misinterpretations, it is important to recognize the normal findings on DW images and ADC maps.

2.2 Adult Brain

2.2.1 Low Signal in Basal Ganglia

Isotropic DW imaging in adult brain often shows low signal intensity in the basal ganglia (Fig. 2.1). This low signal is caused by normal iron deposition. The hypointensity on DW images of these areas is essentially related to T2 contrast, which is also shown on b₀ images. ADC maps usually show the areas as iso-intense, but it can be hyper- or hypointense depending on the paramagnetic susceptibility artifact of iron deposition.

2.2.2 Diffusion-Weighted Imaging of Gray and White Matter

Gray matter on DW images is generally hyperintense when compared with white matter. ADC of gray (0.76±0.13×10⁻³ mm²/s) and white matter (0.77±0.18×10⁻³ mm²/s) are, however, identical in the adult brain [1]. There are several reports about ADC increasing with age [2–7], but this increase is minimal and has been observed in all parts of the brain. It is usually more apparent in the white matter and lentiform nucleus than in the rest of the brain. Focal areas of DW hyperintensities are often seen in posterior limbs of internal capsule, corticospinal tracts, medial lemniscus and the decussation of the superior cerebellar peduncles (Fig. 2.1). These DW hyperintensities are caused by T2 contrast and represent normal findings without clinical significance. ADC maps are usually isointense in these areas.

2.2.3 Choroid Plexus

The choroid plexus occasionally shows prominent hyperintensity on DW imaging associated with mild elevation of ADC. In these situations the ADC is often higher than in white matter, but lower than in cerebrospinal fluid. The high DW signal is believed to represent gelatinous cystic changes of the choroid plexus, which can occur with age (Fig. 2.2).
Normal adult brain of a 40-year-old male without neurological deficits. **a** Isotropic DW image is obtained by combining b_0 image and three orthogonal unidirectional images (x, y, z axis). The bilateral globi pallidi have low signal on DW image as a result of physiological iron deposition (arrows). Corticospinal tracts have mildly high signal on DW image (arrowheads). Gray matter shows mildly high signal compared to white matter. These signal changes on isotropic DW imaging are normal and are caused by T2 contrast. **b** ADC map shows homogeneous ADC values in globi pallidi, corticospinal tracts, gray and white matter. **c** b_0 image shows low signal in globi pallidi (arrows), high signal in corticospinal tracts (arrowheads), and the gray–white matter contrast. **d–f** Diffusion weighting is applied in x axis (d), y axis (e), and z axis (f).
2.3 Pediatric Brain

2.3.1 Diffusion-Weighted Imaging and ADC of the Pediatric Brain

The normal brain of neonates and infants has significantly higher ADC values than the adult brain [8–13] (Fig. 2.3). ADC in neonates and infants varies markedly within different areas of the brain and is higher in white matter ($1.13 \times 10^{-3} \text{ mm}^2/\text{s}$) than in gray matter ($1.02 \times 10^{-3} \text{ mm}^2/\text{s}$) [13]. ADC at birth is higher in subcortical white matter ($1.88 \times 10^{-3} \text{ mm}^2/\text{s}$) than in both the anterior ($1.30 \times 10^{-3} \text{ mm}^2/\text{s}$) and posterior limbs of the internal capsule ($1.09 \times 10^{-3} \text{ mm}^2/\text{s}$). It is also higher in cortex and the caudate nucleus ($1.34 \times 10^{-3} \text{ mm}^2/\text{s}$) than in the thalamus and the lentiform nucleus ($1.20 \times 10^{-3} \text{ mm}^2/\text{s}$) [13]. With the exception of the cerebrospinal fluid (CSF), there is a trend of decreasing ADC with increasing maturation in most areas of the pediatric brain. These ADC changes seem to reflect a combination of different factors, including a reduction of overall water content, cellular maturation and white matter myelination. In neonates and infants, ischemia is usually global and can therefore resemble the normal image with elevated DW signal and decreased ADC. White matter diseases can also be mimicked by the normal, age-related appearance of DW imaging and ADC. Out of necessity, the ADC values will therefore have to be age related for a correct interpretation of the DW images of the pediatric brains.
2.4 Conclusion

Good knowledge of the DW appearance of the normal adult and pediatric brain and variations is necessary to avoid misinterpretation. In children it is also important to match the findings with those of normal children of the same age.

References

Figure 2.3 a, b

Normal neonatal brain. a The appearance of the pediatric brain on DW images varies with age. In neonates it is normal to have low DW signal intensities in the frontal deep white matter (arrows). b ADC values of the corresponding areas are high in neonatal brain, especially in the white matter (arrows). These ADC changes seem to reflect a combination of factors, including a reduction of overall water content, cellular maturation, and white matter myelination.
3.1 Introduction

There are many inherent artifacts and pitfalls in diffusion-weighted (DW) imaging of the brain that are important to recognize to avoid misinterpretations.

3.2 Influence of ADC and T2 on the DW Appearance

Diffusion-weighted images are inherently T2 weighted and changes in T2 signal characteristics will thus influence the appearance of DW images independent of tissue diffusibility [1–16]. The effect of T2 prolongation, so-called “T2 shine-through”, is well known. Less well known is the balance between apparent diffusion coefficient (ADC) and T2, sometimes called T2 washout. Also the effect of T2 shortening, or T2 blackout, and magnetic susceptibility effects will influence the DW appearance in many situations. This chapter will illustrate and discuss the effects of T2 and ADC on DW images.

3.2.1 Concepts

The signal intensity (SI) on DW images is influenced by T2, ADC, the b factor, the spin density (SD) and the echo time (TE), and is calculated as follows:

\[SI = SI_{b=0} e^{-bADC} \]

However,

\[SI_{b=0} = kSD(1-e^{-TR/T1})e^{-TE/T2} \]

For TR >> T1

\[SI = kSD e^{-TE/T2} e^{-bADC} \]

where \(k \) is a constant, TR is repetition time, and \(SI_{b=0} \) is the signal intensity on the spin-echo echo-planar image (b0 image) [1, 2, 5, 7, 8, 10, 12, 16].

To evaluate the tissue T2 and ADC, we should pay attention to the images discussed below as well as isotropic DW images and b0 images [3–5, 7, 8, 10, 11, 13–16].

3.2.2 Apparent Diffusion Coefficient Maps

To evaluate the diffusibility, ADC is calculated as:

\[ADC = -\ln (SI/SI_{b=0})/b \]

Subsequently, increased ADC causes decreased SI on DW images, and decreased ADC causes increased SI on DW images [3–5, 7, 10, 15, 16].

3.2.3 Exponential Images

To remove the T2-weighted contrast, the DW image can be divided by the b0 image to create an “exponential image” [4, 7, 10, 15].

The signal intensity (\(SI_{exDWI} \)) on the exponential image is calculated as:

\[SI_{exDWI} = SI / SI_{b=0} = e^{-bADC} \]

Therefore, this image can eliminate the effect of T2. Contrary to ADC maps, hyperintensity on exponential DW images means decreased ADC, and hypointensity means increased ADC.
3.3 Clinical Conditions

3.3.1 T2 Shine-through

This is a well-known phenomenon that causes hyperintensity on DW images by means of T2 prolongation [3–5, 7, 8, 10, 11, 15, 16]. If ADC is decreased at the same time, this can result in an accentuation of the hyperintensity on DW images (Figs. 3.1, 3.2 and 3.3).

Figure 3.1 a–e

T2 shine-through in a 35-year-old female with multiple sclerosis and weakness of the lower extremities. a T2-weighted image shows several hyperintense lesions, with the largest one in the right frontal lobe (arrow). b On T1-weighted image the lesion was hypointense (arrow) and did not enhance with contrast (not shown). c On DW image the lesion is hyperintense (arrow). d ADC map also shows hyperintensity in the lesion (1.2×10⁻³ mm²/s; arrow). e Exponential image eliminates the T2 effect and shows the lesion to be hypointense (arrow). This confirms that the hyperintensity on DW image is due to a T2 shine-through.
Figure 3.2 a–e
T2 shine-through in a 45-year-old female with seizures caused by anaplastic astrocytoma. a T2-weighted image shows a hyperintense lesion in the left frontal lobe (arrow). b On T1-weighted image the lesion is hypointense with peripheral hyperintense area (arrow). The lesion did not enhance with contrast (not shown). c DW image shows hyperintensity (arrow). d ADC map also shows hyperintensity in the lesion (0.98–1.35×10⁻³ mm²/s; arrow). e Exponential image eliminates the T2 effect and shows the lesion to be hypointense (arrow). This confirms that the hyperintensity on DW image is due to a T2 shine-through.
Figure 3.3 a–f

T2 shine-through and restricted diffusion in a 56-year-old male with right-sided weakness due to acute infarction. MR imaging obtained 24 hours after the onset of symptoms. a FLAIR image shows a hyperintense lesion in the left middle cerebral artery territory. b On T1-weighted image the lesion is hypointense. c On T2-weighted image (b₀) the lesion is hyperintense. d DW image also shows hyperintensity in the lesion. e ADC map shows hypointensity in the lesion (0.27–0.45×10⁻³ mm²/s). f On the exponential image, which eliminates the T2 effect, the lesion remains hyperintense. This confirms that the DW hyperintensity is due to both restricted diffusion and T2 prolongation.
3.3.2 T2 Washout

This implies that isointensity on DW images is the result of a balance between hyperintensity on T2-weighted images and increased ADC [13, 14, 16]. This is often seen in vasogenic edema, where the combination of increased ADC and hyperintensity on T2-weighted images will result in isointensity on DW images (Fig. 3.4).

To the best of our knowledge there have been no systematic reports on pathological conditions with isointensity on DW images, caused by a balance of hypointensity on T2-weighted images and decreased ADC.

Figure 3.4 a–d
T2 washout in a 45-year-old female with hypertension, seizures and posterior reversible encephalopathy syndrome. a FLAIR image shows hyperintense lesions in the bilateral occipital lobe (arrows). b T2-weighted image (b0) also shows hyperintensity of the lesions (arrows). c DW image shows mild hyperintensity in the lesions. d ADC map shows hyperintensity of the lesions (1.18–1.38×10^{-3} mm²/s; arrows). With the strong T2 prolongation one would expect more hyperintensity on the DW image, but the T2 shine-through effect is reduced by the hyperintensity on the ADC, resulting in a balance between increased diffusibility and hyperintensity on the T2-weighted image (T2 wash-out).
3.3.3 T2 Blackout

This indicates hypointensity on DW images caused by hypointensity on T2-weighted images and is typically seen in some hematomas [9,16]. Paramagnetic susceptibility artifacts may occur in this situation (Figs. 3.5 and 3.6).

Figure 3.5 a–e
T2 blackout in lung cancer metastasis in a 62-year-old male with adenocarcinoma of the lung. a T2-weighted image shows a hypointense mass (arrow) with surrounding edema in the left cerebellar hemisphere. b Gadolinium-enhanced T1-weighted image shows heterogeneous enhancement of the mass (arrow). c T2-weighted image (b0) also shows hypointensity in the lesion with surrounding hyperintense edema (arrow). d ADC map shows central hyperintensity (1.63–2.35×10⁻³ mm²/s; arrowhead) and peripheral hypointensity (1.13–1.38×10⁻³ mm²/s; arrow) of the mass. There is also hyperintensity of the surrounding tissue, consistent with vasogenic edema. e DW image shows heterogeneous hypointensity of the mass (arrow) and isointensity of the surrounding edema. The DW hypointensity of the mass (arrow) is due to the increased diffusibility and hypointensity on T2-weighted image. The isointensity in the surrounding edema is due to the balance between the increased diffusibility and hyperintensity on T2-weighted image (T2 washout)
Pitfalls and Artifacts of DW Imaging

Figure 3.6 a–d

T2 blackout from susceptibility artifacts in acute hemorrhage (deoxyhemoglobin and intracellular met-hemoglobin) in a 74-year-old male with left-sided weakness. MR imaging was obtained 24 hours after the onset of symptoms.

a. T2-weighted image shows hypointense lesions in the right frontoparietal lobes (arrows deoxyhemoglobin and intracellular met-hemoglobin) with areas of surrounding hyperintensity consistent with edema (arrowheads).

b. T1-weighted image shows the heterogeneous lesion with hypointensity (arrow deoxyhemoglobin) and hyperintensity (arrowheads intracellular met-hemoglobin).

c. DW image shows hypointensity (arrows deoxy-hemoglobin and intracellular met-hemoglobin) and hyperintensity in region of edema (arrowhead). The surrounding hyperintense rims (small arrowheads) are due to magnetic susceptibility artifacts.

d. ADC could not be calculated accurately in the T2 “dark” hematoma due to magnetic susceptibility artifacts (arrows). The surrounding areas of hypointensity (arrowhead) probably correspond to cytotoxic edema surrounding the hematoma. This example shows how T2 hypointensity from susceptibility effects can produce a complex appearance in and around cerebral hemorrhage.
3.4 Artifacts

Numerous artifacts can be generated during acquisition of DW images. There are five main artifacts of single-shot DW echo-planar imaging:

1. Eddy current artifacts due to echo-planar imaging phase-encode and readout gradients, and motion-probing gradient pulses for diffusion weighting
2. Susceptibility artifacts
3. N/2 ghosting artifacts
4. Chemical shift artifacts
5. Motion artifacts

We will discuss each artifact separately.

3.4.1 Eddy Current Artifacts

Eddy currents are electrical currents induced in a conductor by a changing magnetic field. Eddy currents can occur in patients and in the MR scanner itself, including cables or wires, gradient coils, cryoshields and radiofrequency shields [17]. Eddy currents are particularly severe when gradients are turned on and off quickly, as in echo-planar imaging pulse sequences. Gradient waveforms are distorted due to eddy currents, which results in image artifacts, including spatial blurring and misregistration. In single-shot DW echo-planar imaging, eddy currents are due to both echo-planar imaging gradients and motion-probing gradients, which lead to image distortions (Fig. 3.7). Correction of image distortion is essential to calculate ADC values and especially to quantify anisotropy with diffusion tensor imaging. **Correction methods:** (1) correction of distortion by using post-processing [18–21], (2) pre-emphasis or pre-compensation, purposely distorting the gradient-driving currents [22, 23], (3) shielded gradients, redesigning the magnet to incorporate shielding coils between the gradient coils and main windings [24].

3.4.2 Susceptibility Artifacts

Single-shot echo-planar imaging is sensitive to susceptibility artifacts, especially frequency and phase errors due to paramagnetic susceptibility effects. These artifacts are seen near the skull base, especially near the air in the sinus and mastoid (Fig. 3.8). Susceptibility artifacts are more severe along the phase-encoding direction and phase encoding should thus be along the anterior–posterior direction for axial DW images. Coronal and sagittal DW images are helpful in detecting lesions in certain locations, such as the hippocampus and brain stem, and to identify susceptibility artifacts (Fig. 3.9). Increased matrix size leads to elongation of readout time, which causes even larger image distortions. **Correction methods:** (1) multi-shot echo-planar imaging (to reduce the readout time, to enable high-resolution scan) [25, 26], (2) line scan [27,28], (3) single-shot fast spin echo (SSFSE) [29, 30], (4) periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER) [31, 32], (5) sensitive encoding (SENSE)/array spatial and sensitivity-encoding technique (ASSET), undersampling of k-space enables effective band width and shortens readout time, providing thin section and high-resolution matrix [33].

Figure 3.7 a,b

Misregistration due to eddy current artifact. **a, b** Misregistration artifact is noted in the occipital regions (arrows) on DW image (a) and the ADC map (b). Gradient waveforms are distorted due to eddy currents, which results in this misregistration.
Susceptibility artifact. Susceptibility artifacts are seen near the air content of the mastoids (arrows). This is generally prominent in echo-planar sequences.

Susceptibility artifact in coronal and sagittal plane DW images. Coronal DW image (a) and the ADC map (b) are used to evaluate the hippocampus, but susceptibility artifacts distort the image near the mastoids. Sagittal DW image (c) and the ADC map (d) show a pontine infarct as hyperintense with decreased ADC (arrowhead). Susceptibility artifacts are caused by air in the ethmoid and sphenoid sinuses (arrows).
3.4.3 N/2 Ghosting Artifact (Nyquist Ghost)

N/2 ghosting artifact occurs when there are differences between the even and odd lines of the k-space. Phase error is due to hardware imperfections (eddy currents, imperfect timing of even and odd echo, imperfect gradients, and magnetic field inhomogeneity), which can be produced by on-off switching during readout gradients. The ghosts in this artifact are always shifted by half of the field of view in the phase-encoding direction (Fig. 3.10). This ghost can produce severe artifacts when ADC maps are calculated. **Correction methods:** (1) reduce eddy currents, (2) adjust gradients and magnetic field homogeneity, (3) high b-value, (4) fluid-attenuated inverse-recovery (FLAIR) DW imaging (reduce cerebrospinal fluid signal) [33, 34].

3.4.4 Chemical Shift

In echo-planar DW imaging, chemical shift artifacts due to the different resonance frequencies in water and fat are produced along the phase-encoding direction, while they are along the frequency-encoding direction in conventional spin-echo type MR imaging. This artifact is more severe in echo-planar imaging than in conventional spin-echo type MR imaging. Effective fat suppression techniques, such as the chemical shift selective (CHESS) method and the spectral selective radiofrequency excitation method are necessary. **Correction methods:** appropriate fat suppression techniques.

3.4.5 Motion Artifacts

The sources of motion artifacts include gross head motion, respiratory motions, cardiac-related pulsations and patient bed vibration due to gradient pulses. Single-shot DW echo-planar imaging has relatively low sensitivity to patient motion, because each image is acquired in about 100–300 ms and the total acquisition time is less than 40 s. If one of the x, y, z or b0 images is corrupted by motion artifacts during a scan, or if patient head motion occurs between scans, the isotopic DW images and the ADC maps will have these artifacts (Figs. 3.11 and 3.12). In those cases, unidirectional and b0 images from the raw data of DW imaging can be free from the motion artifacts and remain diagnostically useful. Long (tens of ms) gradient pulses to reach sufficient diffusion weighting often increase sensitivity to motion. **Correction methods:** (1) For a fixed b-factor, use high-gradient amplitude but reduce gradient pulse duration to minimize the sensitivity to motion, (2) post-processing to correct for phase error (Navigator method) [35–37], (3) elimination of phase-encode step (line scan method, projection reconstruction), (4) minimize time for phase error accumulation (single-shot echo-planar imaging, hybrid method with multishot echo-planar imaging), (5) SSFSE, (6) PROPELLER [38], (7) SENSE.

![Figure 3.10 a,b](image_url)

N/2 ghosting artifact. a DW image shows N/2 ghosting artifacts (arrows), which are always shifted by half of the field of view in the phase-encoding direction. b On the ADC map severe N/2 ghosting artifacts are also seen (arrows)
Motion artifacts due to head motion during the scan of a patient with status epilepticus.

a: It is difficult to evaluate the DW image because of severe motion artifacts.
b: In the raw data of the DW imaging, the x axis image is corrupted by head motion during the scan.
c: The y axis image is free from the artifacts. This image shows a hyperintense lesion in the left hippocampus (arrow).
d: ADC map of y axis image also shows decreased ADC of the lesion (transferred to a workstation for image processing, using a home-made code, which is based on the numerical computation software).
Figure 3.12 a–f

Motion artifacts due to head motion between the scans. Chronic infarcts in the right basal ganglia. a DW image has motion artifacts due to head motion between the scans. This image appears overlapping of b₀, and x, y, z axis images. b ADC map also shows severe motion artifacts. c b₀, d x axis, e y axis, f z axis. b₀ and unidirectional images are all free from the artifacts.
3.5 Conclusion

Diffusion-weighted images are inherently T2 weighted and the interpretation of signal intensity on DW images requires a correlation between b_0 images, ADC maps and exponential images to uncover the underlying pathophysiologic condition. It is also important to understand a variety of artifacts to avoid misinterpreting the DW images. Understanding inherent artifacts and the way to reduce the artifacts on DW imaging will improve the quality and accuracy of DW imaging.

References

4.1 Characterization and Classification of Brain Edema

Brain edema is defined as accumulation of excess fluid in cells or in the extracellular space. Brain edema can be classified as cytotoxic (cellular), vasogenic [1] or interstitial. Cytotoxic and vasogenic edema usually coexist in pathological conditions such as infarction, hypoxic ischemic encephalopathy, trauma, or multiple sclerosis. The edema may primarily be either vasogenic or cytotoxic, but as the process evolves over time, the injury leads to a combination of cellular swelling and vascular damage. Interstitial edema occurs with hydrocephalus, water intoxication, or plasma hyposmolarity.

Conventional MR imaging does not always allow distinction between the different forms of edema. However, diffusion-weighted (DW) imaging, which is based on the microscopic movement of water molecules in brain tissue, can differentiate cytotoxic edema from vasogenic and interstitial edema [2].

4.2 Definition and Classification of Cytotoxic Edema

Cytotoxic or cellular edema is an abnormal uptake of fluid in the cytoplasm due to abnormal cellular osmoregulation. This kind of edema may accompany various processes that damage cells, such as ischemia, trauma, toxic metabolic disease, demyelination, and even the early phase of degeneration. Classification of the involved cell types may explain the pathophysiology and different prognosis of these conditions.

In normal brain tissues, the gray and white matters are mainly composed of neurons, glial cells, axons, and myelin sheaths (Fig. 4.1). In the gray matter, cytotoxic edema occurs mainly in neurons and glial cells (Fig. 4.2). In the white matter, however, cytotoxic edema occurs in glial cells, axons (axonal swelling) (Fig. 4.3) and myelin sheaths (intramyelinic edema) (Fig. 4.4) [1].

4.3 Pathophysiology of Cytotoxic Edema

4.3.1 Energy Failure

In ischemia or hypoxia, cytotoxic edema is mainly caused by energy failure [3]. The insult initiates substrate depletion, which leads to a decrease in intracellular ATP used for oxidative phosphorylation, and a failure of the sodium–potassium pump. This will cause an influx of sodium and calcium into the cells, subsequently increasing the osmotic gradient and the transport of water into the cells, resulting in cellular swelling. Moreover, in an attempt to produce ATP, the cells switch from oxidative phosphorylation to anaerobic glycolysis, resulting in intracellular lactate. This will further increase the osmotic gradient across the cell membrane, which exacerbates the cytotoxic edema.
Brain Edema

Figure 4.1
Fig. 4.1. Normal brain tissue is mainly composed of neurons, glial cells (astrocytes or oligodendrocytes), axons and myelin sheaths surrounded by an extracellular space.

Figure 4.2
Cytotoxic edema occurs in neurons and glial cells (astrocytes and oligodendrocytes). These cells are vulnerable to ischemia. As cells increase in size, there is a shift of water from extracellular to intracellular compartments, which can occur without a net gain in water (compared with Fig. 4.1). Cytotoxic edema results in increased intracellular space and decreased extracellular space, which may cause a decrease in ADC.
4.3.2 Excitotoxic Brain Injury

Energy failure is not the only mechanism responsible for the cytotoxic edema [3]. Membrane transporters can be triggered or inhibited by a range of excitatory neurotransmitters, such as glutamate and aspartate, but also other agents such as cytokines and free radicals [4]. Any cell, including neuron, glia, axon and myelin sheath can be a target of these toxic substances; however, reactive astrocytes play a significant role in cellular and tissue repair by detoxifying various noxious substances (such as glutamate, free radical, ammonia and metals). Neuropathologic examination shows that the acutely reactive astrocytes have swollen cytoplasm and neutrophil, consistent with cytotoxic edema [5].

High glutamate in the synaptic and extracellular space is one of the important mechanisms associated
with cytotoxic edema of various diseases, including infarction, hypoxic ischemic encephalopathy, status epilepticus, and traumatic brain injury, such as diffuse axonal injury, contusion and shaken baby syndrome [6, 7]. Increased extracellular glutamate is a direct cause of excitotoxic brain injury. In acute excitotoxic injury, increased extracellular glutamate results from an increased release/leakage of glutamate or a decreased re-uptake (Fig. 4.5). Neuronal glutamate is released from the pre-synaptic terminal into the synaptic cleft. The glutamate binding to N-methyl-D-aspartate (NMDA) receptors allows entry of Ca^{2+} into the post-synaptic neuron, which results in necrotic cell death or apoptosis. The glutamate binding to non-NMDA receptors allows entry of Na^+ into the post-synaptic neuron, resulting in cytotoxic edema of the neuron. Re-uptake of extracellular glutamate takes place at the pre-synaptic terminals and in adjacent astrocytes. Similar mechanisms also cause cytotoxic edema in the astrocyte.

4.4 Diffusion-Weighted Imaging and Cytotoxic Edema

Cytotoxic edema characteristically shows hyperintensity on DW images associated with decreased apparent diffusion coefficient (ADC). The precise mechanisms underlying the reduction in ADC are unknown. The most common explanation is a shift of extracellular water to the intracellular space. However, the observed 40% reduction of ADC cannot be explained by an increase in intracellular water alone, even if all extracellular fluid went intracellular [9]. There must be a reduction in diffusivity of water molecules in the intracellular space which may be explained by the large number of intracellular organelles, that may act as obstacles for diffusion. A decrease in intracellular ADC could also be due to a decrease in the energy-dependent intracellular circulation or an increase in cytoplasmic viscosity from a swelling of intracellular organelles [10].

Tumors, hemorrhages, abscesses and coagulative necrosis also result in a decrease in ADC. The mechanisms underlying the reduction in ADC in those lesions are also unknown, but can be related to hypercellularity or hyperviscosity of the pathological tissue [11, 12].
4.4.1 Conditions that Cause Cytotoxic Edema, and Reversibility

Cytotoxic edema of neuron and glial cells may accompany infarction [13–16], hypoxic ischemic encephalopathy [17, 18], traumatic brain injury [19, 20], status epilepticus [6, 21, 22], encephalitis [23] and Creutzfeldt–Jakob disease [24, 25].

Neurons and glial cells are the cells most vulnerable to ischemia and hypoxia, but if the ischemia is severe, myelin sheaths and axons may also be involved [3]. These differences among cell types for cytotoxic edema can explain the different time courses of DW abnormalities between gray and white matter in cerebral infarction and hypoxic ischemic encephalopathy. In arterial infarction, the area of cytotoxic edema

Figure 4.6 a–e

Hyperacute cerebral infarction (3 h after onset) in a 39-year-old woman with decreased consciousness. Her neurologic functions improved after intra-arterial thrombolytic therapy. a T2-weighted image appears normal. b DW image shows a hyperintense lesion in the right corona radiata (arrow) and a slightly hyperintense lesion in the right middle cerebral artery (MCA) territory, which may correspond to ischemic penumbra (arrowheads). c ADC map shows a definite decrease in ADC in the corona radiata and slightly decreased ADC in the right MCA territory (arrowheads). d On DW image after fibrinolytic therapy (3 days after onset), the hyperintense lesion in the cortical area is largely resolved, with remaining small, peripheral infarcts. Early cytotoxic edema with slightly decreased ADC does not always result in infarction. e Another case. Pathological specimen of cytotoxic edema in the cortex in an acute stroke shows swelling of neurons (arrows) and glial cells (arrowheads) (hematoxylin–eosin stain, original magnification ×200). (From [36])
Brain Edema

on DW imaging seems to be irreversibly damaged tissue, resulting in coagulative or liquefactive necrosis. However, mild decreased ADC in the ischemic penumbra can be reversible after intra-arterial or intravenous fibrinolytic therapy (Fig. 4.6). In transient ischemic attacks and venous infarctions, an initially abnormal signal on DW imaging has occasionally been reversed, partially or completely, on follow-up MR images. Hypoxic ischemic encephalopathy (Fig. 4.7) and traumatic brain injury are usually related to irreversible brain damage.

In status epilepticus, cytotoxic edema is often reversed, partially or completely, but may result in selective necrosis, brain atrophy or gliosis (Fig. 4.8). A cytotoxic edema of reactive astrocytes in the acute phase can be responsible for the reversible signal abnormalities [6].

In Creutzfeldt–Jakob disease, the area of cytotoxic edema will eventually develop into prominent brain atrophy (Fig. 4.9). Axonal swelling can also accompany diffuse axonal injury (Fig. 4.10) and the early phase of wallerian degeneration (Fig. 4.11) [26].

Intramyelinic edema may accompany the acute phase of multiple sclerosis (Fig. 4.12) [27, 28], toxic or metabolic leukoencephalopathy (Fig. 4.13) [29–31] and osmotic myelinolysis [32]. Partially or completely reversible lesions are also seen in these diseases. The explanation for this reversibility may be an intramyelinic edema where the edema is often primarily located in the intramyelinic cleft [1].
Figure 4.8 a–d
Status epilepticus in a 2-year-old girl 24 hours after onset.

Figure 4.8 a: T2-weighted image shows diffuse cortical hyperintensity in the entire left hemisphere cortex.

Figure 4.8 b: DW image shows diffuse hyperintensity mainly in the gray matter of the left hemisphere.

Figure 4.8 c: ADC map shows decreased ADC of these lesions.

Figure 4.8 d: Diffuse brain atrophy and hyperintense lesions in the left hemisphere are seen on a 5-month follow-up T2-weighted image.
Figure 4.9 a–d
Creutzfeldt–Jakob disease in a 72-year-old woman with progressive dementia. a T2-weighted image demonstrates mildly increased signal bilaterally in the caudate nuclei and putamina (arrows). b DW image clearly demonstrates bilateral, symmetrical increase in signal intensity in the caudate nuclei and putamina. c ADC map shows these lesions as decreased ADC. d 4-month follow-up MRI shows prominent brain atrophy. (From [37])

Figure 4.10 a–c
Diffuse axonal injury in an 18-year-old female 48 h after motor vehicle accident. a T2-weighted image shows mildly hyperintense lesions in the corpus callosum and the white matter of bilateral frontal lobes (arrows). b DW image demonstrates diffuse axonal injury as high signal intensity, representing cytotoxic edema (arrows). c ADC map shows decreased ADC lesions in the anterior to posterior corpus callosum and the frontal deep white matter (arrows). (From [37])
An early phase of wallerian degeneration in a 20-year-old woman with subacute infarction (72 h after onset).

a T2-weighted image shows hyperintense lesion involving the right basal ganglia, the posterior limb of the internal capsule and corona radiata, representing an acute infarct.

b T2-weighted image shows hyperintense lesion along the ipsilateral corticospinal tract (arrow) and substantia nigra (arrowheads) in the cerebral peduncle, which represents wallerian and transneuronal degeneration secondary to the infarction in the right basal ganglia and corona radiata.

c DW image shows a hyperintense spot in the right cerebral peduncle associated with decreased ADC, which may represent axonal swelling in the early phase of wallerian degeneration.

e Another case of the early phase of wallerian degeneration. Histopathology shows axonal swelling as an enlarged axon in the corticospinal tract in the brain stem (arrows) (hematoxylin–eosin stain, original magnification ×200)
Multiple sclerosis in a 36-year-old woman with subacute onset of progressive aphasia.

a. T2-weighted image shows a hyperintense lesion in the periventricular white matter (arrow).
b. Gadolinium T1-weighted image with magnetization transfer contrast shows rim enhancement of this lesion.
c. DW image shows a combination of moderately hyperintense and significantly hyperintense lesions.
d. On ADC, the moderately hyperintense lesion on DW image has an increased ADC, which may represent demyelination (arrows), while the markedly hyperintense lesion on the DW image, with decreased ADC, may represent intramyelinic edema (arrowheads).
e. Another case. Histopathology shows that intramyelinic edema (arrows) is located in the periphery of a plaque (PL) (Luxol fast blue PAS stain, original magnification ×40).
f. Magnification of (e). Intramyelinic edema is seen along the myelin sheaths (arrows) (Luxol fast blue PAS stain, original magnification ×200). (From [36])
4.5 Vasogenic or Interstitial Edema

Vasogenic edema is characterized by dysfunction of the blood–brain barrier, allowing an abnormal passage of proteins, electrolytes and water into the extracellular compartments. Fluid leaving the capillaries enlarges the extracellular space, predominantly in the white matter. Osmotic and hydrostatic gradients will also cause interstitial edema, increasing the extracellular space as water shifts from blood vessels and/or ventricles. Intracellular components are relatively preserved (Fig. 4.14), although some swelling of myelin sheaths and astrogliosis may be seen histologically [3].

In vasogenic and interstitial edema, electron microscopy has shown an increase of interstitial spaces in white matter amounting to 1000 nm, versus 60 nm in normal white matter [33]. These enlarged extracellular spaces, with free water, may be the dominant source for the total brain water signal, resulting in increased ADC.
4.5.1 Conditions that Cause Vasogenic Edema

Vasogenic edema is related to multiple pathological conditions. It typically occurs in the vicinity of brain tumors, intracerebral hematomas, infarctions, cerebral abscesses, contusions and in the reversible posterior leukoencephalopathy syndrome [34]. Venous ischemia at first shows a vasogenic edema due to venous congestion and a breakdown of the normal blood–brain barrier. Progressive venous ischemia results in reduced capillary perfusion pressure and cytotoxic edema [35].

Pathological specimens of vasogenic edema show leakage of plasma from the vessel and diffuse expansion of the extracellular space in the white matter (Fig. 4.15).

Diffusion-weighted images show low signal intensity, isointensity or slightly increased intensity, depending on T2 contrast, and an increase in ADC that reflects free water in the enlarged extracellular space (Fig. 4.16).
4.6 Conclusion

4.6.1 Cytotoxic or Cellular Edema

Cytotoxic or cellular edema is hyperintense on DW images and associated with decreased ADC. It can occur in neurons, glial cells, axons (axonal swelling) and myelin sheaths (intramyelinic edema). Cytotoxic edema may be present not only in infarction/ischemia and trauma, but also in status epilepticus, the acute phase of multiple sclerosis, toxic or metabolic leukoencephalopathy, osmotic myelinolysis, encephalitis, and presumably in the early phase of transneuronal or wallerian degeneration and Creutzfeldt–Jakob disease. The differential diagnosis for hyperintense DW images also includes tumor, abscess and hemorrhage, conditions that also may have decreased ADC. The decreased ADC in these latter conditions may be due to hypercellularity and/or hyperviscosity rather than the cytotoxic edema.

4.6.2 Vasogenic Edema

Vasogenic edema has a variable appearance on DW images, with increased ADC. It is reversible but occasionally associated with cytotoxic edema, which usually is not reversible. DW images and ADC maps are useful for understanding MR images of various diseases with cytotoxic and/or vasogenic edema. These images are more sensitive than conventional MRI to determine the extent of edema in both gray and white matter.

References

Chapter 4
Brain Edema

5.1 Clinical Significance and Therapeutic Considerations for Brain Infarcts

Stroke is the third leading cause of death in the USA, and cerebral infarction is the most common cause of disability among adult Americans. Until recently these patients were mainly imaged with computed tomography (CT) to establish if the cause of stroke was ischemic or hemorrhagic. Treatment was above all aimed to reduce the risk for further embolic events. In a few instances intra-arterial or intra-venous thrombolysis has been instituted, but in most cases this is not feasible because of the narrow therapeutic window. Thrombolytic treatment has a risk of hemorrhagic complications, which is why it has become important to establish the potential benefit of thrombolysis for the individual patient. CT as well as conventional MR imaging have sensitivities below 50% with regard to detection of infarcts in the hyperacute stage, within 6 hours.

5.1.1 Stroke Mimickers

There is a long list of conditions that mimic the symptoms of an acute ischemic stroke. The most common ones include intracranial hemorrhage, migraines, seizures, functional and metabolic disorders, and also vasogenic edema syndromes. It is important to visualize and verify that an ischemic lesion is indeed the cause of the clinical symptoms before therapy is initiated, as these non-ischemic stroke mimickers should not be treated with thrombolysis and such therapy could actually be harmful. Moreover, in older patients it is not uncommon to detect older lesions with prolonged T2 that are indistinguishable from acute lesions using conventional MR imaging.

5.1.2 Diffusion-Weighted Imaging

In recent years, diffusion-weighted (DW) imaging has been proven as the most sensitive MR imaging technique to diagnose hyperacute cerebral infarction. The detection of acute ischemic lesions is based on alterations in motion of water molecules. It is a very sensitive technique, which is not significantly affected by patient motion. DW imaging of the brain can usually be accomplished in less than 2 minutes.

The ischemic event results in restricted diffusion of the affected tissue, which can be seen as early as 30 minutes after ictus. A few rare cases of false-negative DW imaging have been reported [1, 2]. These infarcts were seen on perfusion-weighted images and later on DW imaging [1, 2].

5.2 Diffusion-Weighted Imaging and Pathophysiology of Cerebral Infarction

The abnormal imaging finding of cerebral and cerebellar infarctions is an area of hyperintensity on DW imaging of the involved vascular territory. This hyperintensity is presumed to be caused by cytotoxic edema as a result of cessation of ATP production. Under normal circumstances, ATP maintains the Na+/K+ pump activity and other intracellular energy-related processes. When the Na+/K+ pump is not functioning properly, an inability to remove excess water from the cells develops, resulting in intracellular edema. The outcome of this on DW imaging is restriction of water diffusion, which results in a signal increase on DW imaging and a decrease in diffusion shown as a reduced apparent diffusion coefficient (ADC) [3]. These findings in acute stroke usually represent irreversible damage of brain tissue, or infarction [4].
5.3 Apparent Diffusion Coefficient

The ADC is used to determine whether the signal abnormality on DW images is caused by restricted diffusion or a T2 shine-through effect, as seen in subacute–chronic infarctions. ADC represents the degree of diffusibility of water molecules and aids in detecting subtle fluid changes in the hyperacute–acute stages of ischemic stroke. Reduced diffusion is seen as an area of low signal intensity on ADC maps.

5.3.1 Explanation for Restricted Diffusion

Several mechanisms have been proposed to explain the restricted diffusion in ischemia. These include cellular necrosis, shift of fluid from extra- to intracellular spaces causing a reduction in size and increase in tortuosity of the extracellular space, but there is also rather strong evidence that at least parts of these findings relate to a reduction in intracellular diffusion [5].

Regions of decreased or restricted diffusion are best seen on DW imaging, while ADC maps will verify the findings by eliminating the T2 shine-through effect as a cause of the increased signal intensity on DW imaging. DW imaging and ADC can also show changes in diffusion that vary for the different stages of a stroke [6], and they can possibly distinguish between multiple strokes over time versus a single, progressive stroke by determining the time course of a cerebral infarction.

Apparent diffusion coefficient values may also be of help in the future to assist in selecting patients with salvageable tissue within an ischemic penumbra for thrombolysis. Intermediate ADC values are noted in the ischemic penumbra, indicating tissue at risk of infarction [7]. An approach that is used more often to select patients who may benefit from thrombolysis is by comparing DW imaging and perfusion MR imaging to look for hypoperfused but not diffusion-restricted regions. The mismatch between DW imaging and perfusion demonstrates affected tissue that is still salvageable and not yet infarcted: the penumbra.

5.4 Time Course of Infarction

Infarctions may be classified as hyperacute (less than 6 hours from time of onset of symptoms), acute (6 hours to 3 days), subacute (3 days to 3 weeks), or chronic (3 weeks to 3 months), each having its characteristic signal abnormalities (Table 5.1).

5.4.1 Hyperacute (< 6 Hours)

One of the main clinical applications of DW imaging is to detect a hyperacute cerebral infarction. This information is critical, particularly in cases of territorial thromboembolic infarction, as thrombolytic therapy can be started within the golden period of 3 hours from onset of symptoms. Such treatment can result in early reperfusion and reduce the extension of the infarction [3, 8]. The DW signal intensity is increased during the hyperacute stage (<6 hours), with corresponding low ADC, manifested as a dark area on the ADC map (Fig. 5.1).

| Table 5.1. Time course of thromboembolic infarction of the middle cerebral artery [7] |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| | < 6 hours | 3 days | 7 days | 30 days |
| T2 | Isointense | Bright | Bright | Bright |
| DW imaging | Bright | Very bright | Bright | Isointense |
| ADC | Dark | Very dark | Dark | Bright |
Hyperacute infarction (2 hours after onset) in a 39-year-old woman with decreased consciousness. The symptoms improved after intra-arterial fibrinolytic therapy.

Figure 5.1 a–d

- **a** T2-weighted image appears normal.
- **b** DW image shows a hyperintense lesion in the right corona radiata (arrows) and a slightly hyperintense lesion in the right middle cerebral artery (MCA) territory (arrowheads).
- **c** ADC map shows decreased ADC in the corona radiata (arrows) and slightly decreased ADC in the cortical area of the MCA territory (arrowheads).
- **d** On DW image after fibrinolytic therapy (3 days after onset), the hyperintense lesion in the cortical area mostly resolved with peripheral small infarcts. Early cytotoxic edema with mild decreased ADC does not always result in infarction after treatment.
5.4.2 Acute (6 Hours to 3 Days)

Almost all acute (6 hours to 3 days) stroke patients examined within 24 hours of onset of symptoms show abnormal signal intensity on DW imaging [9]. At this stage the infarctions show a further increase in DW signal intensity and also a lower ADC than in the hyperacute stage (Fig. 5.2).

Figure 5.2 a–c

Acute infarction (24 hours after onset) in a 56-year-old man with left hemiparesis. a T2-weighted image shows hyperintense lesions preferentially involving the right posterior frontal cortex and the right caudate region, sparing the right corona radiata (arrows). This finding is consistent with a relatively greater involvement of gray matter in the early infarction. b DW image shows the entire right MCA territory as hyperintense. c Decreased ADC is seen in the right MCA territory (arrows). However, some cortical lesions seem to be isointense or have a slightly increased ADC (arrowheads). This may reflect relative vulnerability for brain tissue. Hyperintensity on DW image of these cortical lesions is due to a T2 shine-through effect. DW images and ADC maps are more sensitive than conventional MRI for showing both gray and white matter involvement. ADC maps precisely reflect diffusion restrictions of the lesion within the gray and white matter.
5.4.3 Subacute (3 Days to 3 Weeks)

As the infarct continues to evolve into the subacute stage (3 days to 3 weeks), there is pseudo-normalization of the ADC, most likely attributed to a combination of (a) persistence of cytotoxic edema, and (b) development of vasogenic edema and cell membrane disruption, which results in increased amounts of extracellular water. The hyperintensity on DW imaging usually decreases within 1–2 weeks [10], but is still slightly hyperintense, while ADC is usually normalized within 10 days [11]. This time gap is thought to result from T2 shine-through effects on DW imaging in the late subacute infarction (Fig. 5.3).

Figure 5.3 a–d
Subacute infarction (10 days after onset) in a 19-year-old woman with loss of consciousness due to cerebral embolism after cardiac surgery for endocarditis. a T2-weighted image shows hyperintense lesions in the gray (arrowheads) and white matter (arrows) in the right hemisphere and left frontal region. b Gadolinium T1-weighted image with magnetization transfer contrast shows gyral enhancement in the cortical lesions, representing subacute infarcts. c DW image also shows hyperintense lesions in the right deep white matter (arrows), and gray matter of both frontal and right parieto-occipital regions (arrowheads). d The ADC map shows decreased ADC in the right deep white matter lesion (arrows), and normal or slightly increased ADC in the gray matter lesions (arrowheads). The prolonged decreased ADC in the white matter may reflect edema of myelin sheaths or axons.
5.4.4 Chronic (3 Weeks to 3 Months)

In the chronic stage (3 weeks to 3 months) of infarction, there is a more or less complete necrosis of the cells and at this stage there is an increase in ADC with a bright signal on the ADC map. On T2-weighted imaging the infarction is seen as a bright signal and this, in combination with the increased ADC, will result in a decrease in the signal on DW imaging; the infarction is isointense with surrounding tissue (Fig. 5.4).

Figure 5.4 a–d
Chronic infarction (10 months after onset) in a 54-year-old man with numbness and weakness of the left lower extremity. a Fluid-attenuated inversion-recovery (FLAIR) image shows chronic infarction in the right MCA territory as a cystic lesion with low signal intensity (cystic necrosis) and peripheral mild hyperintensity (gliosis) with atrophy (arrows). b b0 image shows the hyperintense cystic lesion (arrow). c DW image shows chronic infarction as hypointense cystic areas, and iso- or slightly hyperintense areas representing gliosis. d The ADC map shows marked increased ADC in the cystic necrosis (arrow), and slightly increased ADC in the gliotic periphery of the lesion (arrowheads).
5.5 Diffusion-Weighted Imaging and ADC Characteristics of Gray and White Matter Ischemia

Diffusion-weighted imaging and ADC maps are more sensitive than conventional MR imaging in demonstrating both gray and white matter ischemia (Figs. 5.1, 5.2 and 5.3). Changes in ADC values in acute infarctions seem to be different for gray matter and white matter. Thus, there is a more prominent decrease in ADC in white matter than in gray matter. This decrease also remains for a longer period than in gray matter (Figs. 5.2 and 5.3). One of the explanations for these phenomena is that necrosis may be completed earlier in gray matter infarctions than in white matter infarctions. Another explanation is that the prominent and prolonged decrease in ADC in white matter may reflect cytotoxic edema in different cell types, such as myelin sheaths, axons and glial cells [5, 6, 11].

5.5.1 Relative ADC

The time course of relative ADC is slightly different in gray matter when compared with the relative ADC in white matter [6]. Fiebach et al. observed a decrease in the relative ADC up to 3 days after the stroke and an increase in relative ADC from the third to the tenth day. The relative ADC increased slightly faster in gray matter than in white, which may be due to the variability between these two tissue types at any stage in the ischemic process, which leads to an altered diffusion. The observed diffusion contrast in gray and white matter could be caused by differences in the mismatch between blood supply and metabolic demand, the type and/or severity of the histopathologic response to ischemic injury (vulnerability) or mechanisms by which histopathologic changes lead to altered diffusion [12]. Regarding the histopathologic response, gray matter has traditionally been considered to be more vulnerable than white matter to early ischemia. More recent findings in experimental models of stroke have demonstrated that ischemic damage to white matter occurs earlier and with greater severity than previously appreciated [13]. However, if this is true for humans as well is to our knowledge, not yet established.

5.6 Reversibility and Treatment

Reversible ADC is rare but can be found in cases of transient ischemic attack in which imaging was performed within 4 hours, venous infarction, hemiplegic migraine and transient global amnesia. In these rare clinical settings, ischemia does not progress to complete necrosis but a minor subclinical, irreversible injury cannot be ruled out [5]. Clinically, the area of cytotoxic edema with bright DW signal seems to be irreversibly damaged resulting in permanent infarction. In early cerebral ischemia, mildly decreased ADC in the ischemic penumbra is indicative of viable tissue, but hypoperfused tissue at risk of infarction [14]. After intra-arterial or intravenous fibrinolytic therapy, or spontaneous lysis of a clot, abnormal signal in such areas is occasionally reversed, partially or completely (Figs. 5.4 and 5.5).
Reversible ischemia with cytotoxic edema (2 h from onset) in a 39-year-old man with left internal carotid artery dissec-
tion, presenting with right-sided weakness. a FLAIR image shows a subtle hyperintensity in the left frontoparietal white
matter (arrows), and linear hyperintensity representing slow flow in the peripheral arteries (arrowheads). b, c DW image
(b) shows a hyperintense lesion with decreased ADC (c) in the left frontoparietal white matter, representing cytotoxic
edema (arrows). d Perfusion-weighted image shows increase in mean transit time of the entire left anterior and MCA ter-
ritories. e Follow-up DW image 2 days later shows only a very subtle hyperintensity in the left frontal white matter (ar-
rows). f ADC was normalized, which is in accordance with clinical improvement. Early ischemia with cytotoxic edema may
have spontaneously resolved.
5.7 Watershed Infarction

Watershed infarction may develop between two major vascular territories or within a single territory in the supraganglionic white matter, a border zone of the superficial and deep penetrating arterioles (Fig. 5.6). As mentioned above, thrombolytic therapy within the first 3 hours from acute onset of symptoms can be effective to limit the size of the infarct under those circumstances. This is, however, not the case in watershed infarctions, as the basic etiology for these lesions is a significant reduction in perfusion secondary to an overall decrease in cerebral blood flow with subsequent poor perfusion pressure distally [7].

There is a difference in the evolution time of ADC between watershed and thromboembolic infarction, the latter having an earlier normalization (Table 5.2). However, T2 signal intensity is the same for both types of infarction. The reason for this difference most likely lies in the different pathophysiologic features and cerebral perfusion of the two stroke subtypes. It is important to note that strokes with different pathogenetic, hemodynamic mechanisms may have different evolution in the ADC courses as well [7].

Figure 5.6 a–d

Watershed infarction. 66-year old man presented with stroke and seizure. a T2-weighted image shows multiple hyperintense lesions in the right frontoparietal area (arrows). b, c DW image shows these lesions as very hyperintense with decreased ADC, representing acute infarcts in the watershed area between anterior and middle cerebral arteries (arrows). d MRA shows bilateral stenoses of internal carotid, and middle and anterior cerebral arteries (arrows).
5.8 Perfusion Versus Diffusion Imaging

Perfusion MR imaging may be more sensitive than DW imaging in the detection of a hyperacute cerebral infarction, but it currently entails extensive post-processing to create interpretable perfusion maps (Figs. 5.5 and 5.6). Moreover, MR perfusion determines the degree of blood flow reduction at the level of the cerebral microvasculature, but it will not tell if a hypoperfused area represents an area of infarction or severe hypoperfusion. Perfusion MR can, however, be matched with the infarcted area on DW images and can demonstrate the area of hypoperfusion outside the infarction – the so-called penumbra. This is the area where neural tissue is at risk for infarction if perfusion is not re-established and ischemic penumbra is assumed to be salvageable by means of thrombolysis.

5.9 Venous Infarction

Cerebral venous sinus thrombosis accounts for only a small percentage of cerebral infarctions in general. Because of its non-specific presentation, cerebral venous sinus thrombosis can be difficult to diagnose. In about 50% of cases, cerebral venous sinus thrombosis results in cerebral venous infarction. This usually presents as a hemorrhagic infarction or focal edema in regions that are not typical for an arterial vascular distribution, usually occurring within the white matter or at the gray–white matter junction (Fig. 5.7).

5.9.1 Predisposing Factors

There are several predisposing factors for thrombus formation within the cerebral venous sinuses. These include pregnancy, infection, extrinsic compression or local invasion by tumor, dehydration, oral contraceptives, hypercoagulable state, trauma, drug abuse. It may also be idiopathic. Thrombus initially forms within the venous sinuses, eventually extending to the veins draining into the sinuses, leading to infarction.

5.9.2 Pathophysiology

The pathophysiological mechanisms that lead to cerebral venous infarction are unclear. It has been postulated that: (1) retrograde venous pressure may cause breakdown of the blood–brain barrier, with leakage of fluid (vasogenic edema) and hemorrhage into the extracellular space or, (2) retrograde venous pressure may cause a decrease in cerebral blood flow, causing tissue damage similar to that seen in arterial infarctions. Restricted water diffusion suggesting cytotoxic edema is found in patients with acute cerebral venous infarction [2]. However, in cases with only vasogenic edema, ADC is increased with variable DW signals (Fig. 5.7). Preferred imaging modalities when suspecting cerebral venous sinus thrombosis are conventional MR imaging combined with MR venography.

Table 5.2. Time course of watershed infarction of middle cerebral arterial territory [7]

<table>
<thead>
<tr>
<th></th>
<th>3 days</th>
<th>7 days</th>
<th>14 days</th>
<th>30 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>Bright</td>
<td>Bright</td>
<td>Bright</td>
<td>Bright</td>
</tr>
<tr>
<td>DW imaging</td>
<td>Bright</td>
<td>Bright</td>
<td>Bright</td>
<td>Bright</td>
</tr>
<tr>
<td>ADC</td>
<td>Dark</td>
<td>Dark</td>
<td>Dark</td>
<td>Less dark</td>
</tr>
</tbody>
</table>

Chapter 5

Infarction
Figure 5.7 a–d
Venous infarction in a 57-year-old man with dysarthria.

a Sagittal T1-weighted image shows a large area of hyperintensity in the left temporal lobe (arrows) with a small area (hemorrhage). The hyperintensity in the left transverse sinus represents sinus thrombosis (arrowhead).

b T2-weighted image shows a hyperintense lesion in the left temporal lobe (arrow).

c DW image reveals this lesion as mildly hyperintense.

d ADC is increased, representing vasogenic edema. On DW image, the lesion is overlapped with diamagnetic susceptibility artifacts from air in the mastoid cells.
5.10 Small Vessel Infarcts

These are small infarcts measuring approximately 5–15 mm, usually seen in the basal ganglia, internal capsule, thalamus, pons and corona radiata. They account for about 20% of all infarctions and are secondary to an embolus, thrombus or atheromatous lesion within long, single, penetrating end arterioles.

These infarcts show increased signal in DW imaging with low ADC values (Fig. 5.8). However, unlike the usual time course of cerebral infarctions, they may show a prolonged increase in DW imaging signal and decrease in ADC values, sometimes seen beyond 60 days after onset of symptoms [15].

Differential diagnoses include widened perivascular spaces (Virchow–Robin spaces) and subependymal myelin pallor.

Figure 5.8 a–d
Small vessel infarcts in a 69-year-old man. a, b T2-weighted and FLAIR images show periventricular hyperintensities; however, it is difficult to detect acute small infarcts. c DW image clearly shows multiple hyperintensity spots in the white matter, representing the acute phase of small vessel infarcts. d ADC
5.11 Brain Stem and Cerebellar Infarcts

Cerebellar infarction is caused by occlusion of one of the major posterior circulation branches, which include the superior cerebellar, the anterior and posterior inferior cerebellar arteries, and the basilar artery. The posterior inferior cerebellar artery (PICA) supplies the postero-inferior portions of the cerebellum and is the most commonly obstructed cerebellar artery. The size of the infarct is important because a large infarct may cause a significant mass effect on the fourth ventricle and lead to hydrocephalus as well as brain stem compression. PICA infarctions can also result in the so-called lateral medullary (Wallenberg) syndrome, manifested by ipsilateral Horner’s syndrome, ataxia, dysphagia, vertigo, nystagmus, hiccups and contralateral numbness, diminished pain and temperature sensation. The brain stem and cerebellar infarcts behave similar to cerebral infarcts on DW imaging and ADC maps (Fig. 5.9).

Figure 5.9 a–c

Brain stem infarction in an 83-year-old woman with slurred speech and gait difficulties. a T2-weighted image show hyperintense lesions in the pons (arrows). b DW image clearly shows a hyperintense lesion. c ADC is decreased in the right side of the pons, representing acute infarction (arrow)
5.12 Corpus Callosum Infarcts

Isolated corpus callosum infarction due to pericallosal artery disease is rare, but can present as an alien hand syndrome. These patients fail to recognize the ownership of one hand when placed in certain positions or situations [16]. These lesions are readily detected by DW imaging and have signal characteristics similar to cerebral infarcts (Fig. 5.10).

Figure 5.10 a–c
Corpus callosum infarction in a 64-year-old man with left-sided weakness. a T2-weighted image shows a hyperintense lesion in the anterior part and body of the corpus callosum extending into right frontal white matter (arrows). b DW image clearly shows this lesion as hyperintense. c ADC is decreased, representing acute infarction (arrows)
5.13 Hemorrhagic Infarcts

About 40–50% of all stroke patients develop hemorrhagic transformation of their infarcts (Fig. 5.11). This usually occurs during the first week after onset of symptoms. The cause may be a spontaneous lysis of an embolus, which took place at a time when endothelial cells of the vessel had also been damaged by the ischemia, thus resulting in a breakthrough hemorrhage into the infarcted region. The incidence of hemorrhage is increased with use of thrombolytic therapy, as well as in the presence of certain clinical conditions, such as hypertension, embolic etiology, use of anticoagulant therapy and increasing stroke severity.

Studies have shown that neuroimaging can predict which lesions are prone to progress into a hemorrhagic infarction [17]. Thus, ischemic lesions with a significantly greater percentage of low ADC values have a higher risk for hemorrhagic transformation than lesions with a smaller proportion of low ADC [17].

![Figure 5.11 a–c](image_url)

Figure 5.11 a–c
Hemorrhagic infarction in a 64-year-old man with mental status change. a T2-weighted image shows mixed hyper- and hypointense lesions in bilateral occipital lobes (arrows). b DW image shows these lesions as mixed hyper-, hypo- and isointense, representing acute hemorrhagic infarction (arrows). c ADC is decreased with areas of hyperintensities.
References

6.1 Introduction

Intracranial hemorrhages are often characterized according to their location, such as intraparenchymal, subarachnoid, subdural, epidural and intraventricular hemorrhages. The etiology of these hemorrhages includes a variety of heterogeneous conditions, such as trauma, hypertension, infarction, infection, neoplasm, vascular malformations, vasculitis, vasculopathy, coagulopathy, and drugs. This chapter will describe diffusion-weighted (DW) imaging characteristics of intracranial hemorrhages in relation to their location and evolutionary stage.

6.2 Intraparenchymal Hemorrhages: Appearance and Evolution

The classic pattern for the temporal evolution of intracerebral hematomas on MRI at 1.5 T is well known [1–38]. However, determination of the age of a hemorrhage is often inaccurate because of variations between individual patients. The change in signal intensity over time depends on many factors, such as the oxygenation state of hemoglobin, the status of red blood cell membranes, hematocrit, proteins and clot formation [1–34, 37, 38]. Among these, the evolution of hemoglobin and the red cell membrane integrity are the most important [1–23, 25, 28, 30, 31, 33, 34]. The transition of oxy-hemoglobin to deoxy-hemoglobin and thereafter to met-hemoglobin depends primarily upon the oxygen tension in the vicinity of the lesion as well as inside the hematoma itself. In the hyperacute stage, oxy-hemoglobin will dominate initially, but transformation into deoxy-hemoglobin will soon take place and deoxy-hemoglobin will dominate after a few days – the acute hematoma [7, 11, 14, 19, 22, 23, 25, 28, 29, 33, 34]. After approximately one week, deoxy-hemoglobin will transform to met-hemoglobin [3, 4, 7, 10, 11, 14, 19, 22, 23, 28–30, 33, 34]. However, the rate of this oxidation to met-hemoglobin will depend on the oxygen tension in the tissue, which may further complicate the temporal pattern of expected signal changes. Initially, met-hemoglobin will be found within intact red blood cells (the early subacute stage), but when the red cell membranes start to rupture, met-hemoglobin will be found in the extracellular fluid space (the late subacute stage), which takes place about two weeks following hemorrhage [7, 11, 14, 19, 22, 23, 28, 29, 33, 34]. The final stage, the chronic stage, is the result of continuous phagocytation of the breakdown products of hemoglobin, ferritin and hemosiderin, which starts about one month following hemorrhage. The products, ferritin and hemosiderin, will remain within the phagocytic cells, which accumulate in the periphery of the hematoma, where they may remain for years, maybe indefinitely, as a marker of an old hemorrhage [6, 7, 11, 14, 17, 19–23, 27, 33, 34].

6.2.1 Hyperacute Hematoma

In the early stage of a hyperacute hematoma (Figs. 6.1 and 6.2), oxygenated hemoglobin within intact red blood cells is dominant. Oxy-hemoglobin is a diamagnetic substance and will, as such, generate an opposing magnetic field that reduces the applied magnetic field, as in most normal tissues in the body. Since there are no unpaired electrons in the iron of oxygenated hemoglobin, both longitudinal and transverse relaxation will be created by the so-called proton–proton, dipole–dipole interactions. At this stage, hematomas will have shorter relaxation times than water due to their protein content and will be slightly hypo- or iso-intense when compared with brain parenchyma on T1-weighted images. On T2-weighted images, oxy-hemoglobin will be seen as a slightly hyperintense region because of the high water content [7, 11, 14, 19, 22, 23, 25, 28, 29, 33, 34].
Results of DW imaging of hematomas at this stage have not been well characterized. In our experience, however, a hyperacute intraparenchymal hemorrhage is hyperintense on DW images, with a decreased apparent diffusion coefficient (ADC). This is in accordance with observations of other authors [28, 33]. The possible causes for the decreased ADC are shrinkage of extracellular space due to clot retraction, changes in the concentration of hemoglobin and a high viscosity [13, 19, 22–24, 28, 33–35].
Figure 6.2 a–f

Hyperacute and chronic hemorrhage (oxy-hemoglobin/deoxy-hemoglobin, met-hemoglobin and hemosiderin/ferritin). A 40-year-old woman developed an acute left-sided weakness. A non-enhanced CT scan 6 hours after the onset of symptoms (a) shows a hyperdense lesion (arrow) in the right frontoparietal region associated with a small amount of subarachnoid hemorrhage (arrowhead). MR imaging 12 hours after the onset of symptoms (b–h) shows a heterogeneous lesion with areas of central hyperintensity on the T2-weighted image (b) (arrow; oxy-hemoglobin) with a peripheral hypointensity from the susceptibility influence of paramagnetic material (arrowheads; deoxy-hemoglobin). The T1-weighted image (c) shows the lesion as heterogeneous with areas of isointensity (arrow; oxy-hemoglobin) and hypointensity (arrowheads; deoxy-hemoglobin). Both the DW (d) and b0 images (e) show the lesion as heterogeneous with areas of hyperintensity (arrows; oxy-hemoglobin) and hypointensity (arrowheads; deoxy-hemoglobin). The hypointensity is more prominent on these sequences than on the T2-weighted image (b). The ADC map (f) has a similar appearance of a heterogeneous lesion with areas of hypointensity (arrows; oxy-hemoglobin and arrowheads; deoxy-hemoglobin). As usual, when there is a strong susceptibility influence, it is difficult to calculate ADC.
6.2.2 Acute Hematoma

Following hemorrhage there is normally a gradual oxygen desaturation of hemoglobin transforming oxy-hemoglobin into deoxy-hemoglobin (Fig. 6.3) [7, 11, 14, 19, 22, 23, 25, 28, 29, 33, 34]. The loss of oxygen will change the binding geometry of iron from a six-ligand system to a five-ligand system, leaving four unpaired electrons and making it paramagnetic. When exposed to a magnetic field, paramagnetic substances will enhance the applied field locally. This will influence image contrast by means of so-called magnetic susceptibility-induced relaxation, which only affects transverse relaxation (T2* effect). The susceptibility effects create local field inhomogeneities, with a rapid loss of transverse magnetization of protons within this region resulting in signal loss on T2-weighted images. Deoxy-hemoglobin will therefore demonstrate a marked hypointensity on T2-weighted images [1, 3, 7–9, 11–15, 19, 22–25, 30–34]. Besides the concentration of deoxy-hemoglobin, red blood cell concentration and/or clot formation may also contribute to this T2 hypointensity. Since this is an effect of magnetic susceptibility, gradient-echo (GRE) images will be more sensitive than DW- and T2-weighted images for the detection of acute, as well as chronic hematomas [19, 26, 27, 32]. The T1 relaxivity effect is related to dipole–dipole relaxation, in this case the dipoles of water and unpaired electrons of the paramagnetic center. This would normally result in a shortening of relaxation time; however, the molecular configuration of deoxy-hemoglobin will act as a shield for such a close approach of water molecules to the unpaired electrons of the paramagnetic, ferrous iron. The acute hematoma containing deoxy-hemoglobin will thus show an iso- to hypointense signal on T1-weighted images, similar to oxy-hemoglobin [5, 22, 23, 34].

Diffusion-weighted images of an acute hematoma show a marked hypointensity [28–31, 33], caused by the magnetic field inhomogeneity created by the paramagnetic deoxy-hemoglobin [6, 7, 14, 18, 22, 23, 25, 33]. Although the ADC has been reported to be decreased, accurate calculations are often difficult [28–30, 33, 36].

6.2.3 Early Subacute Hematoma

In the early stage of the subacute hematoma (Figs. 6.2 and 6.3), there is a decline in the energy state of the red blood cell and hemoglobin is oxidized to met-hemoglobin [3, 4, 7, 10, 11, 14, 19, 22, 23, 28–30, 33, 34]. In met-hemoglobin the iron is still bound to the heme moiety within the globin protein, but it is now in the ferric state with five unpaired electrons. This transformation normally starts in the periphery of the hemorrhage and gradually evolves to the center. In the transition to met-hemoglobin, conformational changes will take place in the molecule and water protons will now have access to the unpaired electrons of iron in met-hemoglobin, creating a proton–electron, dipole–dipole interaction. Dipolar relaxation enhancement will then take place, making met-hemoglobin appear hyperintense on T1-weighted images. Met-hemoglobin, as a paramagnetic sub-
Intracranial Hemorrhage

stance, will induce magnetic susceptibility relaxation affecting the transverse relaxation (T2* effect), which results in a marked hypointensity on T2-weighted images [3, 6, 7, 10, 14, 22–24, 28–31, 33, 34].

On DW imaging, intracellular met-hemoglobin shows hypointensity due to these paramagnetic susceptibility effects and ADC measurements are not reliable due to the susceptibility effects [28–30, 33].

Figure 6.3 a–e

Acute to early subacute hemorrhage (deoxy-hemoglobin and intracellular met-hemoglobin). A 49-year-old man with headache and aphasia was referred for MR imaging 24 hours after the onset of symptoms (a–e). This study shows a left temporal lobe lesion that is hypointense on the T2-weighted image (a) (arrow; deoxy-hemoglobin and intracellular met-hemoglobin) with surrounding edema. On the T1-weighted image (b) the lesion is heterogeneous with areas of hypointensity (arrow; deoxyhemoglobin) and hyperintensity (arrowhead; intracellular met-hemoglobin). The DW image (c) demonstrates hypointensity (arrow; deoxy-hemoglobin and intracellular met-hemoglobin). The surrounding hyperintense rim (arrowhead) is a magnetic susceptibility artifact. This peripheral artifact is also seen around the hypointensity (arrow) created by deoxy-hemoglobin and intracellular met-hemoglobin on the b0 image (d). ADC cannot be calculated accurately, which is easy to understand when looking at the extremely heterogeneous lesion depicted on the ADC map (e).
Late subacute-chronic hemorrhage (extracellular met-hemoglobin and hemosiderin/ferritin). A 52-year-old man with a history of chronic hypertension complained of headache and aphasia. MR examination 2 months after the onset of symptoms shows a left temporal lobe lesion that is hyperintense on the T2-weighted image (a) (arrow; extracellular met-hemoglobin) and surrounded by a hypointense rim (arrowheads; hemosiderin/ferritin). Another hypointense lesion is visualized in the right basal ganglia (small arrowhead; hemosiderin/ferritin), compatible with chronic hemorrhage secondary to hypertension. The T1-weighted image (b) shows the temporal lobe lesion as hyperintense (arrow; extracellular met-hemoglobin). The lesion in the right basal ganglia is also hypointense on this sequence (small arrowhead; hemosiderin/ferritin). On the DW image (c) the temporal lobe lesion is hyperintense (arrow; extracellular met-hemoglobin) with a hypointense rim (arrowheads; hemosiderin/ferritin). The basal ganglia lesion remains hypointense, but the signal void is more extensive than on the conventional T2-weighted image (a), since GRE does not compensate for signal loss due to local magnetic field inhomogeneities and is thus more sensitive than regular spin-echo imaging. This increased susceptibility sensitivity revealed a second, old hemorrhagic lesion in the left thalamus (small arrowhead; hemosiderin/ferritin). The b0 image (d) also shows the hyperintense lesion (arrow; extracellular met-hemoglobin) with the hypointense rim (arrowheads; hemosiderin/ferritin) as well as the older lesions in the basal ganglia and thalamus (small arrowheads; hemosiderin/ferritin). On the ADC map (e) the temporal lesion is somewhat hypointense (arrow; extracellular met-hemoglobin) with a hypointense rim (arrowheads; hemosiderin/ferritin). The other lesions are also visualized (small arrowheads); however, ADC cannot be calculated. Finally, the coronal GRE image (f) shows the temporal lesion as hyperintense (arrow; extracellular met-hemoglobin) with a hypointense rim (arrowhead; hemosiderin/ferritin). The GRE sequence is the most sensitive and shows multiple small hypointense lesions (old hemorrhagic breakdown products) in the cerebral hemispheres and in the pons (small arrowheads; hemosiderin/ferritin).
6.2.4 Late Subacute Hematomas

The decline in energy state of the red blood cell will eventually damage the integrity of the red cell membrane, releasing the intracellular content to the extracellular fluid space (Figs. 6.2 and 6.4). Subsequently, there will be a dilution of the paramagnetic met-hemoglobin in extracellular fluid, reducing the susceptibility effect of met-hemoglobin [7, 11, 14, 19, 22, 23, 28, 29, 33, 34]. The signal intensity on T2-weighted images will thus relate to the water content, creating a hyperintense signal on T2-weighted images. Extracellular met-hemoglobin will, however, still have high signal intensity on T1-weighted images created by the same proton–electron, dipole–dipole relaxation as described in early subacute hematomas [5–7, 10, 14, 22, 23].

It has been reported that late subacute hematomas are hyperintense on DW imaging [28, 29]. The ADC value for late subacute hematoma is controversial. Ebisu et al. [24] reported decreased ADC in hematomas of hemorrhagic infarctions, whereas Atlas et al. reported ADC values higher than normal white matter in late subacute hematomas and suggested this was due to increased diffusibility [28]. Finally, Kang et al. reported decreased ADC in late subacute hematomas and thought this was due to high viscosity and cellularity [33].

6.2.5 Chronic Hematomas

Over time, met-hemoglobin will be resorbed or degraded and the effect on T1 enhancement will be reduced (Figs. 6.2 and 6.4). The high water content in the chronic stage will result in prolonged T1 as well as T2 relaxation. From the start of the hemorrhage there is a continuous phagocytation of heme proteins. Ferritin and hemosiderin, the final breakdown products of hemoglobin, will remain within the phagocytic cells, which accumulate in the periphery of the hematoma, where they may remain indefinitely as a marker of an old hemorrhage [6, 7, 11, 14, 17, 19–23, 27, 33, 34, 37, 38]. Ferritin and hemosiderin within these cells will have no access to water protons and thus there are no relaxivity effects. Magnetic susceptibility is the only factor influencing the signal, creating a marked signal loss on T2-weighted images. As mentioned earlier, the magnetic susceptibility effects are most prominent on T2*-weighted images [7, 17, 22, 23, 34].

Diffusion-weighted images are also hyperintense in chronic hematomas [29, 33]. The ADC value has been reported to be increased, but is often difficult to measure accurately due to magnetic susceptibility artifacts [28–30, 33, 36].

6.3 Subarachnoid Hemorrhage

Computed tomography (CT) is still essential in the diagnosis of acute subarachnoid hemorrhages (Fig. 6.5), as the sensitivity and usefulness of MR imaging is controversial [4, 5, 9, 34, 39–45]. Fluid-attenuated inversion-recovery (FLAIR) imaging has a high sensitivity for subarachnoid hemorrhage [46–49]. However, the specificity is low because there are several other causes for the appearance of subarachnoid hemorrhage on FLAIR imaging, such as high proton concentration, mass effect, vascular disease, contrast medium and use of specific intravenous anesthetic agents [50–53].

It is often difficult to detect subarachnoid hemorrhage on DW images [31, 54]. Lin et al. detected subarachnoid hemorrhage in two of four cases on GRE imaging, but it could not be detected on \(b_0 \) images [31]. Wiesmann et al. reported that proton density and FLAIR images could detect subarachnoid hemorrhage, but T2-weighted and DW images could not [54].

However, DW images may be useful to visualize parenchymal injuries secondary to subarachnoid hemorrhage. Ischemic changes, probably related to subarachnoid hemorrhage, have shown hyperintensity on DW images in both clinical and animal studies [55–60]. This finding depends on the timing of imaging and the severity of injury.
Subarachnoid and intraventricular hemorrhage due to arteriovenous malformation (intracellular met-hemoglobin). A 48-year-old female presented with acute onset of severe headache had a CT scan 24 hours after the onset of symptoms (a), which shows diffuse subarachnoid (arrowhead) and intraventricular hemorrhage (arrows). Forty-eight hours after the onset of symptoms (b–g) she had an MRI. On this examination the T2-weighted image (b) showed intraventricular hemorrhage (arrows), which is hypointense when compared with the cerebrospinal fluid. The diffuse subarachnoid hemorrhage cannot be visualized on the T2-weighted image. The T1-weighted image (c) shows the intraventricular hemorrhage (arrows) as hyperintense when compared with cerebrospinal fluid, but neither sequence can visualize the subarachnoid hemorrhage. The FLAIR image (d), however, shows both the subarachnoid (arrowheads) and intraventricular hemorrhage (arrows). The subarachnoid hemorrhage cannot be visualized on the DW image (e), but the intraventricular hemorrhage (arrows) can easily be seen as hyperintense when compared with cerebrospinal fluid and brain parenchyma. As expected, the subarachnoid hemorrhage cannot be demonstrated on either b₀ image (f) or ADC maps (g), but both sequences will depict the intraventricular hematoma as hypointense (arrows).
6.4 Subdural and Epidural Hemorrhages

Subdural and epidural hematomas (Fig. 6.6) are well demonstrated on T1- and T2-weighted images. In the acute and subacute stages, the signal intensity is often similar to intraparenchymal hematomas. In the chronic stage, MR images often show hyperintensity of the hematoma, which may be iso- to hypodense on CT [34, 61–67].

Diffusion-weighted imaging findings of subdural and epidural hematomas have not been well described. Lin et al. reported that all three lesions could be detected on b0 images, but GRE images were better at detecting lesions [31]. The benefit of DW imaging is probably for the detection of underlying or associated parenchymal lesions [68, 69].

Figure 6.6 a–f

Subacute subdural hemorrhage (extracellular met-hemoglobin). A 49-year-old woman with headache following head trauma had an MR examination 2 weeks after the trauma, which shows right subdural hemorrhage as a hyperintense lesion (arrows) on the T1-weighted (a) and T2-weighted (b) images. The lesion was hyperintense on the DW (c) and the b0 (d) images (arrows). On the ADC map (e) there are hypointense lesions (arrows), which correspond to the hyperintense lesions on the DW image (c). The coronal GRE image (f) shows the subdural hemorrhage to be hyperintense (arrows).
6.5 Intraventricular Hemorrhage

Intraventricular hemorrhages (Figs. 6.5 and 6.7) are well demonstrated on FLAIR, T1-, T2- and proton density-weighted images [34, 59, 70–72]. FLAIR has been reported to have the highest sensitivity for detection of intraventricular hematomas [71]. DW images can demonstrate intraventricular hemorrhages, but in general the GRE images have a higher sensitivity [31].

Figure 6.7 a–f

Intraventricular hemorrhage (intracellular met-hemoglobin). A 78-year-old woman with headache after thrombolytic therapy for femoral artery occlusion had a CT scans 6 hours after surgery (a). This shows intraventricular hemorrhage in the bilateral lateral ventricles (arrows). Three days after surgery (b–f), the T2-weighted image (b) shows hypointense lesions in the bilateral lateral ventricles with fluid–fluid levels (arrows) and the T1-weighted image (c) shows hyperintense lesions in the same distributions (arrows). The DW image (d) shows hypointense lesions (arrows) with surrounding hypointensities. These are ascribed to magnetic susceptibility artifacts. The b_0 image (e) also shows hypointense lesions (arrows). These hypointensities are more prominent than on the T2-weighted images (b). The ADC map (f) shows hypointense lesions (arrows).
6.6 Intra-tumoral Hemorrhage

Many primary brain tumors and metastases can bleed [34, 73–78]. The signal intensity of intra-tumoral hemorrhage (Fig. 6.8) tends to be more complex and its evolution tends to be delayed when compared with non-neoplastic hemorrhages [34,78]. DW and b₀ images are useful to detect the hemorrhage in tumors [31].

Figure 6.8 a–f
Hemorrhagic tumor. The T2-weighted MR image (a) in a 54-year-old woman with glioblastoma shows a mass lesion with heterogeneous intensity near the right lateral ventricle. The irregular hypointensities centrally in the lesion (arrow) indicate hemorrhage. The T1-weighted image (b) shows the heterogeneous hypointense to isointense mass, with a central area of higher signal intensity consistent with hemorrhage (arrow). The gadolinium-enhanced T1-weighted image (c) shows heterogeneous enhancement (arrow). On the DW image (d) the hemorrhage is heterogeneously hypointense (arrow). The b₀ image (e) shows the hemorrhage to be more hypointense (arrow) than on the T2-weighted image (a). The ADC (f) cannot be calculated due to magnetic susceptibility artifacts.
6.7 Hemorrhage Related to Vascular Malformation

Vascular malformations can also cause intracranial hemorrhages (Fig. 6.9). Cavernous angioma is a vascular malformation that contains blood cavities surrounded by a single layer of endothelium [79–83]. MR imaging findings are well known and characterized as a central reticulated core with a peripheral rim of hypointensity due to the deposition of hemosiderin [79, 82, 83]. DW and b0 images are useful for detecting hemorrhages related to vascular malformations.

Figure 6.9 a–e
Multiple cavernous angiomas. The T2-weighted MR image (a) in a 30-year-old woman with seizures shows a hyperintense lesion in the left frontal lobe with a surrounding hypointense rim (arrows). This is a characteristic finding for a cavernous angioma. The lesion is hyperintense on the T1-weighted image (b) (arrow) and hypointense on the DW image (c) (arrow). The ADC map (d) shows heterogeneous intensity and the GRE image (e) shows marked hypointensity in the left frontal lobe (arrow). The hypointensities in the right and left temporo-occipital region (arrowheads) suggest multiple cavernous angiomas.
6.8 Hemorrhage Related to Trauma

Trauma is one of the most common causes of intracranial hemorrhages in younger patients (Fig. 6.10). MR imaging is valuable in detecting intracranial injuries. DW and b_0 images and an ADC map can be more sensitive than conventional MR images to detect whether the abnormality includes diffuse axonal injury [84].

6.9 Conclusions

Diffusion-weighted imaging is often of limited value for diagnosis and staging of intracranial hemorrhages because accurate ADC measurements are only possible in the hyperacute stage, which contains diamagnetic oxy-hemoglobin, and in the late subacute phase, which contains extracellular met-hemoglobin, whose paramagnetic susceptibility artifacts are diminished by the dilution of extracellular fluid. CT and routine MR imaging continue to be the mainstay in diagnosing and characterizing intracranial hemorrhages. A thorough understanding of DW imaging characteristics is important, however, in order to avoid misinterpretations and inaccurate conclusions.
References

8. Sipponen JT, Sepponen RE, Sivula A (1985) Intracranial hematomas studied by MR imaging at 0.17 and 0.02 T. J Comput Assist Tomogr 9:698–704

42. Atlas SW (1993) MR imaging is highly sensitive for acute subarachnoid hemorrhage ... not! Radiology 186:319–322
43. Ogawa T, Uemura K (1993) MR imaging is highly sensitive for acute subarachnoid hemorrhage ... not! Reply. Radiology 186:323
7.1 Definition

Vasculopathy is a general term used to describe any disease affecting blood vessels [1]. It includes vascular abnormalities caused by degenerative, metabolic and inflammatory conditions, embolic diseases, coagulative disorders, and functional disorders such as posterior reversible encephalopathy syndrome. The etiology of vasculopathy is generally unknown and the condition is frequently not pathologically proven. Vasculitis, on the other hand, is a more specific term and is defined as inflammation of the wall of a blood vessel [2]. However, the term vasculopathy is also used for “vasculitis” that has not been pathologically established.

7.2 Clinical Presentation

Vasculitis and vasculopathy of the central nervous system (CNS) often have similar clinical and radiological characteristics. Both result in ischemia, which can be reversible or develop into infarction. The reversibility of a lesion is related to the size and location of vessels involved and the severity of ischemia. Diffusion-weighted (DW) imaging has been useful in the early detection of cytotoxic edema in hyperacute or acute infarctions and can distinguish cytotoxic edema from vasogenic edema and chronic infarctions [3]. Some specific types of vasculitis or vasculopathy demonstrate primarily vasogenic edema [4–8].

7.3 Treatment

Vasculitis and vasculopathy of the CNS caused by an abnormal immune reaction are often treated with immunosuppressant agents. If, on the other hand, the vascular changes are caused by thrombosis or embolism, they are treated with anticoagulants. Prompt characterization of the nature of CNS vasculitis and vasculopathy, by imaging and/or biopsy, is thus necessary to institute appropriate management.

7.4 Vasculitis of the CNS

The term vasculitis encompasses a heterogeneous group of multisystemic disorders characterized pathologically by inflammation and necrosis of the blood vessel wall. Cerebral ischemia, which may result in focal infarction, is the major neurological manifestation of CNS vasculitis. The clinical manifestations include headache, transient ischemic attacks (TIAs), altered mental status, seizures, cranial nerve palsies and localized neurologic deficits.

7.4.1 Characterization of CNS Vasculitis

Vasculitis of the CNS is characterized by the size of the affected vessel, as illustrated in Fig. 7.1 [2]. Determining size and location of the predominantly affected vessels is useful to obtain an optimal tissue biopsy and establish appropriate treatment [9]. Large artery vasculitis usually responds well to steroids alone, while small and medium-sized vessel vasculitis respond better to a combination of cytotoxic agents and steroids. Therefore, a clear understanding of the size of the vessels involved and the pathophysiologic mechanisms are useful for the treatment decision [10, 11].

Digital subtraction catheter angiography and brain biopsy are the diagnostic foundations in establishing the diagnosis. However, angiography has a false-negative rate of 20–30%, as small arteries with a diameter of less than 100–200 µm are beyond the limit of resolution of digital subtraction angiography [2]. Good-quality MR angiography can demonstrate stenosis or occlusion of large to middle-sized arteries, but the resolution is not sufficient to detect abnormalities of small arteries. MR imaging, on the
other hand, is sensitive to detect gray and white matter lesions in CNS vasculitis, but the appearance of these lesions is usually not specific [12].

Whether the lesions on MR imaging are reversible or irreversible depends on the severity of ischemia and seems to be related to size and location of the vessels involved. Occlusion or stenosis involving large, medium or small arteries mainly results in infarction, whereas lesions involving arterioles, capillaries, venules or veins predominantly cause vasogenic edema or gliosis. DW imaging can be useful to differentiate an acute or subacute infarction from vasogenic edema or gliosis, which is important both for choice of treatment and to predict the long-term prognosis.

Multifocal and multiphasic ischemia are some of the characteristic sequelae of CNS vasculitis. DW imaging can differentiate the phases of cerebral infarction as hyperacute, acute, subacute or chronic. The hyperacute phase of an infarction usually has a decreased apparent diffusion coefficient (ADC) and a normal or subtle increase in signal intensity on T2-weighted or fluid-attenuated inversion-recovery (FLAIR) images. The acute phase has a decreased ADC with hyperintensity on T2-weighted images. In the subacute phase, ADC values are normalized; in the chronic phase, DW imaging shows hypointensity with increased ADC.

7.4.2 Primary Angitis of the Central Nervous System

Primary angitis of the central nervous system is a non-infectious granulomatous angiitis, pathologically characterized by infiltration of the vessel walls with lymphocytes, histiocytes, and/or multinucleated giant cells, with a variable degree of fibrinoid necrosis [13]. The pathogenesis is probably related to T cell-mediated inflammation. Primary angitis of the central nervous system tends to affect small to medium-sized vessels of the brain parenchyma and meninges, but can affect vessels of any size. Angiography typically shows a "string-of-beads" appearance, but it has a false-negative rate of 20–30% [14]. Brain and meningeal biopsies are diagnostic in only 50–72% of patients with primary angitis of the central nervous system.

Magnetic resonance imaging findings in primary angitis of the central nervous system are highly variable, ranging from multiphasic cerebral infarction, vasogenic edema and gliosis, to hemorrhage and leptomeningeal enhancement [15, 16]. The lesions caused by occlusion of large or medium-sized arteries affect the cortical or deep gray matter. If the vessels involved are small, MR imaging may show discrete or diffuse lesions in the deep or subcortical white matter. On follow-up MR imaging, the lesions may change with regard to number and size, and they may even disappear. DW imaging is useful in differentiating an acute or subacute infarction from re-
versible vasogenic edema (Fig. 7.2) and can demonstrate multiphasic infarctions (Fig. 7.3). Prompt diagnosis is important, as primary angitis of the central nervous system is often fatal if not treated with aggressive immunosuppression [17].

7.4.3 Giant Cell (Temporal) Arteritis

The criteria of the American College of Rheumatology for the diagnosis of giant cell arteritis (Fig. 7.4) include at least three of the following: (1) age at disease onset >50 years, (2) new onset of headache, (3) claudication of jaw or tongue, (4) tenderness of the temporal artery on palpation or decreased pulsation, (5) erythrocyte sedimentation ratio >50 mm/h and
Primary angitis of central nervous system (proven by biopsy) in a 35-year-old woman with right hemiparesis.

a, b T2-weighted image shows hyperintense lesions in the left internal capsule (arrow in a) and left side of the pons (arrow in b). c DW image shows slightly high signal in the left corona radiata, indicating subacute infarction. d T2-weighted image shows hyperintense lesions in the bilateral tempo-occipital cortices (arrow). e ADC map shows increased ADC in this lesion (arrow). e DW image simultaneously shows very high signal in the left side of the pons, indicating acute infarction (arrow). f ADC map shows decreased ADC in this lesion (arrow). g MR angiography shows stenosis in the left middle cerebral and posterior cerebral arteries (arrows). (From [49])
(6) temporal artery biopsy showing vasculitis with multinucleated giant cells.

Giant cell arteritis is probably a T cell-mediated vasculitis and it can affect medium to large arteries. The superficial temporal, vertebral and ophthalmic arteries are more commonly involved than the internal carotid arteries, while the intracranial arteries are rarely involved (Fig. 7.4) [18]. Abrupt and irreversible visual loss is the most dramatic complication of giant cell arteritis, while a TIA and stroke are rare (7%), but when present most often involve the vertebrobasilar territory. Steroids are effective, and giant cell arteritis is usually self-limited and rarely fatal.
7.4.4 Takayasu’s Arteritis (Aortitis Syndrome)

Takayasu’s arteritis (Fig. 7.5) is a primary arteritis of unknown cause but probably also related to T cell-mediated inflammation. Takayasu’s arteritis commonly affects large vessels including the aorta and its major branches to the arms and the head. It is more commonly seen in Asia and usually affects young women [19]. Pulseless upper extremities and hypertension are the common clues to suggest the diagnosis. Most patients are treated with steroids alone to reduce the inflammation. The prognosis is relatively good and 90% of patients are still alive after 10 years. TIA or stroke is rare but can occasionally occur in severe cases with significant stenosis of arteries supplying the CNS (Fig. 7.5).

Figure 7.4 a–d
Giant cell arteritis (proven by biopsy) in a 48-year-old woman with visual loss. a T2-weighted image shows hyperintense lesions in the bilateral parieto-occipital cortices and right frontal deep white matter (arrows). b DW image shows these lesions as high signal intensity, representing acute infarcts (arrows). c DSA of the left subclavian artery shows stenoses of the left vertebral and subclavian arteries (arrows). d DSA of the left vertebral artery shows extensive multifocal arterial stenoses (arrows). (From [49])
Figure 7.5 a–d
Takayasu’s arteritis in an 18-year-old woman with left hemiparesis. a T2-weighted image shows a hyperintense lesion in the right basal ganglia and temporal lobe (arrows). b DW image shows a very high signal lesion, indicating an acute infarct. c T1-weighted axial image shows occlusion of internal carotid arteries bilaterally and the left vertebral artery, with thickening of the wall and thrombosis (arrows). d DSA shows occlusion of both carotid arteries, and stenosis of the brachiocephalic and left subclavian arteries (arrows)
7.4.5 Polyarteritis Nodosa

The criteria of the American College of Rheumatology for the diagnosis of polyarteritis nodosa include at least three of the following: (1) weight loss >4 kg, (2) livedo reticularis, (3) testicular pain or tenderness, (4) myalgias, weakness or leg tenderness, (5) mono- or polyneuropathy, (6) hypertension, (7) elevated blood creatinine or blood urea nitrogen, (8) hepatitis B antigen or antibodies in the serum, (9) aneurysm or occlusion of the visceral arteries and (10) granulocytes in small or medium-sized arteries on vessel wall biopsy. Neurologic abnormalities occur in 25–50% of cases. Ischemic stroke can result from vasculitis, severe hypertension or embolism secondary to cardiac involvement [20]. The treatment usually requires both cytotoxic agents and steroids.

7.4.6 Churg–Strauss Disease

This is an antineutrophil cytoplasmic autoantibody-mediated vasculitis, defined by at least four of the following: (1) asthma, (2) history of allergy, (3) eosinophilia (>10%), (4) mono- or polyneuropathy, (5) migratory or transitory pulmonary infiltrates and (6) sinusitis. A biopsy of affected organs, including small arteries, arterioles or venules shows extravascular eosinophils, which confirms the diagnosis. Neurological involvement occurs in 62% of cases, including stroke and intracerebral hemorrhage (Fig. 7.6) [21, 22]. Steroids usually stabilize this condition, but treatment with cyclophosphamide may be required. A normal angiogram does not exclude this form of vasculitis, as affected vessels are often smaller than the resolution of angiography.

7.4.7 Other Small Vessel Vasculitis

The incidence of CNS involvement in Wegener’s granulomatosis varies from 11 to 44%, but stroke is a very rare complication [23]. Involvement of the CNS in other forms of small vessel vasculitis (microscopic polyangiitis, Henoch–Schönlein purpura, essential cryoglobulinemia and hypersensitivity vasculitis) is rare, but Henoch–Schönlein purpura may show reversibility of lesions on MRI [7].

7.4.8 Collagen Vascular Diseases

Behçet’s disease is a multisystem vasculitis of unknown origin. It is especially common in Middle Eastern and Mediterranean countries. CNS involvement has been described in 4–49% of cases [6]. The parenchymal distribution of lesions, especially at the mesodiencephalic junction (46%) supports small vessel vasculitis involving both the arterial and venous systems; mainly venules. The lesions are occasionally reversible on MRI, which mainly represents vasogenic edema, which is why DW imaging is useful in distinguishing them from infarction (Fig. 7.7). The treatment is usually a combination of cytotoxic agents and steroids. In other types of collagen diseases, such as scleroderma or rheumatoid arthritis, involvement of the CNS is very rare.
Figure 7.7 a–d
Neuro-Behçet’s disease in a 24-year-old male. a T2-weighted image shows a hyperintense lesion in the left midbrain extending into the left temporal lobe, with enlargement of the left cerebral peduncle (arrow). b Gadolinium-enhanced T1-weighted image shows enhancement in this lesion (arrow). c DW image shows a hyperintense lesion with increased signal intensity in the left cerebral peduncle, probably representing vasogenic edema (arrow). d ADC map shows increased ADC in this lesion (arrow). (From [50])
7.4.9 Infectious Vasculitis

Infections can cause vasculitis both by direct invasion of the vessel walls and by an immune-mediated response to the pathogens. Bacterial, fungal and some viral vasculitis (e.g. herpes virus) cause a direct invasion of the vessel walls, usually resulting in infarction (Fig. 7.8) [2, 24]. Vasculitis with aseptic meningitis is probably related to an immunologic reaction, which can show reversible lesions. Aspergillus infiltrates and destroys the internal elastic lamina of major cerebral arteries, which results in infarction, abscess formation and hemorrhage [25] (Fig. 7.9). Infection of the infarcted tissue may be aggressive, and direct extension into the surrounding brain may progress quickly.

Figure 7.8 a–d
Pneumococcal meningitis and vasculitis in a 4-year-old girl with high fever. a T2-weighted image reveals hyperintense lesions in bilateral basal ganglia (arrows). b DW image shows these lesions as very hyperintense, representing acute or subacute infarcts due to infectious vasculitis (arrows). c ADC demonstrates low signal, confirming acute or subacute infarcts due to infectious vasculitis (arrows). d MRA shows stenosis of internal carotid arteries, right middle cerebral and left anterior cerebral arteries (arrows)
7.4.10 Drug-Induced Vasculitis, Including Illicit Drugs

Some drugs, such as chemotherapeutic agents (e.g. sulfonamide, thiouracil) and illicit drugs (e.g. cocaine), can cause vasculitis [26]. Stroke can occur soon after administration of illicit drugs by an intravenous, oral or nasal route. Cocaine, heroin, amphetamine and other sympathomimetic drugs are most commonly implicated. The diagnosis of “vasculitis” depends on the pathological findings, not on the angiographic findings, which are usually non-specific and may simply indicate vasospasm induced by these drugs.

Cocaine use has emerged as an important cause of cerebrovascular events in young adults [27]. Vasculitic changes can be present on angiography, but the significance of these changes has been debated. However, elevated sedimentation rate and biopsy changes of vasculitis have been documented. MR angiography may reveal irregularity of the intracerebral vessels and DW imaging is useful for the detection of acute ischemic changes (Fig. 7.10).
Chapter 7

Vasculopathy and Vasculitis

7.5 Vasculopathy of the CNS

Vasculopathy is caused by a wide variety of underlying conditions such as degenerative, metabolic, inflammatory, embolic, coagulative and functional disorders [1]. This presentation focuses on vasculopathies that mimic vasculitis, but have no inflammation in the wall of the blood vessel (Fig. 7.11).

7.5.1 Systemic Lupus Erythematosus

Involvement of the CNS occurs in 14–75% of patients with systemic lupus erythematosus (SLE) [4]. Pathologically, microinfarcts and small vessel vasculopathy are the most common. Vasculopathy affects predominantly the arterioles and capillaries, resulting in vessel tortuosity, vascular hyalinization, endothelial proliferation and perivascular inflammation or gliosis.

Figure 7.10 a–c
Cocaine-induced vasculopathy in a 41-year-old man with dysarthria. a T2-weighted image shows bilateral hyperintense lesions in medial thalami (arrows). b DW image shows the lesion in the right thalamus as hyperintense, indicating an acute infarct. c MR angiography shows stenosis of the right posterior cerebral artery (arrow). Biopsy was not performed and therefore the term cocaine-induced vasculopathy was used. (From [49])
Figure 7.11
Spectrum of CNS vasculopathy. (Modified from [10])

Figure 7.12 a–d
Systemic lupus erythematosus in a 39-year-old woman with recurrent episodes of stroke, who presented with fever and disturbance of consciousness. a T2-weighted image shows hyperintense lesions in the right thalamus, internal capsule, putamen, subcortical white matter, and the left internal capsule (arrows). b Gadolinium-enhanced T1-weighted image reveals marked enhancement of the lesion in the right side, suggesting blood–brain barrier breakdown (arrows). c DW image shows a slightly hyperintense lesion in the right thalamus but an isointense lesion in the right putamen and white matter (arrows). There is a linear hyperintense lesion in the right internal capsule (long thin arrow). A subtle hyperintense lesion in the left internal capsule is also seen (arrowhead). d The ADC map shows increased ADC of the lesion in the right side (short thick arrows), representing vasogenic edema. Increased ADC of the lesion in the left internal capsule (arrowhead) represents an old infarct. Decreased ADC is seen in the lesion in the right internal capsule (long thin arrow), presumably representing acute microinfarcts. (From [51])
True vasculitis is very rare (0–7%). This vasculopathy may be related to both acute inflammation and ischemia [28]. In recent reports, the mechanism of vasculopathy in CNS involvement of SLE has been attributed to intravascular activation of a complement, which leads to adhesion between neutrophils and/or platelets and endothelium, resulting in leukothrombosis in the microvasculature (Shwartzman phenomenon) [29].

In this vasculopathy, despite widespread microvascular occlusions, parenchymal damage is minimal and potentially reversible. Sibbit et al. reported that up to 38% of CNS lesions in SLE were potentially reversible on MR imaging [30]. MR angiography and conventional angiography may provide additional information concerning vascular abnormalities. DW imaging shows primarily two patterns of parenchymal lesions with acute or subacute CNS symptoms: one is an acute or subacute infarction, and the other is vasogenic edema with or without microinfarcts (Fig. 7.12) [5]. CNS involvement in SLE is also due to associated uremia, hypertension, infection, Libman–Sacks endocarditis, and corticosteroid or immunosuppressive therapy.

7.5.2 Moyamoya Disease

Moyamoya disease is a rare, non-inflammatory vasculopathy of the intracranial vessels of unknown cause, which is found predominantly in East Asia. It has a bimodal age presentation, the first in childhood (first decade) and the second in adults (fourth decade). Endothelial thickening of the cellular fibrous tissue, the main pathological finding, leads to chronic progressive arterial stenosis of the circle of Willis and eventually to infarctions. In the adult form, the presenting symptom is often intracranial hemorrhage, usually intraparenchymal. The stenosis or occlusion of the supraclinoid portion of the internal carotid artery should be bilateral, but unilateral lesions can be included as “probable” cases of Moyamoya disease. DW imaging is useful in evaluating cerebral ischemia in Moyamoya disease (Fig. 7.13) [31].

7.5.3 Sickle Cell Disease

About 5–8% of patients with sickle cell disease develop symptomatic cerebrovascular disease. The risk of stroke is greatest during thrombotic crises and during the first 15 years of life [32]. Approximately 75% of strokes are the result of an occlusion of the large arteries at the base of the brain. Cortical and white matter watershed ischemia is common. This vasculopathy can be similar to Moyamoya disease. Occlusion of the small cortical branches, which leads to ischemia of deep white matter, accounts for 25% of cerebral infarctions. These lesions are thought to be related to peripheral vaso-occlusive events in which the arteriole or postcapillary venule is the major site of sickle cell adhesion [32]. If progression is associated with neurologic dysfunction, strong consideration should be given to place the patient on a long-term transfusion program. DW imaging is useful in detecting active ischemic changes and in differentiating them from chronic ischemic changes (Fig. 7.14).

7.5.4 Posterior Reversible Encephalopathy Syndrome

Posterior reversible encephalopathy syndrome is a remarkably heterogeneous group of disorders, related to hypertensive encephalopathy, severe preeclampsia/eclampsia, immunosuppressive drug or interferon neurotoxicity, uremia and thrombotic thrombocytopenic purpura [33]. The clinical symptoms are headache, altered mental status, seizures and visual loss. Posterior reversible encephalopathy syndrome is due to dysfunction of a cerebrovascular autoregulatory system, and a vasculopathy of small vessels, the arterioles. Brain perfusion is maintained by the autoregulatory system of the small arteries and arterioles that have myogenic and neurogenic components. Since the vertebrobasilar system and posterior cerebral arteries are sparsely innervated by sympathetic nerves, the occipital lobes and other posterior brain regions are susceptible to a breakthrough of the autoregulation in case of a sudden elevation of the systemic blood pressure. Endothelial damage, which can attenuate the myogenic response of the autoregulatory system, is hypothesized to be the cause of the posterior reversible encephalopathy syndrome.

Other names for the posterior reversible encephalopathy syndrome are reversible posterior leukoencephalopathy syndrome, or posterior leukoencephalopathy syndrome [34, 35]. The lesion can also involve the cerebral cortex and another name for posterior reversible encephalopathy syndrome is occipital parietal encephalopathy [36]. Similar lesions can also be seen in the frontal lobes, basal ganglia, brain stem...
and cerebellum. In addition, the posterior reversible encephalopathy syndrome may not be entirely reversible, as infarction and hemorrhage may develop.

7.5.5 Hypertensive Encephalopathy

The primary cause of hypertensive encephalopathy is thought to be fluid extravasation through the interstitium, resulting from overdistension of the distal small cerebral vessels (breakthrough of autoregulation) causing vasogenic edema [37]. Ischemic processes can be triggered by vasospasm of the cerebral arteriole in response to a severe increase in blood pressure (overregulation). This will usually result in infarctions. Hypertensive encephalopathy is a clinical syndrome in which morphological and clinical phenomena are not correlated to each other. However, plasma proteins, including fibrin, are deposited in the walls of small arteries (hypertensive vasculopathy). This process leads to destruction of smooth muscle cells (fibrinoid necrosis).

The most common abnormality is seen in bilateral parieto-occipital subcortical white matter. However, these lesions can occur in the gray matter but can also involve the frontal lobes, basal ganglia, thalamus, cerebellum and brain stem. They are potentially reversible; however, if left untreated, permanent neurologic deficits or even death may occur as a result of ensuing cerebral infarction or hemorrhage. The prognosis probably depends on the extent of cytotoxic edema, which may be seen in severe cases. DW im-
aging can distinguish irreversible ischemic changes from reversible conditions with vasogenic edema alone (Fig. 7.15) [37].

7.5.6 Preeclampsia/Eclampsia

Preeclampsia is characterized by hypertension, abnormal peripheral edema, and proteinuria that can progress to eclampsia, which also involves seizures. Although CNS changes in severe preeclampsia and eclampsia represent a form of hypertensive encephalopathy, they also occur in normotensive individuals. The precise pathogenesis remains unclear. However, endothelial dysfunction due to circulating endothelial toxins or antibodies against the endothelium can be the primary cause [38]. MR findings in patients with severe preeclampsia/eclampsia are often similar to those with hypertensive encephalopathy. However, intracranial hemorrhage and infarction (Fig. 7.16) are common [39]. Bilateral external capsule or basal ganglia lesions are also common [40]. DW imaging can discriminate a cytotoxic edema from vasogenic edema [41].

Hemolysis, elevated liver enzymes and low platelets (HELLP syndrome) is a thrombotic microangiopathic vasculopathy in pregnancy. Fatalities are attributable to intracranial hemorrhage, which may occur either in isolation or as part of the HELLP syndrome. The DW imaging findings are similar to those in eclampsia/preeclampsia.
7.5.7 Immunosuppressive Drug-Induced Vasculopathy

Cyclosporine, tacrolimus (FK506) and interferon-α are effective immunosuppressive agents for the treatment of organ transplant rejection. Previous theories regarding the mechanism of neurotoxicity include neuropeptide-mediated ischemia and high-pressure failure of cerebral autoregulation [42]. Neurotoxicity usually coexists with hypertensive crisis; however, it also occurs in normotensive individuals. These drugs have profound effects directly on the endothelium and cause release of potent vasoconstrictors such as endothelin. Disruption of the blood–brain barrier with possible focal loss of vascular autoregulation causes extravasation of fluid, which leads to vasogenic edema.

Figure 7.15 a–e
Hypertensive encephalopathy in a 41-year-old woman with hypertensive crisis with pheochromocytoma. A T2-weighted image shows hyperintense lesions in the right frontal lobe and left temporo-parieto-occipital area (arrows). B Coronal FLAIR image shows multiple hyperintense lesions in the subcortical white matter (arrows) and slightly hyperintense lesions (arrowheads) in the left parieto-occipital area. C DW image shows the lesion in the left side as hyperintense (arrows) and the subcortical lesions as isointense. D ADC map reveals decreased ADC of the lesion in the left side, representing acute infarcts (arrows). Subcortical lesions show slightly increased or normal ADC, representing vasogenic edema (arrowhead). E Three-month follow-up MRI shows hyperintense lesions in the left parieto-occipital area, representing old infarcts (arrows). The lesion in the right frontal lobe is not detected. (From [49])
Figure 7.16 a,b
Eclampsia in a 30-year-old woman with seizures. a T2-weighted image shows high signal intensity lesions in the right corona radiata, posterior corpus callosum and left parieto-occipital region (arrows). The lesion in the left parieto-occipital region has a central very low signal intensity, representing hemorrhage. b On DW image, a small infarct in the right corona radiata (arrow) and a hemorrhagic infarct in the left parieto-occipital region (arrowheads) are shown as hyperintense associated with decreased ADC (not shown). The lesion in the posterior corpus callosum represents vasogenic edema.

Figure 7.17 a–c
Tacrolimus neurotoxicity in a 42-year old woman with confusion after liver transplantation. a T2-weighted image shows high signal intensity lesions in the bilateral fronto-parieto-occipital subcortical white matter (arrows). b On DW image, these lesions show slightly hyperintense or isointense signal intensity (arrows). c ADC map shows increased ADC, which with hyperintense lesions (arrows) on DW image indicates T2 shine-through effect. These lesions were resolved on follow-up MRI (not shown).
Vasculopathy and Vasculitis

Chapter 7

Magnetic resonance imaging shows signal changes within the cortex and subcortical white matter in the occipital, posterior temporal, parietal and frontal lobes (Fig. 7.17). Non-transplant patients or those with total body irradiation develop white matter lesions, whereas those conditioned with chemotherapy develop mixed cortical and white matter lesions [43].

7.5.8 Uremic Encephalopathy and Hemolytic Uremic Syndrome

Uremic encephalopathy is the name given to a brain syndrome that occurs in patients with renal failure. The pathogenesis is unknown, but it has been hypothesized that it may be caused by various toxins associated with uremia (elevated parathyroid hormone level, hypercalcemia, and other metabolic abnormalities) [44]. MR imaging usually shows reversible bilateral symmetric white matter lesions. The lesions can also involve the basal ganglia or cortex. DW imaging usually shows iso- or slightly hyperintense lesions with increased ADC, mainly representing vasogenic edema (Fig. 7.18). Follow-up MRI can show cortical laminar necrosis on T1-weighted images.

Hemolytic uremic syndrome is defined as a multi-organ disease characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia and uremia. CNS complications are commonly seen (20–50%) [45]. Hemolytic uremic syndrome caused by O-157 Escherichia coli enterocolitis can potentially result in fatal CNS complications in infants and children. MR imaging sometimes shows irreversible lesions in the basal ganglia or cortex, representing infarction or cortical laminar necrosis. DW imaging can show these lesions as hyperintense with decreased ADC (Fig. 7.19).
7.5.9 Thrombotic Thrombocytopenic Purpura

Thrombotic thrombocytopenic purpura is a multi-system vasculopathy characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal involvement, fluctuating neurologic manifestations and fever [46]. Neuropathology shows hyaline thrombosis and occlusion of capillaries and arterioles without surrounding inflammatory reaction, which results in infarcts and petechial hemorrhages. MR findings are variable, ranging from punctate white matter lesions to posterior reversible encephalopathy syndrome, multifocal gray matter edema, infarction and hemorrhage. DW imaging can differentiate between these lesions (Fig. 7.20), which is important since some of the lesions seen on T2-weighted images may disappear following treatment with plasma exchange [47].

7.5.10 Cerebral Amyloid Angiopathy

Cerebral amyloid angiopathy is characterized by deposition of homogeneous eosinophilic material in the media and adventitia of arterioles and small arteries of the cortex and leptomeninges. The usual neurologic presentation is spontaneous hemorrhage. Gardeu-techo T2*-weighted image is sensitive to detect microangiopathy-related microbleeds. DW image and the b0 image can show such micobleeds as low signal intensity spots [48].

7.6 Conclusion

Diffusion-weighted imaging is useful in detecting acute infarctions and in differentiating diseases that show a cytotoxic edema from those with vasogenic edema in patients with CNS vasculitis and vasculopathy. Overall, lesions demonstrating cytotoxic edema are usually irreversible and those with vasogenic edema are often reversible. Thus, DW imaging is an important tool to establish a prognosis and to determine the best treatment.
Vasculopathy and Vasculitis

Chapter 7

References

Figure 7.20 a–d

Thrombotic thrombocytopenic purpura in a 53-year-old woman with altered mental status and seizures. a Computed tomography shows a hemorrhage in the right parieto-occipital area (arrow) and a wedged-shaped area of low density more peripherally in the right occipito-parietal area (arrowheads). b T2-weighted and c FLAIR images show corresponding hyperintense lesions in the deep white matter and right occipito-parietal area (arrowheads). Hemorrhage is seen as a hypointense lesion (arrow). d On DW image, deep white matter lesions are isointense, mainly representing vasogenic edema, while a cortical lesion in the right occipito-parietal area is hyperintense, representing acute infarction (arrowheads). Hemorrhage is hypointense with a hyperintense rim (arrow)
8.1 Definition

Epilepsy is a chronic brain disorder, which has a wide spectrum of underlying causes. It is characterized by recurrent seizures due to excessive discharge of cerebral neurons (epileptic seizures) and is associated with a variety of clinical and laboratory manifestations [1]. Epileptic seizures are defined as the clinical manifestation of abnormal excessive neuronal activity in cerebral gray matter.

8.2 Classification

The international classification of epileptic seizures is useful to describe the patients’ symptoms, but this is often only the first step in the diagnostic process (Table 8.1) [2]. If the clinical characteristics are associated with a recognizable group of features, such as age of onset, genetic background and course, they may constitute an epileptic syndrome. The international classification of the epilepsy and epileptic syndromes classifies epilepsy as localized or generalized, and idiopathic or symptomatic (Table 8.2) [2].

Table 8.1. Classification of epileptic seizures

<table>
<thead>
<tr>
<th align="left">1. Partial (focal, local) seizures</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Simple partial seizures</td>
</tr>
<tr>
<td align="left">Complex partial seizures</td>
</tr>
<tr>
<td align="left">Partial seizures evolving to secondary generalized seizures</td>
</tr>
<tr>
<td align="left">2. Generalized seizures (convulsive or non-convulsive)</td>
</tr>
<tr>
<td align="left">Absence seizures</td>
</tr>
<tr>
<td align="left">Myoclonic seizures</td>
</tr>
<tr>
<td align="left">Clonic seizures</td>
</tr>
<tr>
<td align="left">Tonic seizures</td>
</tr>
<tr>
<td align="left">Tonic–clonic seizures</td>
</tr>
<tr>
<td align="left">Atonic seizures</td>
</tr>
<tr>
<td align="left">3. Unclassified epileptic seizures</td>
</tr>
</tbody>
</table>

Table 8.2. Classification of epilepsies and epileptic syndromes

<table>
<thead>
<tr>
<th align="left">1. Localization-related epilepsies and syndromes</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">Idiopathic with age-related onset</td>
</tr>
<tr>
<td align="left">Symptomatic (temporal, frontal, parietal or occipital epilepsy)</td>
</tr>
<tr>
<td align="left">2. Generalized epilepsies and syndromes</td>
</tr>
<tr>
<td align="left">Idiopathic with age-related onset</td>
</tr>
<tr>
<td align="left">Idiopathic or symptomatic (West syndrome, Lennox–Gestaut syndrome)</td>
</tr>
<tr>
<td align="left">Symptomatic (early myoclonic encephalopathy, specific syndromes)</td>
</tr>
<tr>
<td align="left">3. Epilepsies and syndromes undetermined</td>
</tr>
<tr>
<td align="left">as to whether they are focal or generalized</td>
</tr>
<tr>
<td align="left">Neonatal seizures</td>
</tr>
<tr>
<td align="left">4. Special syndromes</td>
</tr>
<tr>
<td align="left">Febrile convulsions</td>
</tr>
<tr>
<td align="left">Drug-induced seizures</td>
</tr>
<tr>
<td align="left">Eclampsia</td>
</tr>
<tr>
<td align="left">Chronic progressive epilepsia partialis continua of childhood</td>
</tr>
</tbody>
</table>

8.3 Mechanisms and Pathophysiology of Epilepsy

The fundamental mechanisms of epilepsy can be studied at the basic level of the molecular environment of the cell. This involves cellular systems such as membrane channels, neuronal systems, cell populations and cell-to-cell interactions.

Several neurotransmitter systems are important for the mechanisms of epilepsy [3]. Glutamate is an excitatory synaptic transmitter in cerebral cortex and hippocampus. The primary receptors are divided into two groups: N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors [4]. Excessive release of glutamate activates the NMDA receptor, depolarizes the postsynaptic terminals, and induces changes in membrane function and ionic homeosta-
Epilepsy

NMDA receptors, which have a high density in the hippocampus and other parts of the limbic system, can be related to regions that are susceptible to excitotoxic damage [5]. In some models of epileptogenesis it has been possible to block bursts of discharges by NMDA channel antagonists [6].

Another neurotransmitter related to epilepsy is gamma-aminobutyric acid (GABA), which is an inhibitor of discharges. Loss of GABAergic inhibition can generate epileptiform activity, which is believed to be important in chronic epilepsy [3].

The onset of epileptiform activity presupposes that an epileptic focus must exist where the seizure originates. The epileptic focus may exist in a discrete group of neurons, such as the CA1 pyramidal cells in the hippocampus, or over a larger region, including hippocampus and entorhinal cortex [5]. The seizure attack is associated with abnormal discharges in populations of synchronously active neurons. The spread of the seizure may be associated with an accumulation of extracellular substances, such as potassium ions or excitotoxic amines, and electrical gating mechanisms among neurons.

8.4 Magnetic Resonance Imaging of Epilepsy

Magnetic resonance imaging is widely used to evaluate patients with seizures and can detect structural brain abnormalities that may give rise to the epileptic disorder, e.g. stroke, anoxic injury, trauma, tumor, infections, demyelination and congenital anomalies. The most common cause of seizures in patients older than 45 years is stroke [7]. Intracranial tumors are often associated with epileptic seizures, and trauma is the most common cause of seizures in patients aged 15–24 years [8]. Up to 5% of epilepsy cases have a history of central nervous system infections [9].

Magnetic resonance imaging has become very useful for the diagnosis of an important cause of
seizure, namely mesial temporal (hippocampal) sclerosis [10–14]. Most seizure activity resolves within a few minutes without persistent neurologic deficits. However, transient hemiparesis (Todd’s paralysis), sensory loss, persistent altered mental status, or aphasia occasionally occurs in epilepsy. MR imaging can show secondary effects of seizures on the brain [15–26]. For example, mesial temporal sclerosis, which may occur as a primary lesion, may also arise as a lesion secondary to status epilepticus [19, 21].

8.4.1 Diffusion-Weighted Imaging in Epilepsy

On routine MR imaging, signal alterations related to ictal or postical status can be misdiagnosed as infarctions, tumorous conditions, inflammatory diseases or demyelinating diseases. This may occur because routine MR sequences will not separate vasoergic edema from cytotoxic edema. Such misdiagnoses may result in unnecessary invasive treatment. Diffusion-weighted (DW) imaging is helpful in eval-

![Figure 8.2 a–e](image)

Postictal cerebral lesion following partial seizure in a 64-year-old woman with generalized seizure secondary to hyperglycemia.

- **a** T2-weighted image 24 h after seizures shows hyperintense lesions in bilateral medial fronto-parietal cortex (arrows).
- **b** Coronal FLAIR image also shows cortical and subcortical hyperintense lesions (arrows).
- **c** Gadolinium-enhanced T1-weighted image shows no abnormal enhancement.
- **d** DW image shows these lesions as isointense with increased ADC (e) (arrows), representing vasogenic edema.
Epilepsy

Evaluating epilepsy, as it will detect cytotoxic edema and can differentiate between cytotoxic and vasogenic edema in ictal and postictal lesions of the brain.

8.4.2 Magnetic Resonance Signal Alterations in Epilepsy

Variable MR findings have been reported in the brain in the ictal or postictal stage [15–26]. These findings include transient increase in T2 signal and swelling of the cerebral cortex, subcortical white matter and medial temporal lobe (including hippocampus), thalamus, claustrum and cerebellar hemispheres (Figs. 8.3 a–e).
8.1, 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7). Cortical or subcortical lesions can be uni- or bilateral and they are predominantly found in the fronto-parietal regions. Whether periictal lesions are reversible or irreversible on MR imaging seems to depend on the duration and/or severity of the seizures.

8.4.3 Ictal Stage to Periictal Stage

During ictus there is an increase in metabolism (oxygen and glucose) in the seizure focus. This hypermetabolic state results in consumptive hypoxia, hypercarbia and lactic acidosis, which impair vascular autoregulation in the affected areas of cortex, leading to vasogenic edema and disruption of the blood–brain barrier [22]. If the seizures are not too prolonged, the
periictal brain lesions will only show transient T2 hyperintensity, mainly representing vasogenic edema. However, if the seizures are severe or prolonged, cytotoxic edema can develop. This is often seen in patients with generalized tonic–clonic seizure or status epilepticus (Figs. 8.4, 8.5, 8.6 and 8.7). Whether these lesions show enhancement or not depends on the degree of blood–brain barrier disruption (Figs. 8.2 and 8.3).

Vasogenic edema in periictal brain lesions has variable signal intensity on DW imaging, which is associated with an increase in ADC (Figs. 8.1, 8.2 and 8.3). As mentioned above, DW imaging is useful in detecting and differentiating cytotoxic from vasogenic edema.

8.4.4 Status Epilepticus

Status epilepticus is defined as continuous seizure activity that lasts longer than 30 minutes, or two or more sequential seizures that together last longer than 30 minutes and without full recovery of consciousness between the seizure attacks [28]. This is a serious event and should be treated aggressively, as the mortality associated with status epilepticus is about 8% in children and 30% in adults [28, 29].

In status epilepticus, neuronal injury is thought to result primarily from an excitotoxic mechanism mediated by intrinsic neuronal seizure activity. This is supported by the effect of kainic acid (an excitotoxic analog of glutamate), as shown in animal studies [30, 31]. Neuronal seizure activity will increase the release of glutamate from the pre-synaptic terminal of neuronal axons. The released glutamate crosses the
synaptic cleft to bind to NMDA receptors of the postsynaptic neurons, resulting in cytotoxic edema. Cytotoxic edema is also seen in the astrocytes as an acute phase of reactive astrocytosis [21].

8.4.5 Cytotoxic Edema in Status Epilepticus

Cytotoxic edema following status epilepticus can be at least partially reversible [22], as compared to cerebral ischemia, where these changes are usually irreversible. In cerebral ischemia, a significant compromise of blood supply leads to irreversible failure of energy metabolism. In sustained seizures, there is an increased cerebral metabolism with an increase in cerebral blood flow. This will maintain the energy state of the neuron provided there is sufficient oxygen supply.

The parts of the human brain that are most vulnerable include parts of the hippocampus (the CA1 and CA3 segments, and the hilus), amygdala, pyriform cortex, thalamus, cerebellum, and cerebral cortex. NMDA receptors are predominantly located in the CA1 of the hippocampus and layers 3 and 4 in the cerebral cortex [32, 33]. The Purkinje cell loss of the cerebellum, seen in severe epilepsy, may be explained by an increased demand for inhibition, resulting in GABA depletion and subsequent influx of calcium into neurons [34]. Unilateral hemispheric involvement is occasionally seen in status epilepticus.

Transient and reversible MR signal changes have been reported in patients following status epilepticus [16, 19–23]. On the other hand, other lesions have been proven irreversible, resulting in selective neuronal necrosis, gliosis and delayed neuronal death with subsequent atrophy [24–26] (Figs. 8.6 and 8.7). Following...
status epilepticus, there has also been reported acute neuronal loss in the hippocampus accompanied by intense astrocytic reactions, called mesial temporal gliosis. This is pathologically different from mesial temporal sclerosis [16, 35, 36] (Fig. 8.6). However, these lesions may be the first step in the development of mesial temporal sclerosis [19, 21]. Increased apparent diffusion coefficient (ADC) in the hippocampus has been reported in mesial temporal sclerosis [27].

Diffusion-weighted imaging and ADC maps are more sensitive than conventional MR imaging to show both gray and white matter involvement, and discriminate between cytotoxic and vasogenic edema following status epilepticus [22]. In experimental status epilepticus models, ADC decrease was first seen at about 3 hours and lasted until 48 hours after the onset of seizures, after which time it normalized or even increased [37–42]. The definite time course of DW

Figure 8.7 a–e
Hemiplegic hemiconvulsion epilepsy syndrome in a 2-year-old girl with partial status epilepticus involving the right face and hand. a T2-weighted image 24 h after seizure shows diffuse cortical hyperintense lesions in the entire left cerebral hemisphere, including the basal ganglia, and thalamus. b DW image shows diffuse left-sided cortical and subcortical hyperintense lesions with decreased ADC (c), representing cytotoxic edema. d MR angiography reveals dilatation of the left middle cerebral and posterior cerebral artery branches (arrows), representing hyperperfusion. e Diffuse atrophy with ventricular dilatation and hyperintense lesions in the left hemisphere seen on 5 months follow-up T2-weighted image.
imaging changes in humans is unknown, but areas of signal abnormalities on DW imaging and ADC are seen in cytotoxic edema following status epilepticus, although they are sometimes reversible, as mentioned above [22].

8.4.6 Other Imaging Techniques for Epilepsy

Several other newer MR imaging techniques have been used in epilepsy. These include MR angiography [20], perfusion-weighted imaging [23], single-photon emission computed tomography (SPECT) [43], xenon CT [44] and positron emission tomography (PET) [45]. MR spectroscopy can show metabolic changes such as decreased N-acetyl aspartate (NAA), and increased lactate and glutamate/glutamine peaks [46].

8.5 Hemiconvulsion–Hemiplegia Epilepsy Syndrome

Hemiconvulsion–hemiplegia epilepsy syndrome is one of the recognized sequelae of convulsive status epilepticus [47, 48] in infancy and early childhood. Epilepsia partialis continua (Rasmussen syndrome) is excluded on clinical grounds. In hemiconvulsion–hemiplegia epilepsy syndrome, DW imaging shows diffuse cytotoxic edema confined to one hemisphere (Fig. 8.7).

8.6 Focal Lesion in the Splenium of the Corpus Callosum in Epileptic Patients

The cause of the focal lesion sometimes seen in the splenium of the corpus callosum is not known. It has been speculated to represent transient focal edema, related to the transhemispheric connection and secondary generalized seizure activity [49]. Interhemispheric propagation of the seizure activity is via the splenial callosal fibers. The splenium contains decussating fibers originating in the temporal lobe, which are likely to be involved in a secondarily generalized seizure. The lesion may be related to toxic effects of antiepileptic drugs such as dilantin, carbamazepine and vigabatrin [50]. Abrupt withdrawal and dose reduction of antiepileptic drugs may contribute to the transient edema, mediated by the influence of these drugs on fluid balance systems, namely arginine–vasopressin [51]. Conventional MRI shows a non-hemorrhagic, hyperintense lesion on T2-weighted and fluid-attenuated inversion-recovery (FLAIR) images, which is slightly hypointense on T1-weighted images (Fig. 8.8). There is no enhancement after administration of intravenous gadolinium. DW imaging shows an acute, hyperintense lesion in the splenium of the corpus callosum, with decreased ADC. This finding indicates that the lesion represents a cytotoxic edema in myelinated tracts (intramyelinic edema) in the corpus callosum, which can be a reversible lesion.

8.7 Conclusion

Routine MR imaging is widely used to evaluate various primary brain diseases that cause seizures. These include stroke, anoxic injury, trauma, tumor, infections, demyelination, congenital anomaly and many others. The typical MR finding in a seizure patient is an area of T2 hyperintensity, often located in the cerebral cortex, subcortical white matter, hippocampus, thalamus and/or cerebellum. DW imaging can provide additional information concerning the brain edema and tell whether it is primarily cytotoxic or vasogenic. This is important since cytotoxic edema following seizures indicates a more serious injury and, although often reversible, may result in brain atrophy and necrosis.
Figure 8.8 a–e
Focal lesion in the splenium of the corpus callosum in epilepsy in a 9-year-old presenting with intractable partial seizures since the age of 4 years. a Coronal T2-weighted and b FLAIR images 3 days after seizure show a focal hyperintense lesion in the central portion of the splenium of the corpus callosum (arrow). c Coronal DW image shows this lesion (arrow) as hyperintense associated with decreased ADC (d). e Gadolinium-enhanced T1-weighted image reveals mild hypointense lesion with no abnormal enhancement (arrow).
References

9.1 Demyelinating Disease

9.1.1 Multiple Sclerosis

T2-weighted and fluid-attenuated inversion-recovery (FLAIR) images are sensitive for depicting focal lesions in patients with multiple sclerosis (MS), but lack histopathologic specificity. Other lesions such as inflammation, edema, demyelination, remyelination, reactive gliosis and axonal loss have an MR appearance similar to MS lesions and can often not be distinguished from MS [1]. Hypointense T1 lesions in MS are usually caused by matrix destruction and loss of axons [2]. These lesions, which are hypointense on T1-weighted images and have a low magnetization transfer ratio (MTR), correlate better with clinical disability than proton density/T2 lesions. A low MTR in hypointense lesions on T1-weighted images has in one study been related to clinically more severe MS [3]. Decreased magnetization transfer ratio is, however, also observed in normal-appearing white matter in MS patients [4].

Increased apparent diffusion coefficient (ADC) values and decreased fractional anisotropy can be seen in normal-appearing white matter of patients with MS. This is clearly different from healthy control subjects, where these abnormalities are not seen [5, 6]. The ADC and fractional abnormalities may represent occult small MS plaques, gliosis or wallerian degeneration.

Multiple sclerosis plaques usually show hyper- or isointensity on diffusion-weighted (DW) images, with increased ADC, in both contrast-enhancing active plaques (Fig. 9.1) and chronic plaques (Fig. 9.2). MS plaques are reported to have decreased anisotropy [6, 7]. The increased ADC and decreased anisotropy in MS plaques are thought to be related to an increase in the extracellular space due to demyelination, perivascular inflammation with vasogenic edema, and gliosis. An enhancing portion of MS plaques has slightly increased ADC, histologically representing prominent inflammation with mild demyelination, while the non-enhancing portions tend to have more increased ADC, representing scarring with mild inflammation and myelin loss [8]. ADC values of MS plaques seem to be related to the severity of MS. The ADC values in secondary-progressive MS are higher than those in relapsing-remitting MS [9].

In the acute phase of MS, decreased ADC can also be observed in plaques, although it is rare [10] (Figs. 9.3 and 9.4). Decreased ADC of plaques is presumably caused by intramyelinic edema, which may be located in the periphery of a plaque. Intramyelinic edema occurs in the myelin sheath itself and/or in the intramyelinic cleft. Some of the intramyelinic edema is reversible, probably because the edema is mainly located in the intramyelinic cleft.
Multiple sclerosis in a 28-year-old man presenting with visual problems.

- **a** T2-weighted image shows a hyperintense lesion in the right frontotemporal region (arrow).
- **b** Gadolinium T1-weighted image shows mild enhancement of this lesion, representing an active plaque.
- **c, d** DW image (c) shows a hyperintense lesion associated with increased ADC (d), T2 shine-through (arrow).
Figure 9.2 a–e
Multiple sclerosis in a 59-year-old man with a long history of recurrent seizures. T2-weighted (a) and FLAIR (b) images show multiple periventricular hyperintense lesions with ventricular dilatation. On gadolinium T1-weighted image with magnetization transfer contrast, there is no enhancement of these lesions, representing relatively chronic plaques. DW image shows a right frontal lesion as mildly hyperintense (arrow). ADC is increased (T2 shine-through) and the other periventricular lesions are isointense with increased ADC (T2 washout).
Multiple sclerosis in a 36-year-old woman presenting with subacute onset of progressive aphasia. a T2-weighted image shows a hyperintense lesion in the left periventricular white matter (arrow). b Gadolinium T1-weighted image with magnetization transfer contrast shows rim enhancement of this lesion. c DW image shows combination of a moderately hyperintense (arrow) and a significantly hyperintense lesion (arrowheads). d The moderately hyperintense lesion on DW image with increased ADC may represent demyelination (arrows), and the very hyperintense lesion on DW image with decreased ADC may represent intramyelinic edema (arrowheads). e Histopathology of another case shows that intramyelinic edema (arrows) is located in the periphery of a plaque (PL) (Luxol fast blue PAS stain, original magnification ×40). (From [33])
Demyelinating and Degenerative Disease

Figure 9.4 a–c
Multiple sclerosis in a 13-year-old female presented with acute-onset right-sided weakness and dysarthria. a T2-weighted image shows multiple hyperintense lesions in the bilateral centrum semiovale (arrows). b DW image shows some lesions as hyperintense (arrows). c ADC is decreased representing acute cytotoxic plaques (arrows)

Figure 9.5 a–d
Acute disseminated encephalomyelitis in a 15-year-old male presenting with right hemiparesis. a T2-weighted image shows multiple hyperintense lesions in the left frontal lobe (arrows) b Gadolinium T1-weighted image with magnetization transfer contrast shows inhomogeneous enhancement of these lesions. c DW image shows left frontal lesions as hyperintense due to T2 shine-through. d ADC is increased

[Images of brain MRI scans showing lesions and corresponding descriptions]
9.1.2 Acute Disseminated Encephalomyelitis

The neurologic picture of acute disseminated encephalomyelitis (ADEM) usually reflects a multifocal but monophasic involvement, while MS is characterized by recurrent episodes in both time and space. ADEM lesions tend to resolve, partially or completely, and new lesion formation rarely occurs.

Magnetization transfer ratio and ADC values in normal-appearing white matter of ADEM patients are similar to those of healthy control subjects [11]. DW imaging usually shows hyperintense lesions with increased ADC in the white matter [12] (Fig. 9.5). The ADC values of the ADEM lesions have been reported to be decreased or normal, but this seems to be very rare [13].

9.1.3 Progressive Multifocal Leukoencephalopathy

Progressive multifocal leukoencephalopathy (PML) is a fatal demyelinating disease of the central nervous system occurring in immunocompromised patients. Demyelination in PML results from the lytic infection of oligodendrocytes by JC virus, spreading to adjacent oligodendrocytes. DW imaging is usually hyperintense with increased ADC, but occasionally it shows hyperintensity with decreased ADC, especially at the margin of the lesion, which may represent JC virus-infected swollen oligodendrocytes [14] (Fig. 9.6).

Figure 9.6 a–c
Progressive multifocal leukoencephalopathy in a 50-year-old female presenting with right hemianopsia after chemotherapy for chronic lymphocytic leukemia. Progressive multifocal leukoencephalopathy caused demyelination in this patient. a T2-weighted image shows a hyperintense lesion in the left occipital white matter extending into the posterior corpus callosum (arrows). b DW image shows the lesion as hyperintense due to T2 shine-through. c ADC is increased. The peripheral area of the lesion seems to have relatively decreased ADC (arrowheads).
9.2 Degenerative Disease

9.2.1 Wallerian or Transneuronal Degeneration

Wallerian degeneration is an antegrade degeneration of the axons and myelin sheath resulting from injury of the proximal portion of the axons or cell bodies. It is most commonly recognized in the corticospinal tract secondary to middle cerebral artery infarction. DW imaging shows the acute phase of wallerian degeneration as hyperintense associated with decreased ADC, presumably representing axonal or astrocytic swelling [15, 16] (Fig. 9.7).

Transneuronal (trans-synaptic) degeneration in the substantia nigra can occur secondary to striatal infarction [17]. This neuronal injury may be related to an excitotoxic mechanism via synapses resulting from loss of inhibitory GABA-ergic input. DW imaging shows hyperintensity associated with decreased ADC in the substantia nigra (Fig. 9.7) [18]. The decreased ADC of these lesions is thought to represent cellular edema of astrocytes or neurons in the substantia nigra. Astrocytic swelling, which is related to this degeneration, has been reported in an experimental study [19].

Figure 9.7 a–d
Wallerian and transneuronal degeneration in a 76-year-old man with a large infarct in the right middle cerebral artery (MCA) territory (6 days after onset). a T2-weighted image shows a right MCA infarct as hyperintense, including the left putamen. b T2-weighted image at the level of the midbrain reveals slightly a hyperintense lesion in the right cerebral peduncle including the substantia nigra (arrows), as well as a right MCA infarct in the temporal area. c DW image shows a hyperintense lesion. d ADC is decreased involving both the right cerebral peduncle and the right substantia nigra (arrows).
9.2.2 Creutzfeldt–Jakob Disease

Creutzfeldt–Jakob disease (CJD) is one of the prion diseases characterized by rapidly progressive degenerative dementia, myoclonus and ataxia. There are four forms: sporadic, iatrogenic, familial and variant [20]. Iatrogenic cases include contaminated neurosurgical instruments, administration of human growth hormone, cadaver-derived gonadotrophin, and dura matter (Fig. 9.8) and corneal grafts [21]. Histological features include spongiform degeneration of the gray matter, characterized by clustered, 5–25 micrometer large prion protein-containing vacuoles in the neuronal and glial elements, and neuronal loss, presumably due to apoptosis [22].

T2-weighted and FLAIR images show hyperintense lesions in the cerebral cortex and bilateral basal ganglia in patients with CJD. The lesions often involve bilateral thalami (pulvinar sign) and periaqueductal areas in patients with variant CJD [23, 24], but this finding is also seen in sporadic CJD [25] (Fig. 9.9). DW imaging is more sensitive than conventional MRI in detecting abnormalities in CJD. The lesions are hyperintense on DWI and often associated with decreased ADC [26–29] (Figs 9.8 and 9.9). Electron microscopy shows these vacuoles as focal swelling of neuritic processes, both axonal and dendritic swelling (cellular edema), which may cause decreased ADC [30]. In the late stages, abnormal hyperintense signals disappear with prominent brain atrophy, histologically representing neuronal loss and marked fibrillary gliosis [31].
Creutzfeldt–Jakob disease in a 51-year-old man with progressive dementia.

a. T2-weighted image demonstrates mild hyperintensity bilaterally in the caudate nuclei, putamina and pulvinar of the thalami (arrows).

b. DW image clearly demonstrates these lesions as hyperintense.

c. ADC is decreased.

d. Pathological specimen of another case shows spongiform degeneration and reactive astrocytosis (courtesy of Ukisu R, M.D., Showa University, School of Medicine, Japan)
9.2.3 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis affects middle-aged patients and is characterized by progressive muscle weakness, limb and truncal atrophy associated with bulbar signs and symptoms. The disease progression is relentless and half of the patients are dead within 3 years. MR images of amyotrophic lateral sclerosis are characterized by high T2 signal along the large myelinated pyramidal tract fibers in the posterior limb of the internal capsule and cerebral peduncles. On DW imaging there is typically increased ADC and decreased fractional anisotropy in the corticospinal tracts [32]. Diffusion tensor MR imaging may be useful in analyzing the extent and severity of axonal degeneration in amyotrophic lateral sclerosis (Fig. 9.10).

9.3 Conclusion

Magnetic resonance imaging with DW and ADC is useful in characterizing demyelinating and degenerative lesions of the brain. These imaging techniques can increase specificity and improve our understanding of the pathophysiology of these diseases.
Demyelinating and Degenerative Disease

References

Chapter 9

117
Computed tomography (CT) of patients with toxic and metabolic disease is generally non-specific, showing decreased attenuation of lesions in the white matter. Routine MR imaging is informative, but usually also non-specific, with T2 prolongation of those lesions. The white matter is often diffusely and symmetrically involved, as are the basal ganglia and/or brain stem. Diffusion-weighted (DW) imaging can add to the diagnostic information and improve the understanding of the pathophysiology of various white matter abnormalities, such as dysmyelination and demyelination in toxic and metabolic diseases.

10.1 Toxic Disease

10.1.1 Chemotherapy-Induced Leukoencephalopathy

Intrathecal or intravenous methotrexate, with or without radiation therapy, can cause diffuse white matter changes [1]. MR imaging shows diffuse or multifocal white matter lesions that are hyperintense on T2-weighted image. DW imaging show these white matter changes as diffuse hyperintensity with decreased apparent diffusion coefficient (ADC) in the white matter, even before conventional MR imaging can detect the lesions (Fig. 10.1). Pathologically these lesions represent intramyelinic and axonal swelling.

High-dose chemotherapy including carmustine (BCNU), cyclophosphamide, cisplatin, 5-fluorouracil (5-FU) and carmofur can also cause diffuse white matter disease. The lesions are hyperintense on T2-weighted images as well as on DW images, and ADC is decreased [2–4] (Fig. 10.2). Chemotherapeutic agents such as 5-FU and carmofur can have direct toxic effects on myelin, which causes intramyelinic edema [5]. Chemotherapy-associated leukoencephalopathy can be fatal and early diagnosis and discontinuation of the offending drug is therefore often necessary.

10.1.2 Heroin-Induced Spongiform Leukoencephalopathy

The inhalation of black-market heroin vapors (pyrolysate) as well as intravenous consumption of heroin can lead to toxic leukoencephalopathy [6]. The leukoencephalopathy is pathologically characterized by spongiform degeneration of the white matter as a result of fluid accumulation within the myelin sheaths (intramyelinic edema). Electron microscopy shows vacuoles between the myelin lamellae by splitting of the intraperiod lines [7]. CT and MR imaging show abnormalities in the cerebral and cerebellar white matter, cerebral peduncles, corticospinal tracts, lemniscus medialis and solitary tracts [8]. The accumulation of restricted fluid between the layers of myelin lamellae may cause hyperintensity on DW imaging with decreased ADC [9] (Fig. 10.3). Because the myelin itself and the blood–brain barrier are intact in cases of less severe heroin-induced leukoencephalopathy, one may expect the changes in the DW signal to be reversible on follow-up MR imaging [10].

10.1.3 Cocaine, Phencyclidine Hydrochloride, Amphetamines and Related Catecholaminergics

Cocaine, phencyclidine hydrochloride, amphetamines and related catecholaminergics can cause hemorrhage or infarction due to vasculitis, vasculopathy, or acute hypertensive effects [1]. DW imaging can be useful for the detection of these lesions (see also Chap. 7).
Figure 10.1 a–d
Methotrexate leukoencephalopathy in a 50-year-old female. a T2-weighted image does not demonstrate an appreciable abnormality in the white matter. b DW image shows diffuse hyperintensity in the bilateral corona radiata extending into the central semiovale. c ADC map shows diffuse white matter lesions as decreased ADC, which represents pure intramyelinic edema. d Pathological specimen shows spongiform change representing intramyelinic edema (arrows) diffusely in white matter. Astrocytes and axons are relatively spared (hematoxylin–eosin stain, original magnification ×200)
Figure 10.2 a–c

Carmofur leukoencephalopathy in a 58-year-old female.

a. T2-weighted image shows diffuse hyperintensity in the periventricular white matter including the corpus callosum.

b, c DW image shows these lesions as hyperintense with decreased ADC, presumably related to intramyelinic edema.

Figure 10.3 a–d

Heroin-induced leukoencephalopathy in a 55-year-old male.

a. T2-weighted image shows diffuse hyperintensity in the white matter including U fibers.

b, c DW image shows these lesions as diffusely hyperintense with mildly decreased ADC.

d. Pathology shows intramyelinic edema and reactive astrogliosis, consistent with the subacute phase of heroin induced leukoencephalopathy (hematoxylin–eosin stain, original magnification ×200).
10.1.4 Central Pontine Myelinolysis and Extrapontine Myelinolysis

Central pontine myelinolysis (CPM) and extrapontine myelinolysis (EPM) represent destruction of myelin sheaths in characteristic places within the brain stem and cerebrum. The most common location is the central part of the basis pontis, followed by a combined type with central and extrapontine areas of myelinolysis. Isolated EPM is rare [11]. The basal ganglia, caudate nucleus, thalamus, geniculate bodies, internal and external capsules and gray–white matter junction are possible sites of EPM. The synonyms include osmotic myelinolysis and osmotic demyelination syndrome [12, 13].

Pathological findings include destruction of myelin sheaths, though the nerve cells and axons are relatively spared. The underlying etiology and pathogenesis are unknown, but the hypotheses include osmotic endothelial injury, excessive brain dehydra-

Figure 10.4 a–c

Central pontine myelinolysis in a 33-year-old male. **a** T2-weighted image shows a hyperintense lesion in the center of the pons (arrow). **b, c** DW image shows this lesion as hyperintense with decreased ADC.
Toxic and Metabolic Disease

10.1.5 Wernicke Encephalopathy

Thiamine (vitamin B1) deficiency can cause Wernicke encephalopathy, characterized by confusion, ataxia, and abnormal eye movements. Without thiamine, the Krebs and pentose phosphate cycles cannot metabolize glucose [20]. Cellular homeostasis will soon fail and the midline gray matter degenerates. Pathologic findings include decreased myelination, edema, astrocytic swelling, and necrosis in the mamillary bodies, thalamic and hypothalamic nuclei, periaqueductal gray matter, walls of the third and floor of the fourth ventricle, and less commonly, caudate, frontal, and parietal cortex.

Magnetic resonance imaging shows hyperintense lesions of these areas on T2-weighted images. They may or may not show enhancement on T1-weighted images following contrast agent injection [21]. With intravenous thiamine treatment, these lesions may...

Figure 10.5 a–c
Extrapontine myelinolysis in an 11-year-old male. a On T2-weighted image shows no appreciable abnormality in the external capsules and hippocampi. b, c DW image demonstrates bilateral symmetrical hyperintense lesions with decreased ADC in the external capsules and hippocampi (arrows), representing cytotoxic edema.

Figure 10.6 a–c
Wernicke encephalopathy in a 75-year-old male. a FLAIR shows a symmetrical hyperintense lesion in the hypothalamus (arrow). b, c DW image shows isointense lesions with increased ADC in the hypothalamus, which may represent vasogenic edema (arrow).
dissipate. DW imaging shows these lesions as hyper-intense with decreased or increased ADC. Lesions with decreased ADC are thought to represent cytotoxic edema of neurons or astrocytes, while lesions with increased ADC may represent vasogenic edema (Fig. 10.6) [22–24]. Both types of lesion can be reversible [25].

10.1.6 Marchiafava–Bignami Disease

Marchiafava–Bignami disease is a fatal disorder characterized by demyelination of the corpus callosum, often associated with chronic alcoholism [26]. The genu of the corpus callosum is more frequently involved, but the degeneration can extend throughout the entire corpus callosum. Occasionally, optic chiasm and the visual tracts, putamen, anterior commissure, cerebellar peduncles, cortical gray matter and U-fibers may be involved. Clinical signs include seizures, impairment of consciousness, and signs of interhemispheric disconnection, but they are non-specific.

The corpus callosum appears hypoattenuated on CT and hyperintense on T2-weighted and fluid-attenuated inversion-recovery (FLAIR) images, which is essential to confirm the diagnosis. These lesions can be partially reversible with treatment [27]. DW imaging shows lesions in the early phase as hyperintense with decreased ADC [28] representing cytotoxic edema, mainly in the myelin sheaths (intramyelinic edema). In the subacute phase, the lesions are hyperintense on DW imaging with increased ADC representing demyelination or necrosis (Fig. 10.7).
10.2 Metabolic Disease

10.2.1 Mitochondrial Encephalopathy

Mitochondrial encephalopathies are a heterogeneous group of disorders affecting primarily the central nervous system and skeletal muscles. Two main hypotheses attempt to explain the cerebral lesions: (1) metabolic damage of the endothelium, which leads to small-vessel occlusion and secondary neuronal death and (2) mitochondrial dysfunction, which results in anaerobic metabolism and neuronal death from acidosis [29].

T2-weighted images occasionally show increased signal intensity in the gray and white matter, which usually does not follow vascular territories. Proton MR spectroscopy is useful in the diagnosis by detecting elevated lactate peak. DW imaging often shows the stroke-like lesions in mitochondrial encephalopathy with lactic acidosis (MELAS) as hyperintense. They have increased or normal ADC, which presumably represents vasogenic edema [29–32] (Fig. 10.8). However, decreased ADC in these lesions representing cytotoxic edema can be observed [33–35] (Fig. 10.9).

Figure 10.8 a–d
Mitochondrial encephalopathy with lactic acidosis and stroke (MELAS) in a 27-year-old female. a T2-weighted and FLAIR images show a hyperintense lesion in the right temporal lobe (arrow). b, c DW image shows this lesion as hyperintense with increased ADC (arrow), mainly representing vasogenic edema.
10.2.2 Phenylketonuria

Phenylketonuria is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase. It is the most common congenital disorder of amino acid metabolism. Untreated patients typically develop mental retardation, seizures, growth retardation, hyper-reflexia, eczematous dermatitis, and hyperpigmentation. Pathologic findings include delayed or defective myelination, diffuse white matter vacuolation, demyelination, and gliosis [36].

Magnetic resonance imaging shows hyperintense lesions on T2-weighted images in the periventricular parietal and occipital regions, and in more severe cases extending to the frontal and subcortical white matter [37]. DW imaging shows these lesions as hyperintense with decreased ADC, which presumably represents intramyelinic edema and astrocytic swelling [38] (Fig. 10.10). These lesions can be completely reversible on follow-up MRI when dietary control has been instituted.

10.2.3 Other Metabolic Diseases and Leukodystrophies

Diffusion-weighted imaging is thought to be useful to differentiate between demyelinating and dysmyelinating disorders [39, 40]. Decreased ADC in the white matter has been reported in Canavan disease [41] (Chap. 14), adrenoleukodystrophy [42], metachromatic leukodystrophy [43], L-2 hydroxyglutaric aciduria [44] (Fig. 10.11), and infantile neuronal dystrophy [45]. The cause of the decrease in ADC in these...
Figure 10.10 a–c
Phenylketonuria in a 36-year-old male.
a T2-weighted image shows hyperintense lesions in the periventricular white matter (arrows).
b, *c* DW image shows these lesions as hyperintense with decreased ADC, presumably representing intramyelinic edema.

Figure 10.11 a–c
Glutaric aciduria in a 13-year-old male.
a T2-weighted image shows symmetrical hyperintense lesions in bilateral globus pallidum (arrows) and diffusely in the white matter.
b, *c* DW image shows these lesions as hyperintense; however, ADC is mildly decreased in the globus pallidum (arrows), and mildly increased in the white matter.
Toxic and Metabolic Disease

Diseases seem to be intramyelinic edema [46], or axonal swelling associated with impaired myelin sheaths or axons. On the other hand, increased or normal ADC in the white matter is seen on Pelizaeus–Merzbacher disease [47] (Chap. 14), Krabbe disease, van de Knaap disease (Fig. 10.12) and leukoencephalopathy with vanishing white matter (Chap. 14). Diffusion tensor MR imaging can be useful in differential diagnosis of leukodystrophies [39, 42, 48].

Figure 10.12 a–c

Van der Knaap disease in a 10-month-old male with megalencephaly. a T2-weighted image shows diffuse hyperintensity in the white matter. b, c DW image shows diffuse hypointensity with increased ADC, especially prominent in symmetrical subcortical cysts in the temporal lobes (arrows).
References

11.1 Overview of Brain Infections

Infections of the brain are caused by bacteria, virus, fungi or parasites. Bacterial infections are often related to septic emboli and extracranial infections spreading intracranially and intra-axially. This can result in cerebritis and brain abscesses. Viral infections are more diffuse and cause encephalitis and vasculitis. Toxoplasmosis, which is the most common parasitic infection of the brain, causes encephalitis and abscesses, while disseminated aspergillosis causes vasculitis-mediated infarctions resulting in extensive cerebritis and/or abscess formation.

The pathophysiology and the imaging findings vary greatly depending on the organism causing the infection. Diffusion-weighted (DW) imaging is useful for diagnosis of infectious conditions of the brain by means of differentiating vasogenic edema from cytotoxic edema [1]. DW imaging can also separate abscesses from cystic and necrotic tumors [2–6].

11.2 Bacterial Brain Abscess

Bacterial brain abscesses are potentially fatal, but can often be medically and surgically treated if detected early. Symptoms are often non-specific and vague, and imaging is therefore necessary for detection and characterization.

A brain abscess begins as a focal area of microvascular injury, usually at the gray–white matter junction or deeper in the white matter. Pathologically the initial stage of a brain abscess is a focal area of cerebritis or presuppurative encephalitis. This is characterized by early necrosis of the cerebral parenchyma, vascular congestion, petechial hemorrhage, neutrophil infiltration and vasogenic edema [7–9].

Late cerebritis is characterized by a necrotic and purulent center. This evolves to frank abscess formation, which is characterized by central pus, inflammatory granulation tissue and a fibrous capsule. The pus usually consists of both dead and viable neutrophils. Even in the chronic phase of an abscess, there is both coagulative necrosis and bacteria (Fig. 11.1).

The early phase of the brain abscess has a homogeneous, bright signal on DW imaging associated with decreased apparent diffusion coefficient (ADC) (Fig. 11.1). On follow-up DW imaging, the chronic phase of an abscess can still show hyperintensity, but ADC values are partially increased [10]. A possible explanation for the high signal on DW imaging is restriction of water mobility due to the high viscosity of coagulative necrosis and the hypercellularity of polynucleated neutrophils in the pus.
11.3 Septic Emboli

The main risk factors for brain abscesses are bacterial endocarditis and chronic suppurative intrathoracic infections [11]. If septic emboli of sufficient size are lodged in an intracerebral arterial vessel, infarction can occur. Infarctions are bright on DW imaging, with decreased ADC (Fig. 11.2). Septic infarctions usually occur in the distal cortical branch territories, while small septic emboli are characteristically found in the corticomedullary junction. It can take a few weeks and up to several months for septic emboli to develop into an abscess. Serial DW imaging is therefore often useful in patients at risk for septic encephalopathy. By means of repeated DW imaging, it is possible to identify the initial infarction and the subsequent cerebritis/abscess evolution [12]. This allows for early treatment.

Figure 11.1 a–e

Chronic streptococcal brain abscess in a 7-year-old boy presenting with severe headache. **a** T2-weighted image shows a central hyperintense mass lesion with low signal rim (black arrows) and peripheral edema in the left frontal lobe. **b** Gadolinium-enhanced T1-weighted image with magnetization transfer contrast shows this mass with ring enhancement. **c** DW image shows a central cystic component as hyperintense. **d** ADC map shows decreased ADC of this component. **e** Specimen shows numerous neutrophils (arrows) in the pus and granulomatous fibrous capsules (arrowheads) in a chronic abscess.
11.4 Brain Abscess
Caused by Unusual Bacteria

The classical finding in a brain abscess is a cystic lesion with marked enhancement following contrast medium injection. On DW imaging, the cyst shows a high signal and ADC is reduced. However, the characteristics of brain abscess appear to be related to the type of organism and the immunity of the host. Thus, in an immunodeficient patient with sepsis, multiple micro-abscesses are often observed. Multiple micro-abscesses of gram-negative rods may involve basal ganglia bilaterally and mimic small infarcts (Fig. 11.3) [13].

Listeria infection is often associated with parenchymal involvement, especially in the brain stem [14]. A central small abscess may be seen as high signal on DW imaging, with decreased ADC (Fig. 11.4).

11.4.1 Differential Diagnosis

Diffusion-weighted imaging can discriminate brain abscesses from cystic or necrotic tumors, which is often difficult with conventional MR imaging (Fig. 11.5) [2–6]. Abscesses and tumor necrosis are both generally bright on DW images, but the abscesses characteristically have low ADC, whereas the ADC in tumors varies. There are exceptions and central necrosis of a tumor or metastasis can occasionally show the same characteristics with hyperintensity on DW imaging with low ADC (Fig. 11.6) [15–17]. Sterile and liquefactive coagulative necrosis, hemorrhage and viscous mucinous components are possible causes for this finding.

Pure coagulative necrosis typically develops after radiofrequency thalamotomy [18]. The lesion often shows hyperintensity on DW imaging, with decreased ADC (Fig. 11.7). Although imaging characteristics are very similar to those of an abscess, the history of the patient and the symptomatology can usually help to differentiate post-surgical lesions from abscesses.
Chapter 11

Infectious Diseases

Figure 11.3 a,b
Brain abscesses due to gram-negative rods bacteria in a 28-year-old woman with Crohn's disease and long-term steroid use presenting with headache. Blood culture showed gram-negative rods.

a T2-weighted image shows multiple small hyperintense lesions in bilateral basal ganglia (arrows) and white matter.

b DW image shows these lesions as very hyperintense with decreased ADC (not shown). This finding mimics multiple small infarcts but it represents multiple small abscesses.

Figure 11.4 a–d
Listeria meningoencephalitis after bone marrow transplantation for chronic myeloblastic leukemia in a 31-year-old man presenting with a 2-day history of severe headache. a T2-weighted image shows hyperintense lesions in the left basal ganglia, internal capsule and white matter in the temporal lobe, representing encephalitis (arrows).

b Coronal gadolinium-enhanced T1-weighted image shows an irregular ring-enhancing lesion (arrow).

c DW image shows a central cystic component as hyperintense with decreased ADC (d) (arrow), representing an abscess.
Figure 11.5 a–d

Glioblastoma multiforme in a 69-year-old woman. a T2-weighted image shows a central hyperintense mass lesion with low signal rim and peripheral edema in the right frontal lobe. b Gadolinium-enhanced T1-weighted image with magnetization transfer contrast shows this mass with irregular ring enhancement. c DW image shows a central cystic component as hypointense (arrow). d ADC map shows increased ADC of this cystic component (arrow)
Brain metastasis from adenocarcinoma of the lung in a 44-year-old man. a T2-weighted image shows multiple mass lesions and peripheral edema in the left parieto-occipital lobe. b Gadolinium-enhanced T1-weighted image with magnetization transfer contrast shows these lesions with irregular ring enhancement (arrows). c DW image shows central cystic components as hyperintense (arrows). d ADC map shows relative low ADC values of cystic components, presumably representing coagulative necrosis or mucinous substance (arrows).
11.5 Bacterial Abscess in the Extra-Axial Space

Infections can enter the extra-axial spaces by a variety of mechanisms, including direct spread from an adjacent focus, retrograde septic thrombophlebitis, hematogenous seeding and sequela of purulent leptomeningitis [19]. Abscesses can occur in epidural, subdural (Fig. 11.8), leptomeningeal (Fig. 11.9) or intraventricular spaces (Fig. 11.10) [20, 21]. Wherever they occur, DW imaging shows pus in the abscess as hyperintense, with relatively low ADC values. An exception to the rule can be found in some cases of extraaxial pus collections where the ADC may from low to high. Regions of increased ADC may represent dilution of pus with CSF.

11.5.1 Differential Diagnosis

Hematomas and epidermoids occasionally have imaging characteristics similar to those of an extra-axial abscess on DW imaging. The hematomas often show hyperintensity with decreased ADC, probably because of the hypercellularity or hyperviscosity (Fig. 11.11) [22, 23]. Epidermoids also show an extraaxial hyperintense lesion on DW imaging (Fig. 11.12) caused by high viscosity keratohyalin-containing materials, which are arranged in layers, as in an onion bulb. Moreover, they are rich in cholesterol crystals. ADC maps usually show slightly increased ADC as compared with normal brain parenchyma [24].
Purulent leptomenigitis in a 77-year-old man. Pneumococcus was proven by CSF examination.

- **a** Coronal fluid-attenuated inversion-recovery image shows hyperintense lesions in subarachnoid space in the right fronto-parietal region (arrow).
- **b** Gadolinium-enhanced T1-weighted image with magnetization transfer contrast shows irregular enhancement of these lesions (arrows).
- **c** DW image shows these lesions as hyperintense, representing purulent leptomenigitis (arrows).
- **d** ADC map shows these lesions as decreased ADC (arrows)
Figure 11.10 a–d

Purulent ventriculitis after surgery in a 60-year-old man. a Gadolinium-enhanced T1-weighted image with magnetization transfer contrast shows linear enhancement along the ventricle (arrows). There are post-surgical changes in the left frontal lobe and extracranially on the left. b T2-weighted image shows a fluid–fluid level in bilateral lateral ventricles (arrows) and postoperative changes in the left frontal lobe (arrowhead). c DW image shows the fluid (arrows) as hyperintense, representing purulent ventriculitis, and postoperative changes in the left frontal lobe (arrowhead). d ADC map shows these lesions as decreased ADC.
Figure 11.11 a,b
Intraventricular hemorrhage due to arteriovenous malformation in a 29-year-old man. a DW image shows hyperintense lesions (arrows) with decreased ADC (not shown), similar to the finding seen in purulent intraventriculitis. b Computed tomography shows the high density of intraventricular hemorrhage.

Figure 11.12 a-d
Epidermoid in a 29-year-old male. a T2-weighted image shows a hyperintense mass (arrow) in the left cerebello-pontine angle. b Gadolinium-enhanced T1 weighted image with magnetization transfer contrast shows the lesion (arrow) as hypointense with no enhancement. c DW image shows this lesion (arrow) as hyperintense. d ADC map shows almost similar ADC value to the cerebellar parenchyma.
11.6 Bacterial Vasculitis

Cerebral infarctions secondary to meningitis are well documented in the pediatric age group. Thus, *Streptococcus* B meningitis in neonates can result in infarction, a condition that is rare in adults. The blood–brain/blood–cerebrospinal fluid (CSF) barrier and the mechanical integrity of meninges are immature in young infants, which may explain the preponderance for these changes to occur in babies and young infants [25]. Both arteries and veins can be involved by infection via the perivascular space. Pial arteriolar occlusion causes infarction of the subpial cortex (Fig. 11.13). Although vasculitic changes occur early, they only become prominent resulting in an infarction by the second to third week after onset of the meningeal infection. DW imaging is useful in early detection of the infarction, which is bright on DW imaging, with low ADC.

11.7 Toxoplasmosis

Toxoplasma abscesses consist of ischemic necrosis of the brain tissue associated with sclerosing endarteritis and a variety of inflammatory reactions. Toxoplasma abscesses are more commonly seen in immunocompromised patients, such as patients with acquired immunodeficiency syndrome (AIDS). In fact, toxoplasma abscesses in AIDS patients were once so common that they were morphologically grouped into three subtypes: (1) poorly circumscribed areas of necrosis (necrotizing abscess), (2) a central area of coagulative necrosis surrounded by macrophages and organism (organizing abscess), and (3) well-demarcated cystic spaces (chronic abscess) [26].

Diffusion-weighted imaging of a toxoplasma abscess may show a variety of signal characteristics, which probably is a reflection of the different pathologic/morphologic subtypes (Fig. 11.14). Abscesses with different characteristics are often seen in the same patient. Central necroses in toxoplasma abscesses do not contain as many inflammatory cells as regular bacterial abscesses.

Figure 11.13 a–c

Group B Streptococcus meningitis in a 5-week-old boy. a T2-weighted image shows bifrontal subdural effusion and hyperintense lesions in bilateral frontal superficial cortices and posterior corpus callosum (arrows). b DW image shows these lesions (arrows) as hyperintense. c ADC map shows these lesions (arrows) as decreased ADC, representing acute infarcts of the subpial cortex.
Toxoplasmosis in an 18-year-old woman with acute myeloblastic leukemia.

a T2-weighted image shows a mass lesion with vasogenic edema in the left fronto-temporal region (long arrows). Hyperintense lesions are also seen in the right occipital area (short arrow).

b Gadolinium-enhanced T1-weighted image with magnetization transfer contrast shows a ring-enhancing mass (long arrows) and an enhancing nodule (short arrow).

c DW image shows a non-enhancing cystic central area as hyperintensity (arrow), and the enhancing rim and peripheral vasogenic edema as hypointensity (arrowheads).

d ADC map shows decreased ADC of this cystic component (arrows).

e Biopsy specimen shows coagulative necrosis of this cystic component (hematoxylin–eosin stain).

f, g DW image shows a small cystic lesion (arrow) as hypointense with increased ADC (g) in the right caudate nucleus (arrow), which may indicate the different phase of toxoplasma abscess. Left fronto-temporal mass and multiple hyperintense nodules are also seen.
11.7.1 Differential Diagnosis

The main differential diagnosis is lymphoma. In AIDS patients, central nervous system lymphoma is often associated with central necrosis. This is occasionally liquefactive, presumably related to hypoxia or apoptosis of tumor cells. The enhancing portion of the lesion usually shows hyperintensity on DW imaging, with relatively low ADC due to hypercellularity of lymphomas (Fig. 11.15). A central necrosis usually shows hypointensity on DW imaging, with increased ADC.

Figure 11.15
AIDS-related lymphoma in a 23-year-old man. a T2-weighted image shows a necrotic mass in the left frontal lobe extending into the temporo-occipital lobe. b Gadolinium-enhanced T1-weighted image magnetization transfer contrast shows these lesions (arrows) with irregular ring enhancement. c DW image shows enhancing solid components as hyperintensity (arrowheads), and a necrotic component as hypointensity (arrow). d ADC map shows central necrosis as increased ADC (long arrow) and the solid components (short arrows) as relatively low ADC compared to the central necrosis.
Figure 11.16 e
Disseminated aspergillosis in a 55-year-old female with fever and mental status change. She had hepatitis C and underwent liver transplantation. a T2-weighted image shows multiple hyperintense round lesions (arrows) in bilateral basal ganglia, right thalamus, and cerebral white matter and cortex. Subdural hematoma is also seen in the right frontal region. b DW image shows these lesions as very high signal intensity (arrows), representing infarction and hemorrhage and abscess. c ADC maps show decreased ADC in these lesions (arrows). d Pathological specimen of the right thalamus shows *Aspergillus* hyphae (arrows) and infiltration of lymphocytes and macrophages (arrowheads) in an abscess (hematoxylin–eosin stain). e Pathological specimen of left frontal area shows necrosis due to vasculitis-mediated acute septic infarction and hemorrhage (arrows) (hematoxylin–eosin stain)
In disseminated aspergillosis, *Aspergillus* infiltrates and destroys the internal elastic lamina of cerebral arteries and causes vasculitis [27]. This leads initially to acute infarction or hemorrhage. Most of the process extends into the surrounding tissue as cerebritis and eventually evolves into an abscess. Infection of already infarcted brain tissue is often aggressive with rapid progression. DW imaging is useful for early detection of this vasculopathy-mediated septic infarction and abscess (Fig. 11.16). New antifungal therapies (triazole) have made effective treatment possible.

11.9 Herpes Encephalitis

Pathologically, herpes encephalitis has both cytotoxic and vasogenic edema associated with massive tissue necrosis and petechial or even confluent hemorrhage. DW imaging is more sensitive than conventional MR imaging in detecting early changes of herpes encephalitis (Fig. 11.17) [28, 29]. This is important for early diagnosis and treatment. Herpes encephalitis typically affects the temporal lobes, which occasionally can make the detection of lesions in the middle cranial fossa difficult on DW imaging because of susceptibility artifacts.
11.10 Human Immunodeficiency Virus Infection

The pathological hallmark of human immunodeficiency virus (HIV) encephalopathy is multinucleated giant cells in the white matter [30]. This results in myelin pallor and rarefaction. MR imaging typically shows diffuse periventricular white matter lesions, but brain stem and basal ganglia can also be involved. DW imaging usually shows mild hyperintensity with decreased ADC which is secondary to a T2 shine through effect (Fig. 11.18).

Cerebral infarction in HIV patients is common and has been seen on MR imaging in up to 18% of the patients [31]. The infarctions are caused by opportunistic infections, drug use and primary HIV vasculitis. AIDS-related bilateral basal ganglia lesions are reported to be numerous microinfarcts on post-mortem neuropathological examination [32]. DW imaging can show numerous hyperintense lesions in bilateral basal ganglia, presumably representing microinfarcts (Fig. 11.19).

Figure 11.18 a–c
HIV encephalopathy in a 60-year-old man. a T2-weighted image shows periventricular hyperintense lesions (arrows). b DW image shows these lesions as mild hyperintensity (arrows). c ADC map shows these lesions as increased ADC. Mild hyperintensity on DW imaging is due to T2 shine-through effect (arrows)
References

Figure 11.19 a–c
AIDS-related bilateral basal ganglia lesions in a 38-year-old female with multiple small infarcts, probably associated with HIV vasculitis. a T2-weighted image shows hyperintense lesions in bilateral caudate nuclei and putamina (arrows). b DW image demonstrates these lesions as numerous hyperintense spots, probably representing microinfarcts associated with HIV infection and/or drug abuse (arrows). c ADC map shows these lesions as partially decreased ADC (arrows)
12.1 Introduction

Head injuries are the most common cause of death and permanent disability in the early decades of life. They vary widely in their etiology, pathophysiology, clinical presentation, and optimal treatment strategies. Traumatic brain injuries are classified in two main categories: focal and diffuse brain injuries [1]. Focal brain injuries usually result from direct impact force to the head, like cerebral contusions and epidural hematomas. Diffuse brain injuries are caused by sudden changes in movement of the head, usually rotational accelerations, which result in a variety of injuries, ranging from a brief cerebral concussion to extensive diffuse axonal injuries (DAI).

Computed tomography (CT) is imperative in patients with focal and diffuse injuries, especially when hemodynamically or neurologically unstable [2]. However, CT is often false negative or underestimates contusions shortly after trauma, and DAI is often not detected. Conventional MR imaging has higher detection sensitivity with regard to these lesions because of its greater sensitivity for edema [3].

Once it was thought that edema following traumatic brain injury was vasogenic, but recent experimental studies using diffusion-weighted (DW) imaging have shown that edema after head trauma consists of both vasogenic and cytotoxic edema [4–9]. Since DW imaging is also very sensitive in detecting small lesions of cytotoxic edema and can differentiate cytotoxic from vasogenic edema, it has become especially useful in the evaluation and staging of patients with DAI.

12.2 Diffuse Axonal Injury

Diffuse axonal injury results from a diffuse shearing-strain deformation causing change in shape of brain tissue from unequal movement of adjacent tissues that differ in density and rigidity [1]. Patients with DAI more often than with other types of primary brain injuries show severe impairment of consciousness at impact.

Pathologically, injury related to DAI is always more extensive microscopically than at gross examination [10]. Microscopically, shearing injuries initially produce multiple, characteristic axonal bulbs, or retraction balls, as well as numerous foci of perivascular hemorrhages.

The origin behind cytotoxic edema in DAI seems to be related to an excitotoxic mechanism, in particular glutamate [1, 11, 12]. Damage at the node of Ranvier will result in a traumatic defect in the axonal membrane. This defect causes excessive neurotransmitter release with increase in intracellular calcium ions, as in brain ischemia, which leads to axonal and glial cell swelling (cytotoxic or neurotoxic edema). These changes can eventually lead to axonal degeneration or necrosis with microglial and astrocytic reactive changes. Accumulation of hemosiderin-laden macrophages is also seen in the chronic phase.

12.2.1 Location

Common locations of DAI are at the gray–white matter junctions (Fig. 12.1), in the corpus callosum (Fig. 12.2) and at the dorsolateral aspect of the upper brain stem (Fig. 12.3). DAI may be confined to the white matter of the frontal and temporal lobes in mild head trauma [13]. With more severe rotational acceleration, lesions are also seen in the lobar white matter as well as in the posterior half of the corpus callosum. In cases with even greater trauma, lesions will also be found in the anterior corpus callosum, and the dor-
solateral aspects of the midbrain and upper pons. Occasionally, DAI lesions occur in the parietal and occipital lobes, internal and external capsules (Fig. 12.2), basal ganglia (Fig. 12.4), thalamus (Fig. 12.2), fornix (Fig. 12.5), septum pellucidum, and cerebellum (Fig. 12.6). Intraventricular hemorrhage can accompany these findings. They have the same mechanical origin and are due to disruption of the subependymal plexus of capillaries and veins that lie along the ventricular surface of the corpus callosum, fornix, and septum pellucidum [14].
Figure 12.2 a–d
Diffuse axonal injury in the corpus callosum, internal capsule and thalamus in a 29-year-old female after a motor vehicle accident. T2-weighted (a) and FLAIR (b) images show multiple hyperintense lesions in the anterior and posterior corpus callosum, internal capsules and left thalamus (arrows). c DW image demonstrates these lesions as high signal intensity with decreased ADC (d).
Figure 12.4 a–d

Diffuse axonal injury in the basal ganglia in a 3-year-old male after a motor vehicle accident. a T2-weighted image shows hyperintense lesions in the right lentiform and caudate nucleus (arrows). b, c DW imaging shows these lesions as hyperintense with decreased ADC (arrows). d Coronal GRE image clearly shows no hemorrhagic foci in these lesions.
Figure 12.5 a–c
Diffuse axonal injury in the fornix of an 11-year-old female after a motor vehicle accident. **a** T2-weighted image shows a small hyperintense lesion in the fornix (arrow). **b, c** DW image shows the lesion in the fornix and posterior corpus callosum as hyperintense with decreased ADC (arrows).

Figure 12.6 a–d
Diffuse axonal injury in the cerebellum of an 18-year-old male after a motor vehicle accident. **a** T2-weighted image shows a hypointense lesion in the right middle cerebellar peduncle (arrow). **b** DW image shows a hypointense lesion with a hyperintense rim, representing a hemorrhagic lesion (arrow). **c** ADC map reveals decreased ADC in this lesion (arrow). This may be due to a paramagnetic susceptibility artifact. **d** Coronal GRE image clearly demonstrates hemorrhagic lesions as hypointense (arrow).
12.2.2 Computed Tomography and MR Imaging

Few DAI lesions are visible with CT. Only large lesions or those that are grossly hemorrhagic are seen. MR imaging has been proven to be more sensitive for detection as well as for characterization of DAI lesions [2]. Conventional MR imaging shows multiple, small, deeply situated elliptical lesions that spare the overlying cortex. Fluid-attenuated inversion-recovery (FLAIR) images are more sensitive than T2-weighted images to detect small hyperintense lesions adjacent to the cerebrospinal fluid, such as in the fornix and septum pellucidum [15]. These lesions are, moreover, often accompanied by small, petechial hemorrhages. They occur in 10–30% of all DAI lesions [16] and are best appreciated on T2*-weighted gradient-echo (GRE) images because of their susceptibility effects [17]. However, even these MRI sequences are thought to underestimate the true extent of DAI.

12.2.3 Diffusion-Weighted Imaging

Diffusion-weighted imaging measures a unique physiologic parameter, movement of water in the tissue, which allows for identification of DAI lesions that may not be visible on T2/FLAIR or T2*-weighted GRE images. DAI lesions on DW imaging are hyperintense and associated with decreased apparent diffusion coefficient (ADC) [17–22]. The precise mechanisms underlying the diffusion changes associated with DAI are unknown. Cytotoxic edema, which seems to be the cause of reduced ADC in ischemic brain injury, can also occur in the early phase of DAI. However, reduced ADC could also be due to the development of retraction balls and concomitant cytoskeletal collapse along the severed axons [21].

The time course of the ADC abnormality seems to be different from that of ischemic brain injury. Prolonged decrease in ADC, over 2 weeks, was occasionally observed in DAI [18], and cytotoxic edema in the corpus callosum can be partially reversible on follow-up imaging using T2-weighted sequences [22]. However, axonal and glial cell swelling in DAI is thought to be mainly due to excitotoxic mechanisms. It can be a slower or reversible form of cellular swelling than that seen in ischemic brain injuries [6]. Hemorrhagic components, which often accompany these brain injuries, will affect the signal intensity on DW images.

12.3 Brain Contusion

Brain contusions are defined as traumatic injuries to the cortical surface of the brain [1]. They are caused by direct contact between the skull and the brain parenchyma. Compared with DAI, contusions tend to be larger, more superficial, more ill defined and more likely to contain areas of hemorrhage. Cytotoxic edema in brain contusions is also related to excitotoxic mechanisms [23].

12.3.1 Location

Common locations of brain contusions are in the temporal and frontal lobes, especially along their anterior, lateral, and inferior surfaces (Fig. 12.7). The parietal occipital lobes, hippocampus (Fig. 12.8), cerebellar hemisphere, vermis and cerebellar tonsils (Fig. 12.9) are less frequently involved [2].
Figure 12.7 a–d

Brain contusion in the frontal lobe in a 37-year-old male after a motor vehicle accident. a On CT obtained after evacuation of epidural hematoma, it is difficult to delineate the extent of a mass lesion in the right frontal lobe (arrows). b T2-weighted image delineates the extent of the edematous brain contusion (arrows). c DW image shows heterogeneous signal intensity in these lesions, representing mixed vasogenic and cytotoxic edema with hemorrhagic necrotic tissues (arrows). d ADC map reveals mixed increase and relative decrease of ADC (arrows) in these lesions.
12.3.2 Computed Tomography and MR Imaging

Contusions are often difficult to identify on CT obtained shortly after trauma unless they are large or contain areas of hemorrhage [2]. Initial CT will often show only faint areas of low attenuation, sometimes mixed with a few tiny areas of petechial hemorrhage. MRI is considerably more sensitive than CT for early detection and evaluation of their extent.

12.3.3 Diffusion-Weighted Imaging Findings

Brain contusions are sometimes associated with a non-hemorrhagic mass effect, which progresses rapidly after the trauma. Edema in brain contusions is heterogeneous, composed of cytotoxic and vasogenic edema [24], which can be demonstrated by DW imaging. Kawamata et al. reported a specific DW imaging finding of brain contusions [25, 26]. On DW imaging, the contusion is shown as a low intensity core, with increased ADC, surrounded by a rim of a high intensity, with decreased ADC. This suggests that intra- and extracellular components undergo disintegration and homogenization within the central area, whereas cellular swelling is predominant in the peripheral area.

12.4 Hemorrhage Related to Trauma

Traumatic hemorrhages result from injury to a cerebral vessel (artery, vein or capillary) [2]. Subdural hematomas originate from disruption of the bridging cortical veins, which are vulnerable to rapid stretching. Epidural hematoma can have either an arterial or a venous sinus origin, typically associated with a skull fracture. Traumatic intracerebral hematomas result from a shear-strain injury involving arteries, veins or capillaries. Traumatic subarachnoid hemorrhage is usually seen after severe head trauma and may as such accompany brain contusion or DAI. Hemorrhages can also represent a disruption of intracranial arteries, especially arteries of the vertebrobasilar system.
12.4.1 Computed Tomography and MR Imaging

Computed tomography is the modality of choice for the initial evaluation of traumatic brain hemorrhages, as it is a fast examination technique, is widely available, has no contraindications and relatively accurately depicts most hematomas [2].

Magnetic resonance imaging is usually not the primary imaging technique and findings will then depend on the stage of degradation of the hemoglobin at the time of examination. However, in most instances MR imaging is extremely helpful to detect hematomas, especially along the vertex and skull base, and can in certain questionable cases differentiate between subdural and epidural hematomas [2]. T2*-weighted GRE and FLAIR images seem to be more sensitive to detect hemorrhage than conventional spin-echo imaging [27–30].

12.4.2 Diffusion-Weighted Imaging

Diffusion-weighted imaging findings of subdural and epidural hematomas have not been well described in the literature. Depending on the age of the hematoma, DW imaging will vary in signal intensity (Fig. 12.10). Gradient-echo sequences are better in detecting hematomas, including subdural and epidural hematomas, than DW imaging [30]. Although often difficult to detect [31, 32], DW imaging can occasionally depict a subarachnoid hemorrhage as a hyperintense signal (Fig. 12.11). The benefit of DW imaging is probably for the detection of underlying or associated parenchymal lesions. For example, subarachnoid hemorrhage will often cause vasospasm of the intracranial arteries, which can result in brain ischemia. Mass effect secondary to subdural or epidural hematomas, which is closely related to morbidity and mortality, is due to a combination of the hematoma, underlying parenchymal edema and diffuse cerebral swelling.

Figure 12.10 a–d

Epidural and subdural hematoma in a 26-year-old male after a motor vehicle accident. a CT shows a left epidural hematoma (arrow) but it is difficult to depict the isodense small subdural hematoma in the right side (arrowheads). b T2-weighted image shows the left epidural hematoma (arrow) as a hypointense lesion and the right subdural hematoma as partially hypointense lesions (arrowheads). c DW image shows the epidural hematoma as very hypointense due to deoxy-hemoglobin, and the subdural hematoma as very hyperintense presumably due to high viscosity or hypercellularity of hematoma. d ADC map shows hypointensity due to loss of pixels with background masking in the left epidural hematoma (arrow). ADC map also shows decreased ADC in the right subdural hematoma (arrowheads).
Subarachnoid hemorrhage in a 68-year-old male with ruptured aneurysm of the right middle cerebral artery bifurcation.

Figure 10.11 a–d

- **a** Post-operative CT shows subtle high density of subarachnoid space in the right frontoparietal area (arrows).
- **b** FLAIR image shows subarachnoid hemorrhage as hyperintensity.
- **c** DW image also shows subarachnoid hemorrhage as hyperintensity with mildly increased ADC (not shown).
- **d** Coronal GRE shows the hemorrhage as low signal intensity.
12.5 Vascular Injuries

Traumatic arterial and venous injuries (dissections, lacerations, occlusions, pseudoaneurysm, arteriovenous fistulas) are more prevalent than generally believed [2]. Many asymptomatic lesions probably escape detection, and others are recognized several days to months after the injury (Fig. 12.12). CT is useful to detect skull base fractures and CT angiography may help to evaluate the vascular injuries. However, a combination of MR imaging and MR angiography is probably the most efficacious way to screen high-risk patients for traumatic vascular injuries, especially if combined with DW imaging, which is very sensitive to detect small and early ischemic lesions secondary to traumatic vascular injuries. Still, one has to acknowledge that conventional angiography continues to be the gold standard in the evaluation of known or suspected traumatic arterial lesions.

Figure 12.12 a–c

Cerebral infarction after carotid artery dissection with pseudoaneurysm in a 20-year-old female after a motor vehicle accident. a T2-weighted image shows hyperintense lesions in the right middle cerebral artery territory including the right basal ganglia (arrows). b DW image also shows these lesions as hyperintense with decreased ADC (not shown), representing acute infarction. c Conventional angiogram shows pseudoaneurysm of the right carotid artery (arrow)
References

13.1 Introduction

Routine MR imaging is the most sensitive method of detecting tumors of the brain. It is, however, not specific enough to determine the histologic nature of most tumors. Diffusion-weighted (DW) imaging can differentiate between tumor and infection [1–51] and can provide information about tumor cellularity, thereby helping in the characterization and grading of brain tumors. This chapter will demonstrate DW imaging characteristics of intracranial tumors.

13.2 Gliomas

The signal intensity of gliomas on DW images is variable and depends mainly on their T2 and apparent diffusion coefficient (ADC) values [1–22]. Thus, some gliomas are hyperintense on DW images with decreased ADC, which reflects a reduced volume of the extracellular space. Other gliomas have a normal or increased ADC, that is the DW signal is a T2 shine-through effect (Figs. 13.1, 13.2, 13.3, 13.4, 13.5, 13.6 and 13.7).

13.2.1 High-Grade Tumors

It has been reported that high-grade gliomas typically are hyperintense on DW images with decreased ADC [3, 8–10, 12, 13, 19]. High tumor cellularity is probably the major determinant of the decreased ADC values in high-grade brain tumors [3, 8, 12, 18]. Other studies have suggested that ADC correlates not only with tumor cellularity, but also with total nuclear area and tumor grade [8, 12, 13, 17, 19], with high-grade tumors having high cellular density and decreased ADC. Other studies have correlated areas of decreased ADC and found it to be associated with increased choline on MR spectroscopy. Choline is a marker for cell membrane turnover [7, 9].

Although there is a general principle of high-grade gliomas having high DW signal with decreased ADC, there are still controversies regarding how well DW imaging can differentiate between high-grade primary brain tumors, lymphoma and metastasis. Krabbe et al. reported that both the contrast-enhancing portions and the peritumoral edema of metastasis have higher ADC than high-grade gliomas [6]. In the individual case the distinction between metastasis and high-grade glioma is often difficult to make, as some high-grade gliomas also have high ADC [18, 46]. For lymphomas, Guo et al. reported that ADC was generally lower than in high-grade gliomas. This could be useful to differentiate the two [16], but in the clinical situation there is often overlap between lymphoma and high-grade lymphoma. In our experience, the ADC of lymphoma ranges between 0.51 and 0.71×10^{-3} mm^2/s, whereas that of high-grade gliomas ranges between 0.58 and 0.89×10^{-3} mm^2/s. Lymphomas tend to have lower ADC values because of a higher nuclear to cytoplasmic ratio [16]. These are general principles, but in practical clinical work it is often difficult to distinguish between lymphomas, metastasis and high-grade gliomas, even with the most sophisticated ADC maps [4, 10–13, 18].
Glioblastoma multiforme in a 69-year-old female with left-side weakness.

a Unenhanced computed tomography shows a heterogeneous iso- to hypodense lesion in the right temporal lobe (arrow).

b Fluid-attenuated inversion-recovery image shows the heterogeneous hyperintense lesion in the right temporal lobe (arrow).

c Gadolinium-enhanced T1-weighted image shows heterogeneous enhancement in the mass (arrow).

d DW image shows hyperintensity in the enhancing portion of the mass (arrow) and hypointensity in the cystic/necrotic portion of the mass (arrowhead).

e ADC map shows heterogeneous hypointensity ($0.74–0.85 \times 10^{-3} \text{ mm}^2/\text{s}$; arrow) in the enhancing portion of the mass compared to the surrounding vasogenic edema. Cystic/necrotic portion of the mass (arrowhead) is hyperintense. These findings may correspond to the high cellularity of the enhancing tumor and increased diffusibility of the cystic/necrotic portion.
Glioblastoma multiforme in a 51-year-old male with right-side weakness. **a** T2-weighted image shows a hyperintense mass in the left basal ganglia and thalamus (arrow). **b** T1-weighted image shows hypointensity in the lesion (arrow). **c** Gadolinium-enhanced T1-weighted image shows heterogeneous enhancement in the posterior portion of the tumor (arrow). **d** DW image shows hyperintensities (arrows). The areas of marked hyperintensity on DW image does not show contrast enhancement in this patient. **e** ADC map shows heterogeneous hypointensity in the lesion (0.58–0.89×10⁻³ mm²/s; arrows)
Glioblastoma multiforme in an 80-year-old female with personality change. a T2-weighted image shows a hyperintense mass, which involves the genu of corpus callosum (butterfly tumor). b T1-weighted image shows hypointensity in the lesion. c Gadolinium-enhanced T1-weighted image shows irregular ring-like enhancement of the tumor. d DW image shows hyperintensity (arrow). e ADC map shows heterogeneous intensity in the mass. Note the hypointensity in the center of the lesion (0.65×10^{-3} mm²/s; arrow). These findings may correspond to the cellularity of the tumor.
Figure 13.4 a–d
Juvenile pilocytic astrocytoma in a 14-year-old male with headache.

a T2-weighted image shows a hypointense mass in the cerebellum (arrow). There is a mural nodule in the tumor (arrowhead).

b Gadolinium-enhanced T1-weighted image shows enhancement in the nodule (arrowhead).

c DW image shows hypointensity in the cystic component (arrow) and mild hypointensity in the nodule (arrowhead).

d ADC map shows hyperintensity in the cystic component (arrow) and mild hyperintensity in the nodule (1.18 × 10⁻³ mm²/s; arrowhead) of the mass.
Brain stem glioma in an 8-year-old female with headache. **a** T2-weighted image shows a hyperintense lesion (arrow) with surrounding edema in pons. **b** T1-weighted image shows the hypointense lesion (arrow). **c** Gadolinium-enhanced T1-weighted image shows no significant enhancement. **d** DW image shows isointensity in the lesion (arrow). **e** ADC map shows hyperintensity in the lesion (0.85–1.17×10⁻³ mm²/s; arrow). The isointensity on DW image is caused by a balance between increased T2 and ADC.
Figure 13.6 a–d
Low-grade oligoastrocytoma in a 48-year-old female with seizures.

a T2-weighted image shows a hyperintense lesion in the right temporal lobe (arrow).
b Gadolinium-enhanced T1-weighted image shows a slightly hypointense lesion and no enhancement (arrow).
c DW image shows hyperintensity (arrow).
d ADC map shows hyperintensity in the lesion (0.98–1.19×10⁻³ mm²/s; arrow)
13.2.2 Peritumoral Infiltration

The value of DW imaging for the delineation of peritumoral invasion in primary brain tumors is controversial. Some authors have suggested that ADC is useful to determine the extent of tumor invasion [3, 19], but most of the recent studies have shown that it is not possible to determine accurately the degree of peritumoral infiltration by DW imaging and ADC mapping [4, 10–12, 18, 19]. The poor delineation is probably due to the conjoined effects of T2 and ADC on DW images. For tumors that are biologically different, such as glioblastomas and meningiomas, it has been reported that ADC, T1 and fractional anisotropy of the enhancing tumor and its peritumoral edema are markedly different [15]. Future studies will show if diffusion tensor imaging can add more information about tumor infiltration.

13.2.3 Treatment Response

Diffusion-weighted imaging has been attempted to follow response to treatment and disease progress. For example, animal studies have shown a tendency to an increase in ADC during treatment, followed by a return to the pretreatment level during recurrent tumor growth [20–22]. There are no published human studies, but the preliminary reports have confirmed the observations in animals. Thus, recent studies have shown that radiation necrosis has a higher ADC than tumor recurrence [23].
13.3 Epidermoid Tumors and Arachnoid Cysts

Epidermoid tumors are benign neoplasms of ectodermal origin with stratified squamous epithelium and keratinaceous debris [13, 24–31]. They are hyperintense on DW images, with decreased ADC. The ADC of epidermoid tumors has been reported to be lower than that of cerebrospinal fluid and equal to or higher than that of brain parenchyma [24–26, 28, 29, 31]. Therefore, the hyperintensity of epidermoid tumors on DW images is primarily caused by a T2 shine-through effect (Fig. 13.8).

Arachnoid cysts have a similar appearance on routine MR imaging as epidermoid tumors, but it is well known that DW imaging can distinguish the two [24–31]. Arachnoid cysts are hypointense on DW images as a result of free diffusion and in general their DW signal characteristics are similar to those of cerebrospinal fluid (Fig. 13.9) [24–26].

Figure 13.8 a–d
Epidermoid tumor in a 9-year-old female without symptoms. a T2-weighted image shows a hyperintense mass near the falx. b T1-weighted image shows the hypointense lesion. c DW image shows hyperintensity in the lesion, which is caused by both increased T2 and restricted diffusibility. d ADC map shows heterogeneous hypointensity in the lesion, consistent with restricted diffusion. ADC was not calculated because raw data were not available.
Figure 13.9 a–d
Arachnoid cyst in a 9-year-old female with developmental delay. a T2-weighted image shows a large hyperintense lesion in the right cerebellopontine angle (arrow). b T1-weighted image shows hypointensity in the lesion (arrow). c DW image shows hypointensity (arrow). d ADC map shows hyperintensity in the lesion due to increased diffusibility (3.07–3.12×10^{-3} \text{ mm}^2/\text{s}; \text{arrow})
13.4 Primitive Neuroectodermal Tumors

Primitive neuroectodermal tumors are a group of histologically similar tumors that occur mostly in children. They include embryonal, largely undifferentiated tumors, such as medulloblastoma, neuroblastoma, pineoblastoma, ependymoblastoma and medulloepithelioma. These tumors have a high cellular density and are typically hyperintense on DW images, with decreased ADC [32–35]. The hyperintensity on DW images and decreased ADC is caused by their dense cellularity and high nuclear to cytoplasmic ratio (Fig. 13.10).

Figure 13.10 a–d

Primitive neuroectodermal tumor in a 20-month-old female with lethargy and nausea. a T2-weighted image shows a well-demarcated and heterogeneous intense mass in the right frontal lobe. b T1-weighted image shows heterogeneous hypointensity in the lesion. c DW image shows hyperintensity. d ADC map shows heterogeneous hypointensity (0.54–0.74×10⁻³ mm²/s) in the lesion, which may represent hypercellularity.
13.5 Meningiomas

The signal characteristics of meningiomas on DW images are variable [11, 12, 18, 36, 37]. Most benign meningiomas are isointense on DW images and ADC maps, but some are slightly hyperintense on both DW images and ADC maps (Fig. 13.11). Malignant or atypical meningiomas have markedly increased signal intensity on DW images and decreased ADC due to a high tumor cellularity [12, 18, 36]. However, other factors, such as multifocal areas of necrosis, numerous abnormal mitoses and cytologic pleomorphism may also cause the high DW signal in atypical and malignant meningiomas (Fig. 13.12).

Figure 13.11 a–d
Benign meningioma (syncytial meningioma) in a 72-year-old female with a visual disturbance. a T2-weighted image shows a slightly hyperintense mass near the frontal aspect of the falk. b Gadolinium-enhanced T1-weighted image shows homogeneous enhancement. c DW image shows hyperintensity in the lesion. d ADC map shows mild hypointensity (0.73–0.78×10⁻³ mm²/s)
Atypical meningioma in a 45-year-old female with headache.

a T2-weighted image shows a heterogeneous intense mass in the temporal lobe (arrows).

b Gadolinium-enhanced T1-weighted image shows heterogeneous enhancement (arrows).

c DW image shows heterogeneous hyperintensity (arrows).

d ADC map shows hypointensity, especially in the right side of the mass ($0.51 \times 10^{-3} \text{ mm}^2/\text{s}; \text{arrows}$).
13.6 Malignant Lymphomas

Primary lymphomas of the central nervous system are rare malignant tumors, accounting for less than 1% of all brain tumors (Fig. 13.13). However, the incidence has been increasing subsequent to the spread of the acquired immunodeficiency syndrome [18, 38–41]. A majority of lymphomas are iso- or hypointense on T2-weighted images [18]. Most lymphomas show homogeneous enhancement in immunocompetent patients, but in immunosuppressed patients a rim enhancement is a more common finding [18, 38–40]. The enhancing components of lymphomas are generally hyperintense on DW images [16, 18, 41]. The ADC of lymphomas is often lower than that in high-grade gliomas [16]. As mentioned above, this corresponds to the hypercellularity and might help in differentiating between lymphomas and high-grade gliomas [16].

Figure 13.13 a–e
Lymphoma (diffuse large B cell type) in a 64-year-old male with seizure. a T2-weighted image shows a slightly hyperintense mass (arrow) with surrounding edema in the left frontal lobe. b T1-weighted image shows the hypointense mass (arrow) in the left frontal lobe. c Gadolinium-enhanced T1-weighted image shows the heterogeneously enhancing mass (arrow) in the left frontal lobe. d DW image shows hyperintensity in the lesion (arrow). e ADC map shows hypointensity in the lesion (0.51–0.71×10^{-3} mm²/s; arrow)
13.7 Craniopharyngiomas

Craniopharyngiomas typically show a combination of contrast enhancement, cyst formation and calcifications (Fig. 13.14). Sener et al. reported hyperintensity on DW images, with increased ADC, corresponding to an increased diffusibility in the tumor [42] and a T2 shine-through effect.

![Figure 13.14 a–c](image)

Craniopharyngioma in an 8-year-old male with panhypopituitarism.

- **a** T2-weighted image shows a hyperintense mass (arrow) in the suprasellar region.
- **b** DW image shows hypointensity in the mass (arrow).
- **c** ADC map shows hyperintensity (2.25–2.38×10^{-3} mm^2/s; arrow)
13.8 Metastases

The signal intensity of non-necrotic components of metastases on DW images is variable and depends on their T2 and ADC [2, 6, 11, 12, 18, 19, 30, 43–51]. DW imaging findings of solid components of metastasis are similar to those of gliomas, probably reflecting the cellularity of the primary tumor. The cellularity is a major determinant of their DW signal intensity [6, 11, 18, 30].

The common signal intensity of necrotic/cystic components of cerebral metastases may relate to an increase in free water, showing hypointensity on DW images and increased ADC. However, in the presence of extracellular met-hemoglobin and/or increased viscosity, DW images can show hyperintensity with decreased ADC (Figs. 13.15 and 13.16) [18, 43–51]. This condition is rare, but it should be considered as one differential diagnosis of pyogenic abscesses.

Figure 13.15 a–d
Metastasis (lung cancer) in a 59-year-old female with adenocarcinoma of the lung. a T2-weighted image shows heterogeneous intensity of a mass (arrow) with surrounding edema in the right temporal lobe. b Gadolinium-enhanced T1-weighted image shows heterogeneous ring-like enhancement (arrow). c DW image shows hyperintensity in the solid portion (arrowhead) and hypointensity in the cystic/necrotic portion (arrow). d ADC map shows hypointensity in the solid portion (0.97–1.00×10^{-3} mm²/s; arrowhead) and hyperintensity (2.21–2.35×10^{-3} mm²/s; arrow). Hyperintensity in the surrounding edema, consistent with vasogenic edema, is also seen.
Figure 13.16 a–e
Metastasis (melanoma) in a 56-year-old male with metastatic melanoma. a Postcontrast computed tomography shows a heterogeneous density mass, which shows hypodensity (arrow) in the anterior portions and hyperdensity (arrowhead) in the posterior portions. b T2-weighted image shows the heterogeneous intense mass, which contains anterior hyperintense portion (arrow) and posterior hypointense portion (arrowhead) with surrounding edema in the left temporal lobe. c B0 image also shows anterior hyperintense portion (arrow) and posterior hypointense portion (arrowhead). d DW image again shows anterior hyperintense portion (arrow) and posterior hypointense portion (arrowhead). e ADC map shows iso- to hypointensity in the lesion. The accurate calculation of ADC in the hemorrhage is difficult.
13.9 Conclusion

Diffusion-weighted imaging can provide valuable information about tumor cellularity and help in the characterization and grading of tumors of the brain. In most situations, it is difficult to differentiate between specific tumors and to determine tumor infiltration. Future studies will show whether diffusion tensor imaging can improve our ability to characterize and grade brain tumors on imaging studies.

References

14.1 Water Content of the Pediatric Brain

The water content of the pediatric brain is considerably higher than that of the adult brain. This makes it more difficult to diagnose ischemic and other lesions in pediatric patients using computed tomography (CT) and MR imaging. Diffusion-weighted (DW) imaging is sensitive to alteration in diffusion of water molecules, and this technique can help overcome some of these difficulties [1]. DW imaging is primarily useful for detecting and characterizing ischemic lesions, but also for evaluation of myelinization by demonstrating anisotropy of the white matter earlier than conventional MR imaging [2, 3].

14.2 Normal Structures

Diffusion-weighted imaging characteristics of a normal brain in young infants are different from those in adults [4]. Apparent diffusion coefficient (ADC) values in both gray and white matter of newborns are considerably higher than in adults. This reflects the high water content of the pediatric brain [5]. For the same reason, the deep white matter in the newborn normally shows hypointensity on DW imaging associated with increased ADC (Fig. 14.1). With increasing age, there is a relative decrease in water content of a pediatric brain. This is more evident in the white matter than in the gray matter. The decrease in water content is caused by myelinization replacing water during normal white matter development [2].

Figure 14.1 a–c

Normal pediatric DW imaging in a 2-day-old boy. a Low signal intensity and b increased ADC in the deep white matter are normal in this age group (arrows). c Fractional anisotropy map demonstrates anisotropy along the anterior and posterior limbs of the internal capsules (arrows), the corpus callosum (long arrow), and the temporo-parieto-occipital white matter earlier than regular T1- and T2-weighted images.
14.3 Anisotropy

Normally anisotropy is much less evident in the immature brain than in the adult. One exception is corpus callosum, where anisotropy is already visible by DW imaging as early as the 28th gestational week. This occurs although the corpus callosum is composed of non-myelinated fibers. The phenomenon has been called premyelination anisotropy [3]. The anisotropic effect in the immature brain is thought to be related to structural changes of the axonal membrane. In general, anisotropy in the white matter of newborns is lower than in adults (Fig. 14.1). The anisotropic pattern can vary depending on the irregularity of axonal orientation as well as the degree of myelination.

14.4 Infarction and Ischemia

Ischemic infarctions in children are uncommon when compared with adults and they have different etiologies. They can be caused by thrombosis, embolism, arterial dissection, vasculitis, Moyamoya disease, sickle cell disease, child abuse, etc. (Figs. 14.2, 14.3, 14.4 and 14.5) [6, 7]. Hyperacute and acute infarctions are characterized by cytotoxic edema. Vasogenic edema occurs later and is typically seen in the subacute phase. DW imaging is useful for early detection of infarction in children, but also to differentiate between acute/subacute infarctions and chronic infarctions or ischemic gliosis.

Figure 14.2 a–c
Cerebral infarction due to embolism in a 3-month-old boy. He had Down syndrome and ventricular septal defect. a T2-weighted image shows mild high signal lesions in the left putamen and thalamus (arrows). b DW image shows these lesions as high signal intensity (arrows). c ADC is decreased (arrows), consistent with acute infarcts.
Figure 14.3 a–c
Dissection of the vertebrobasilar arteries and infarction in a 4-year-old girl. **a** T2-weighted image shows high signal lesion in the right medial side of the pons (arrow). **b** DW image shows this lesion as hyperintense with decreased ADC (not shown), representing an acute infarct (arrow). **c** On MR angiography the vertebrobasilar arteries are absent due to dissection of the vertebrobasilar arteries (arrow). The posterior cerebral arteries are supplied from the anterior circulation.

Figure 14.4 a–c
“Probable” Moyamoya disease in a 7-year-old girl. **a** T2-weighted image shows mild high signal lesions in the right basal ganglia. **b** DW image shows ischemic lesions not only in the basal ganglia but also in the parieto-occipital region as high signal, representing acute infarcts (arrows). **c** MR angiography shows occlusion of the right middle cerebral artery and stenosis of the right internal carotid artery (arrows) and bilateral posterior cerebral arteries (arrowheads).
14.4.1 Moyamoya Disease

Moyamoya disease is a chronic cerebrovascular occlusive disease of unknown origin that occurs predominantly in East Asia. In children it is characterized by progressive arterial stenosis with cerebral infarctions. The stenosis involves primarily the circle of Willis and the supraclinoid portion of the internal carotid arteries. Typically the internal carotid arteries are occluded bilaterally. In so-called “probable” Moyamoya disease, there is unilateral occlusion of one of the carotid arteries in its supraclinoid portion. DW imaging is useful for early detection of cerebral ischemia in this disease (Fig. 14.4) [6].

14.4.2 Sickle Cell Disease

About 5–8% of patients with sickle cell disease develop symptomatic cerebrovascular disease [7]. The risk of stroke is greatest during thrombotic crises and during the first 15 years of life. Stenosis or occlusion of both large and small vessels can cause cerebral infarction. Sickle cell disease results in vasculopathy, which in many respects is similar to Moyamoya disease. Cortical and white matter watershed ischemia is common; however, patients with sickle cell disease often also demonstrate multiple ischemic white matter lesions. These lesions can occur in spite of normal MR angiography and conventional angiography (Fig. 14.5). They are thought to be due to small vessel ischemic gliosis, similar to what is seen in small vessel disease of older patients.

14.4.3 Hypoxic Ischemic Encephalopathy

Hypoxic ischemic encephalopathy is the result of decreased global perfusion or oxygenation. It is generally due to neonatal anoxia, hypoglycemia, suffocation, cardiac arrest or child abuse. Whether produced by ischemia, anoxia or hypoglycemia, it is remarkably similar to infarcted brain in its appearance.

Diffusion-weighted imaging often depicts acute or subacute ischemic lesions when MR imaging and CT scans are normal or show only subtle abnormalities (Fig. 14.6) [8–13]. Diffuse hyperintensity on DW imaging with decreased ADC in the corpus callosum, and along the pyramidal tract in the internal capsules and the brain stem is occasionally seen. This is pre-
Hypoxic ischemic encephalopathy secondary to intrauterine cerebrovascular accident in a 2-day-old term girl.

a. T2-weighted image appears normal.

b. Fluid-attenuated inversion-recovery (FLAIR) image shows partially slightly high signal in the white matter (arrows).

c. DW image shows bilateral hyperintense lesions in the temporo-occipital cortices, white matter and corpus callosum (arrows), representing ischemic lesion and cytotoxic edema.

d. ADC map shows corresponding decreased ADC values.

Summably due to cytotoxic edema of the glial cells, axons and myelin sheaths [14]. The prognosis of hypoxic ischemic encephalopathy depends on the extension of the cytotoxic edema, which is seen as hyperintensity on DW imaging. Hypoxic ischemic injury with cytotoxic edema is usually irreversible. DW imaging is helpful in establishing both the diagnosis and the prognosis, but also in the management of hypoxic ischemic encephalopathy.
14.5 Trauma

14.5.1 Battered Child Syndrome

In the USA, there are an estimated 3,000 deaths per year from non-accidental injuries. The pathogenesis of these brain parenchyma injuries is unknown, but unmyelinated white matter may be more vulnerable to shearing stress [15]. Young infants have a relatively large head, weak neck muscles and a thin skull, making them extremely vulnerable to traumatic injuries. In experimental studies of acute subdural hematomas in the infant rat, the glutamate concentration in the extracellular fluid of cortex was increased more than seven times over the basal level [16]. This suggests that the primary increased release of glutamate from the pre-synaptic terminal following traumatic stimuli and the primary decreased re-uptake of glutamate from the synapse following hypoxic or ischemic events are related to brain parenchymal injuries.

Histologic similarities have been observed in child abuse victims and infants with hypoxic ischemic encephalopathy. However, a history of apnea suggesting hypoxic-ischemic injury was only found in 57% of the child abuse cases. In a neuropathology study it was noted that diffuse axonal injuries were rare among child abuse victims, only seen in three out of 53 cases [17].

The distribution of widespread parenchymal injuries is often not related to the vascular territories or the location and size of acute subdural hematomas on CT and MRI (Fig. 14.7). However, it can be difficult to detect brain parenchyma injuries on CT as well as on routine MRI.

Diffusion-weighted imaging has a significant role in recognizing the extent of brain parenchymal injury. The parenchymal lesions can be unexpectedly extensive and caution is needed to window DW imaging optimally (Fig. 14.8). Quantifying the ADC value is especially useful to detect extensive parenchyma abnormalities.

The severity of DW imaging abnormality correlates with the patient’s outcome [18]. However, MR spectroscopy may be better in evaluating the severity of trauma, as this will show decreased N-acetyl aspartate (NAA) (decreased neuronal activity), increased lactate (metabolic acidosis) and increased glutamate/glutamine (increased extracellular glutamate); the degree of these changes seems to be related to the severity of brain damage (Fig. 14.7) [19]. This grading may become important in the future since neuroprotective effects have been reported with several kinds of selective glutamate receptor antagonists in animal studies [20–22].
Figure 14.7 a–f
Battered child syndrome in a 6-month-old boy.

a) CT shows high density area representing acute subdural hematoma in the left occipital region (long arrow), and bilateral subdural fluid collections in the frontal region (short arrows).
b) T2-weighted image also shows bilateral subdural fluid collection and no apparent abnormalities in the brain parenchyma.
c) Sagittal T1-weighted image shows acute subdural hematoma as small linear hyperintensity in the occipital area (arrow).
d, e) DW image shows the extent of parenchymal abnormality as hyperintense lesions with decreased ADC in bilateral fronto-parieto-occipital white matter (arrows). This distribution is related to the hypoxic–ischemic encephalopathy rather than the subdural hematoma.
f) MR spectroscopy (TE 30 ms) shows an increased glutamate/glutamine peak (arrow) that may represent increased glutamate release or decreased glutamate re-uptake.
Battered child syndrome in a 2-month-old boy. a T2-weighted image shows intracranial hemorrhages with shearing injury (arrows) and bilateral chronic subdural hematomas in the bilateral frontal region. b DW image shows diffusely increased signal in both hemispheres (arrows) with sparing of only the right frontal area. c DW image filmed with incorrect window and level setting, suggesting wrongly that the low signal in the right frontal area is abnormal (arrows), when indeed this is the only normal portion of the brain. Correct window and levels are critical, as is comparison with findings on other sequences. d ADC values are decreased (0.31 x 10^-3/mm² per s) in the diffuse parenchymal abnormalities (arrows).
14.5.2 Diffuse Axonal Injury and Brain Contusion

It was once considered that edema following brain contusion or diffuse axonal injury was vasogenic. Recent experimental studies using DW imaging have shown that edematous regions following injury consist of both vasogenic and cytotoxic edema [23, 24]. DW imaging shows diffuse axonal injury as hyperintense, presumably due to cytotoxic edema (Fig. 14.9). It should be noted, however, that hemorrhagic components often accompany these brain injuries, which will affect the signal intensity on DW imaging. Brain contusions near the skull base are also often overlooked on DW imaging due to susceptibility artifacts.

14.6 Encephalopathies

14.6.1 Mitochondrial Encephalopathy

Mitochondrial encephalopathies show various patterns of central nervous system involvement. These include multiple infarcts in the cortex, white matter or basal ganglia. Infarcts are related to the type of mitochondrial encephalopathy and do not usually follow vascular territories. Other features of mitochondrial encephalopathy are spongy encephalopathy or demyelination with intramyelinic edema [25] and atrophy. DW imaging is useful for detecting the active ischemic changes (Fig. 14.10) [26].

Figure 14.9 a–c
Diffuse axonal injury in an 11-year-old boy injured in a motor vehicle accident. a T2-weighted image shows a mildly hyperintense lesion in the corpus callosum (arrow). b DW image demonstrates this lesion as hyperintense (arrow). c ADC map shows decreased ADC of this lesion (arrow), probably representing cytotoxic edema associated with diffuse axonal injury.

Figure 14.10 a,b
Mitochondrial encephalomyopathy in a 20-month-old girl with seizures. a T2-weighted image shows multiple high signal lesions in bilateral basal ganglia and fronto-parieto-occipital cortex not corresponding to a vascular territory (arrows). b, c DW image shows multiple high signal intensity lesions associated with decreased ADC (arrows).
14.6.2 Acute Necrotizing Encephalopathy

Acute necrotizing encephalopathy is a clinicopathological entity recently separated from acute encephalopathy of unknown etiology. It frequently occurs in East Asia. The hallmark of acute necrotizing encephalopathy is multiple, bilateral symmetric brain lesions showing necrosis, petechiae and cytotoxic edema without inflammatory cell infiltration [27]. These lesions are mainly seen in the thalamus and tegmentum (Fig. 14.11). The prognosis is generally poor.

14.6.3 Hypertensive Encephalopathy

Hypertensive encephalopathy occurs most often secondary to renal diseases in children. It also occurs in children treated for myeloproliferative disorders [28]. In children, convulsions are often accompanied by severe headache and restlessness. The most common abnormality on MR imaging is bilateral high signal intensity in parieto-occipital subcortical white matter. These lesions can also occur in the frontal lobes and gray matter, including basal ganglia, thalamus, cerebellum and brain stem. The mechanism of the disease is thought to be vasogenic edema from failure of autoregulation and/or a cytotoxic edema triggered by severe vasospasm. DW imaging can distinguish irreversible ischemic changes from reversible conditions with vasogenic edema (Fig. 14.12) [29].

Figure 14.11 a,b
Acute necrotizing encephalopathy in a 1-year-old boy with seizure. a T2-weighted image shows multiple hyperintense lesions in bilateral thalami and right temporo-occipital region (arrows). b DW image also shows these lesions (arrows) as hyperintense associated with decreased ADC (not shown). (Courtesy of Ida M, M.D. Ekara Municipal Hospital, Japan)
14.7 Infections

14.7.1 Encephalitis

Diffusion-weighted imaging can detect early encephalitic changes [30] and is generally more sensitive than conventional MR imaging. Herpes encephalitis demonstrates pathologically severe edema including both cytotoxic and vasogenic edema and massive tissue necrosis with petechial or confluent hemorrhage. Herpes simplex type 1 encephalitis in older children and adults usually involves the medial temporal lobe, inferior frontal lobes and insula (Fig. 14.13). Neonatal herpes simplex type 2 encephalitis involves the cortex and white matter extensively (Fig. 14.14). The early detection by DW imaging is valuable for early institution of treatment.
Herpes simplex type 2 encephalitis in a 2-week-old girl. **a** T2-weighted images show asymmetric hyperintense lesions in the thalami and right basal ganglia and cerebral cortices (arrows). The precise extent of the lesions is difficult to determine. **b** FLAIR image appears normal. **c, d** DW image shows asymmetric but extensive hyperintense lesions (arrows) with decreased ADC in the thalamus and gray and white matter of both hemispheres.
14.7.2 Brain Abscess

Abscesses in the brain are potentially fatal, but may be successfully treated by early medical or surgical intervention. DW imaging can discriminate a brain abscess from a cystic or necrotic tumor, which is often difficult with conventional MR imaging [31]. The brain abscess shows very high signal on DW imaging associated with decreased ADC (Fig. 14.15). Pus usually consists of both dead and still viable neutrophils, along with necrotic tissue and bacteria, as well as exuded plasma. A possible explanation for the high signal on DW imaging is limited water mobility, presumably due to the high viscosity of continuous coagulative necrosis and hypercellularity of polymonucleated neutrophils in the pus.
14.8 Brain Tumor

The signal intensity on DW imaging and the ADC values of brain tumors are variable and related to the architecture of the tumor. Malignant brain tumors, such as medulloblastoma (Fig. 14.16), primitive neuroectodermal tumor, glioma and lymphoma [32–35], often show high signal intensity on DW imaging associated with decreased ADC. The decreased ADC value is caused by increased intracellular water, hypercellularity and/or decreased extracellular water in tumor interstitium. Other brain tumors, either benign or malignant, show hyperintensity associated with increased ADC, indicating a T2 shine-through effect (Fig. 14.17).

Figure 14.16 a–c
Medulloblastoma in a 10-year-old boy. a Gadolinium-enhanced T1-weighted image shows a solid mass with enhancement in the cerebellar vermis. b DW image shows this solid mass as hyperintense. c ADC map shows decreased ADC of this mass. This is due to high cellular density causing restricted diffusion. (Courtesy of Morikawa M, M.D., Nagasaki University, School of Medicine, Japan)
14.9 Dysmyelination and Demyelination

Diffusion-weighted imaging is useful in differentiating between white matter diseases in pediatric patients.

14.9.1 Pelizaeus–Merzbacher Disease

Pelizaeus–Merzbacher disease, one of the typical dysmyelination disorders, pathologically shows hypo- or amyelination and spares the axon. Despite hypo- or amyelination in Pelizaeus–Merzbacher disease, DW imaging shows normal diffusional anisotropy in the white matter (Fig. 14.18) [36]. This finding suggests that anisotropy is primarily related to structural changes of the axonal membrane in the immature brain.

Figure 14.17 a–c

Pilocytic astrocytoma in a 4-year-old girl. a T2-weighted images show a hyperintense mass lesion in the right thalamus (arrow). b DW image shows this solid mass as hyperintense (arrow). c ADC map shows slightly increased ADC of this mass. Hyperintensity on DW imaging is due to T2 signal effect, which is called T2 shine-through effect.

Figure 14.18 a,b

Pelizaeus–Merzbacher disease in a 7-year-old boy with developmental delay. a T2-weighted image shows diffuse white matter hyperintensity extending into the U-fibers due to hypo- or amyelination (arrows). b DW image (z axis) demonstrates isointensity in the white matter and essentially normal anisotropy in the corpus callosum. ADC values are diffusely slightly increased in the white matter (not shown) (From [46]).
14.9.2 Vanishing White Matter Disease

Leukoencephalopathy with vanishing white matter is a newly recognized dysmyelinating disease of unknown etiology. In the late stage of this disease there is demyelination or hypomyelination and extensive cystic degeneration of the white matter associated with reactive changes. DW imaging shows low signal intensity, presumably representing cystic degeneration (Fig. 14.19).

14.9.3 Metabolic or Toxic Leukoencephalopathies

Some metabolic or toxic leukoencephalopathies such as phenylketonuria (Fig. 14.20), adrenoleukodystrophy, metachromatic leukodystrophy, L-2 hydroxyglutaric aciduria (Chap. 10), infantile neuronaldystrophy and Canavan’s disease (Fig. 14.21) can show hyperintense lesions associated with decreased ADC on DW imaging [37–42]. One possible explanation for the hyperintense lesion is intramyelinic edema, which is one form of cytotoxic edema selectively occurring in myelin sheaths.

Figure 14.19 a–c

Vanishing white matter disease in an 8-year-old boy with progressive leukoencephalopathy. a T2-weighted image shows diffuse white matter hyperintensity extending into the U-fibers (arrows). b DW image demonstrates diffuse low signal intensity in the white matter. High signal intensity along right frontal lobes is magnetic susceptibility artifact due to the field heterogeneity (arrow). c ADC map shows diffusely increased ADC in the white matter, presumably due to cystic changes (arrows).
14.9.4 Multiple Sclerosis

Multiple sclerosis occasionally occurs in pediatric patients. Hyperintense plaques on DW imaging with decreased ADC are rare in multiple sclerosis (Fig. 14.21) [39]. When present, a possible explanation for the hyperintense, cytotoxic multiple sclerosis plaques may be intramyelinic edema.

14.9.5 Osmotic Myelinolysis

Osmotic myelinolysis also occurs in pediatric patients and can result in hyperintense lesions on DW imaging associated with decreased ADC (Fig. 14.22) [40].

Figure 14.20 a–c

Phenylketonuria in a 36-year-old male. **a** T2-weighted image shows hyperintense lesions in the periventricular white matter (arrows). **b** DW image shows these lesions as hyperintense (arrows). **c** These hyperintense lesions have decreased ADC representing cytotoxic edema, especially intramyelinic edema (arrows).

Figure 14.21 a,b

Canavan disease. 15-month-old boy presented with delayed psychomotor development, seizures, and spasticity. **a** T2-weighted image reveals high signal in peripheral white matter, globi pallidi and thalami. Note diffuse atrophy and thinning of the cortex. **b** DW image shows high signal changes in the peripheral white matter and globi pallidi with mildly decreased ADC partially (not shown). (From Prof. Dr. Nuri Sener, Department of Radiology, Ege University Hospital, Turkey, Journal of Computer Assisted Tomography 27, 2003, [42] with permission)
Figure 14.23 a–c
Osmotic myelinolysis (extrapontine myelinolysis) in an 11-year-old boy. a T2-weighted image shows symmetrical multiple slightly hyperintense lesions in the external capsules, hippocampi and medial thalami (arrows). b, c DW image shows these lesions (arrows) as hyperintense with decreased ADC, representing cytotoxic edema.
14.10 Conclusion

Diffusion-weighted imaging plays an important role in the diagnosis of various pathological conditions in the pediatric brain, which has a high water content. DW imaging can also depict acute or subacute ischemic changes in children when conventional MR imaging or CT is normal or shows only subtle abnormalities. DW imaging is useful in differentiating white matter diseases and in differentiating between tumor and abscess. The calculation of ADC maps or fractional anisotropic images is quantitative and demonstrates the water content or anisotropy more precisely than DW imaging. However, recognition of imaging pitfalls is important for optimal interpretation of DW imaging.

References

Most textbooks related to imaging are organized into chapters based on the disease or the conditions that are described. This traditional way of organizing an imaging book, namely from the disease to the images, provides a firm structure and allows the author or editor to present all the imaging characteristics of a specific disease condition with its typical, atypical and specific features in one place. This book is no different and is also organized in this traditional way.

For the clinician using the book as an aid to solve a clinical case, this traditional approach is not practical. To match the imaging characteristics of your specific clinical case you essentially have to go through the entire book to find all the images that match the imaging features of your specific patient. To overcome this problem of a disease-oriented imaging book, we developed this chapter: here we turned the organization around, proceeding from the images to the disease/diagnosis. In this chapter we have prepared the material based on the imaging characteristics and grouped all conditions with similar imaging features together in seven tables. We used DW imaging, ADC and T2 characteristics to create seven tables with conditions that appeared similar on MR imaging.

The clinician can go directly to this chapter, determine if the lesion in question has a high, intermediate or low DW imaging signal intensity and then determine the same with regard to the ADC and T2 characteristics. He or she can then go to the table in Chap 15 that lists conditions with these imaging features. Each table is essentially a list of differential diagnosis for conditions with similar imaging characteristics. When combined with the knowledge of patient symptomatology and demographic criteria, the radiologist will be able to narrow the differential diagnosis to a few conditions.

These tables take into account that the same condition may have variable imaging characteristics; for this reason, several conditions are listed in more than one table. Moreover, within the tables there are variations as to the degree of a specific imaging feature, which allows the clinician to match his/her clinical case to the best table and condition. Chapter 15 makes direct reference to other chapters of the book, where a full description is then provided.
<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Infarction/hypoxia</td>
<td></td>
</tr>
<tr>
<td>Battered child</td>
<td></td>
</tr>
<tr>
<td>Hyperacute infarction</td>
<td></td>
</tr>
<tr>
<td>Hypoxic ischemic encephalopathy</td>
<td></td>
</tr>
</tbody>
</table>

Table 1

Differential diagnoses for lesions with a **high diffusion** signal associated with **low ADC** and **iso intense T2** signal

- Infarction/hypoxia
- Hyperacute infarction
- Hypoxic ischemic encephalopathy
- Toxic/metabolic

Diagnoses

- Infarction/hypoxia
- Hyperacute infarction
- Hypoxic ischemic encephalopathy
- Toxic/metabolic
Table 2

Differential diagnoses for lesions with a high diffusion signal associated with iso-high ADC and a high intense T2 signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DWI high</td>
<td>ADC iso-high</td>
<td>T2 high</td>
</tr>
<tr>
<td>Degeneration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amyotrophic lateral sclerosis (ALS)</td>
<td>Fig. 9.10 b</td>
<td>Fig. 9.10 c</td>
<td>Fig. 9.10 a</td>
<td></td>
</tr>
<tr>
<td>Demyelination</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute disseminated encephalomyelopathy (ADEM)</td>
<td>Fig. 9.5 c</td>
<td>Fig. 9.5 d</td>
<td>Fig. 9.5 a</td>
<td></td>
</tr>
<tr>
<td>Multiple sclerosis (MS)</td>
<td>Fig. 9.1 c</td>
<td>Fig. 9.1 d</td>
<td>Fig. 9.1 a</td>
<td></td>
</tr>
<tr>
<td>Progressive multiple leukoencephalopathy (PML)</td>
<td>Fig. 9.6 b</td>
<td>Fig. 9.6 c</td>
<td>Fig. 9.6 a</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Differential diagnoses for lesions with a **high diffusion** signal associated with **iso-high ADC** and a **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Epilepsy</td>
<td></td>
</tr>
<tr>
<td>Postictal</td>
<td></td>
</tr>
<tr>
<td>Infarction</td>
<td></td>
</tr>
<tr>
<td>Venous infarction</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td></td>
</tr>
<tr>
<td>Human immunodeficiency virus (HIV)</td>
<td></td>
</tr>
<tr>
<td>Toxic/metabolic</td>
<td></td>
</tr>
<tr>
<td>Marchiafava-Bignami disease</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Differential diagnoses for lesions with a high diffusion signal associated with iso-high ADC and a high intense T2 signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS)</td>
<td></td>
</tr>
<tr>
<td>Tumor</td>
<td></td>
</tr>
<tr>
<td>Epidermoid</td>
<td></td>
</tr>
<tr>
<td>Brain stem glioma</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
Differential diagnoses for lesions with a **high diffusion** signal associated with **iso-high ADC** and a **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Low-grade oligoastrocytoma</td>
<td></td>
</tr>
<tr>
<td>Ganglioglioma</td>
<td></td>
</tr>
<tr>
<td>Pilocytic astrocytoma</td>
<td></td>
</tr>
<tr>
<td>Vasculitis/vasculopathy</td>
<td></td>
</tr>
<tr>
<td>Primary angitis of central nervous system (PACNS)</td>
<td></td>
</tr>
</tbody>
</table>

Diagnoses and images courtesy of [source]
Table 2
Differential diagnoses for lesions with a **high diffusion** signal associated with **iso-high ADC** and a **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Neuro-Behchet's disease</td>
<td>Fig. 7.7 c</td>
</tr>
<tr>
<td>Tacrolimus neurotoxicity</td>
<td>Fig. 7.17 b</td>
</tr>
</tbody>
</table>
Table 3
Differential diagnoses for lesions with a **high diffusion** signal associated with a **low ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Degeneration</td>
<td></td>
</tr>
<tr>
<td>Wallerian degeneration</td>
<td></td>
</tr>
<tr>
<td>Demyelination</td>
<td></td>
</tr>
<tr>
<td>Multiple sclerosis (MS)</td>
<td></td>
</tr>
<tr>
<td>Epilepsy</td>
<td></td>
</tr>
<tr>
<td>Status epileptics</td>
<td></td>
</tr>
<tr>
<td>Postictal</td>
<td></td>
</tr>
</tbody>
</table>
Table 3
Differential diagnoses for lesions with a **high diffusion** signal associated with a **low ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Hematoma</td>
<td>Fig. 6.4 c</td>
</tr>
<tr>
<td>Late subacute hematoma</td>
<td>Fig. 6.6 c</td>
</tr>
<tr>
<td>(Extracellular methemoglobin)</td>
<td></td>
</tr>
<tr>
<td>Subdural hematoma (SDH)</td>
<td>Fig. 5.5 b</td>
</tr>
<tr>
<td>Infarction/Ischemia</td>
<td>Fig. 3.3 d</td>
</tr>
<tr>
<td>Hyperacute reversible ischemia (2 h)</td>
<td></td>
</tr>
<tr>
<td>Acute infarction (24 h)</td>
<td></td>
</tr>
</tbody>
</table>
Table 3
Differential diagnoses for lesions with a **high diffusion** signal associated with a **low ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
<td>ADC low</td>
<td>T2 high</td>
<td></td>
</tr>
<tr>
<td>Subacute infarction (10 day)</td>
<td>Fig. 5.3 c</td>
<td>Fig. 5.3 d</td>
<td>Fig. 5.3 a</td>
<td></td>
</tr>
<tr>
<td>Infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscess</td>
<td>Fig. 11.1 c</td>
<td>Fig. 11.1 d</td>
<td>Fig. 11.1 a</td>
<td></td>
</tr>
<tr>
<td>Septic emboli</td>
<td>Fig. 11.2 b</td>
<td>Fig. 11.2 c</td>
<td>Fig. 11.2 a</td>
<td></td>
</tr>
<tr>
<td>Ventriculitis</td>
<td>Fig. 11.10 c</td>
<td>Fig. 11.10 d</td>
<td>Fig. 11.10 b</td>
<td></td>
</tr>
</tbody>
</table>
Table 3

Differential diagnoses for lesions with **a high diffusion** signal associated with a **low ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
<td>ADC low</td>
</tr>
<tr>
<td>Acquired immunodeficiency syndrome (AIDS)</td>
<td>Fig. 11.19. b</td>
<td>Fig. 11.19. c</td>
</tr>
<tr>
<td>Aspergillosis (disseminated)</td>
<td>Fig. 11.16 b</td>
<td>Fig. 11.16 c</td>
</tr>
<tr>
<td>Creutzfeldt-Jakob disease (CJD)</td>
<td>Fig. 9.9 b</td>
<td>Fig. 9.9 c</td>
</tr>
<tr>
<td>Group B Streptococcus meningitis</td>
<td>Fig. 11.13 b</td>
<td>Fig. 11.13 c</td>
</tr>
</tbody>
</table>
Table 3
Differential diagnoses for lesions with a **high diffusion** signal associated with a **low ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Herpes simplex virus</td>
<td></td>
</tr>
<tr>
<td>Toxoplasmosis</td>
<td></td>
</tr>
<tr>
<td>Toxic/metabolic</td>
<td></td>
</tr>
<tr>
<td>Carmofur</td>
<td></td>
</tr>
<tr>
<td>Heroin</td>
<td></td>
</tr>
</tbody>
</table>
Table 3
Differential diagnoses for lesions with a **high diffusion** signal associated with a **low ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose</td>
<td></td>
</tr>
<tr>
<td>DWI high</td>
<td></td>
</tr>
<tr>
<td>ADC low</td>
<td></td>
</tr>
<tr>
<td>T2 high</td>
<td></td>
</tr>
<tr>
<td>Central pontine myelinolysis (CPM)</td>
<td>Fig. 10.4.b</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.4.c</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.4.a</td>
</tr>
<tr>
<td>Extrapontine meyelinolysis (EPM)</td>
<td>Fig. 10.5 b</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.5 c</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.5 a</td>
</tr>
<tr>
<td>Glutaric aciduria</td>
<td>Fig. 10.11 b</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.11 c</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.11 a</td>
</tr>
<tr>
<td>Mitochondrial encephalomyopathy</td>
<td>Fig. 10.9.b</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.9.c</td>
</tr>
<tr>
<td></td>
<td>Fig. 10.9.a</td>
</tr>
</tbody>
</table>
Table 3
Differential diagnoses for lesions with a high diffusion signal associated with a low ADC and high intense T2 signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenylketonuria (PKU)</td>
<td> </td>
</tr>
<tr>
<td>Trauma</td>
<td>Differential diagnoses</td>
</tr>
<tr>
<td>Battered child</td>
<td> </td>
</tr>
<tr>
<td>Contusion</td>
<td> </td>
</tr>
<tr>
<td>Diffuse axonal injury (DAI)</td>
<td> </td>
</tr>
</tbody>
</table>
Table 3
Differential diagnoses for lesions with a high diffusion signal associated with a low ADC and high intense T2 signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
</tbody>
</table>

Tumor

Glioblastoma multiforme (GBM) (solid)

- Fig. 13.2 d
- Fig. 13.2 e
- Fig. 13.2 a

Lymphoma

- Fig. 13.13 d
- Fig. 13.13 e
- Fig. 13.13 a

Meningioma (syncytial)

- Fig. 13.11 c
- Fig. 13.11 d
- Fig. 13.11 a

Meningioma (atypical)

- Fig. 13.12 c
- Fig. 13.12 d
- Fig. 13.12 a
Table 3
Differential diagnoses for lesions with a high diffusion signal associated with a low ADC and high intense T2 signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td>Metastasis</td>
<td>Fig. 11.6c</td>
</tr>
<tr>
<td>Primitive neuroectodermal tumor (PNET)</td>
<td>Fig. 13.10c</td>
</tr>
<tr>
<td>Radiation necrosis</td>
<td>Fig. 11.7b</td>
</tr>
<tr>
<td>Vasculitis</td>
<td>Fig. 7.3e</td>
</tr>
</tbody>
</table>

Diagnose
- Metastasis
- Primitive neuroectodermal tumor (PNET)
- Radiation necrosis
- Vasculitis

Reference images
- DWI high
- ADC low
- T2 high
Differential diagnoses for lesions with a high diffusion signal associated with a low ADC and high intense T2 signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI high</td>
</tr>
<tr>
<td></td>
<td>ADC low</td>
</tr>
<tr>
<td></td>
<td>T2 high</td>
</tr>
<tr>
<td>Pneumococcal meningitis and vasculitis</td>
<td>Fig. 7.8 b</td>
</tr>
<tr>
<td></td>
<td>Fig. 7.8 c</td>
</tr>
<tr>
<td></td>
<td>Fig. 7.8 a</td>
</tr>
<tr>
<td>Sickle cell disease</td>
<td>Fig. 14.5 b</td>
</tr>
<tr>
<td></td>
<td>Fig. 14.5 c</td>
</tr>
<tr>
<td></td>
<td>Fig. 14.5 a</td>
</tr>
<tr>
<td>Hemolytic uremic syndrome (HUS)</td>
<td>Fig. 7.19 b</td>
</tr>
<tr>
<td></td>
<td>Fig. 7.19 c</td>
</tr>
<tr>
<td></td>
<td>Fig. 7.19 a</td>
</tr>
</tbody>
</table>
Table 4

Differential diagnoses for lesions with an iso diffusion signal associated with a high ADC and high intense T2 signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI iso</td>
</tr>
<tr>
<td>Vasculitis/Vasculopathy</td>
<td></td>
</tr>
<tr>
<td>Posterior reversible encephalopathy synsdrome (PRES)</td>
<td>Fig. 3.4 c</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Vasogenic edema (metastasis)</td>
<td>Fig. 3.5 e</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacrolimus neurotoxicity</td>
<td>Fig. 7.17 b</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Postictal</td>
<td>Fig. 8.2 d</td>
</tr>
</tbody>
</table>
Table 4
Differential diagnoses for lesions with an **iso diffusion** signal associated with a **high ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metabolic disease</td>
<td></td>
</tr>
<tr>
<td>Wernicke</td>
<td> </td>
</tr>
</tbody>
</table>

Table 5
Differential diagnoses for lesions with a **low diffusion** signal associated with a **high ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infarction</td>
<td></td>
</tr>
<tr>
<td>Chronic infarction (10 months)</td>
<td> </td>
</tr>
</tbody>
</table>

| **Tumor** | |
| GBM (necrosis) | ![Fig. 11.5 c](image7) ![Fig. 11.5 d](image8) ![Fig. 11.5 a](image9) |
Table 5
Differential diagnoses for lesions with a **low diffusion** signal associated with a **high ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
<th>DWI low</th>
<th>ADC high</th>
<th>T2 high</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craniopharyngioma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 13.14 c</td>
<td></td>
<td>Fig. 13.14 b</td>
<td>Fig. 13.14 a</td>
<td></td>
</tr>
<tr>
<td>Matastasis (lung)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 13.15 c</td>
<td></td>
<td>Fig. 13.15 d</td>
<td>Fig. 13.15 a</td>
<td></td>
</tr>
<tr>
<td>Arachnoid cyst</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 13.9 c</td>
<td></td>
<td>Fig. 13.9 d</td>
<td>Fig. 13.9 a</td>
<td></td>
</tr>
<tr>
<td>Vanishing white matter disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fig. 14.19 b</td>
<td></td>
<td>Fig. 14.19 c</td>
<td>Fig. 14.19 a</td>
<td></td>
</tr>
</tbody>
</table>
Table 5
Differential diagnoses for lesions with a **low diffusion** signal associated with a **high ADC** and **high intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI low</td>
</tr>
<tr>
<td>van der Knaap disease</td>
<td></td>
</tr>
<tr>
<td>Vasogenic edema (toxo)</td>
<td></td>
</tr>
</tbody>
</table>

Table 6
Differential diagnoses for lesions with a **low diffusion** signal associated with a **high ADC** and **iso intense T2** signal

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI low</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
</tr>
<tr>
<td>Neonate</td>
<td></td>
</tr>
</tbody>
</table>
Table 7
Differential diagnoses for lesions with *artifacts*

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI</td>
</tr>
<tr>
<td>Diagnose</td>
<td>ADC</td>
</tr>
<tr>
<td>Diagnose</td>
<td>T2</td>
</tr>
<tr>
<td>Susceptibility/Artifact</td>
<td></td>
</tr>
<tr>
<td>Normal iron deposition</td>
<td></td>
</tr>
<tr>
<td>Hematoma</td>
<td></td>
</tr>
<tr>
<td>Oxy/deoxy hemoglobin</td>
<td></td>
</tr>
<tr>
<td>Deoxy, IC met</td>
<td></td>
</tr>
<tr>
<td>Epidural hematoma (EDH)</td>
<td></td>
</tr>
</tbody>
</table>

![Fig. 2.1 a](image1) ![Fig. 2.1 b](image2) ![Fig. 2.1 c](image3)

![Fig. 6.2 d](image4) ![Fig. 6.2 f](image5) ![Fig. 6.2 b](image6)

![Fig. 6.3 c](image7) ![Fig. 6.3 e](image8) ![Fig. 6.3 a](image9)

![Fig. 12.10 c](image10) ![Fig. 12.10 d](image11) ![Fig. 12.10 b](image12)
Table 7
Differential diagnoses for lesions with artifacts

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI</td>
</tr>
<tr>
<td>Hemosiderin/ferritin</td>
<td>Fig. 6.2 k</td>
</tr>
<tr>
<td>Hemorrhagic infarction</td>
<td>Fig. 5.11 b</td>
</tr>
<tr>
<td>Disseminated aspergillosis</td>
<td>Fig. 7.9 c</td>
</tr>
<tr>
<td>Metastasis (melanoma)</td>
<td>Fig. 13.16 d</td>
</tr>
</tbody>
</table>
Table 7

<table>
<thead>
<tr>
<th>Diagnose</th>
<th>Reference images</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DWI</td>
</tr>
<tr>
<td></td>
<td>ADC</td>
</tr>
<tr>
<td></td>
<td>T2</td>
</tr>
</tbody>
</table>

| **Contusion** | ![Fig. 12.7 c](image1) | ![Fig. 12.7 d](image2) | ![Fig. 12.7 b](image3) |
| | ![Fig. 3.12 a](image4) | ![Fig. 3.12 b](image5) | ![Fig. 3.12 c](image6) |

| **Eddy current artifacts** | ![Fig. 3.7 a](image7) | ![Fig. 3.7 b](image8) | ![Fig. 3.7 c](image9) |
| **N/2 ghosting artifacts** | ![Fig. 3.10 a](image10) | ![Fig. 3.10 b](image11) | ![Fig. 3.10 c](image12) |

| **Motion artifacts** | ![Fig. 3.12 a](image13) | ![Fig. 3.12 b](image14) | ![Fig. 3.12 c](image15) |

Differential diagnoses for lesions with **artifacts**

Diagnoses include:
- Contusion
- Eddy current artifacts
- N/2 ghosting artifacts
- Motion artifacts
A

abscess/brain abscess 131–132, 134, 137, 193
– bacterial 131–132, 134, 137
– subdural 193
aciduria
– glutaric 127
– L-2 hydroxyglutaric 126
ADC (apparent diffusion coefficient) 1–3, 11, 40, 43, 45, 74
– ADC maps 11
– in children 181
– pseudo-normalization of the ADC 43
– relative ADC 45
ADEM (acute disseminated encephalomyelitis) 111, 112
adrenoleukodystrophy 126
AIDS-related (see also HIV) 146–147
– bilateral basal ganglia lesions 147
– lymphoma 143
amnesia, transient global 45
amphetamine 83, 119–121
amyloid angiopathy, cerebral 92
amyotrophic lateral sclerosis 116
angiography
– DSA (digital subtraction angiography) 73, 77
– MRA (MR angiography) 73
angitis
– microscopic polyangiitis 80
– primary, of the CNS 74–756
anisotropy/anisotropic 1, 3, 182
– diffusion, anisotropic 1, 3
– premyelination anisotropy 182
aortitis syndrome (Takayasu’s arteritis) 78–79
apoptosis 28
apparent diffusion coefficient (see ADC) 1–3, 11, 40, 43, 45, 74, 181
arachnoid cysts 169–170
arteritis
– giant cell 75, 77–78
– polyarteritis nodosa 80
– Takayasu’s (aortitis syndrome) 78–79
arthritis, scleroderma of rheumatoid arthritis 80
artifacts 16–21
– Eddy current artifacts 18

B

bacterial
– brain abscess 131–132, 134, 137, 193
– vasculitis 141
battered child syndrome 186–188
BCNU (carmustine) 119
Behçet’s disease 80–81
b-factor 1–2, 4
bleeding
– hemorrhage/hematoma (see there) 55–71, 140
– microangiopathy-related microbleeds 92
brain
– edema (see there) 25–38, 46, 64, 87, 101–103, 107
– infarcts (see there) 51
– infectious diseases (see there) 131–148
– injury (see there; see also trauma) 27, 149–160
– metastases 136, 161
– neoplasms 161–179
– pediatric brain 181
Brownian motion 1
b-values, higher 5

C

Canavan disease 126, 196
capsule, internal 9
carmofur leukencephalopathy 120
carmustine (BCNU) 119
cavernous angioma 67
catecholaminergics 119–121
caudate nucleus 9
central nervous system (see CNS) 74–76, 84–92
cerebellar infarct 51

CNS (central nervous system) 74–76, 84–92
– primary angitis 74–76
– vasculopathy of the CNS 84–92
coagulative necrosis 137
cocain 83, 119
– vasculopathy, cocaine-induced 84
– collagen vascular disease 80
contusion of the brain 154–156, 189
corpus callosum 52, 124, 151
– focal lesion in the splenium of 103–104
cranioopharyngioma 175
Creutzfeldt-Jakob disease 32, 114–115
cryoglobulinemia, essential 80
cyclophosphamide 119
cyclosporine 88
cytokines 27
cytotoxic edema 25–27, 29–35, 46, 101–103, 123, 149
 – in status epilepticus 101–103

D
degenerative diseases 28, 107–117
 – encephalomyelitis, acute disseminated 111
 – transneuronal degeneration 113
 – Wallerian degeneration 33, 113
delayed neuronal death 28
demyelinating diseases 107–117
 – encephalomyelitis, acute disseminated (ADEM) 112
dehydrogenases 28

deoxy-hemoglobin 17, 56–57, 59–60
diamagnetic substance 55
diffusion
 – anisotropic 1, 3
 – apparent diffusion coefficient (see ADC) 1–3, 11, 40, 43, 45, 74, 181
 – free 3
 – isotropic 3, 7, 11
tensor imaging 5
diffusion-encoding 1
diffusion-weighted imaging
 of normal brain 7–10
dipole-dipole relaxation 62
diseases (see syndromes/diseases)
drug-induced vasculitis including illicit drugs 83–84
dSA (digital subtraction angiography) 73, 77
dural hemorrhage 64
 – epidural 64, 156–157
 – subdural 64, 156–157

echo-planar imaging 4
 – multi-shot 18
eclampsia/preeclampsia 88, 90
Eddy current artifacts 18

E
edema of the brain 25–38, 46, 64, 87, 101–103, 107
 – axonal swelling 25
 – cytotoxic (see there) 25–27, 29–35, 46, 101–103, 123, 149
 – interstitial 35–36
 – intramyelinc 25, 30, 107, 120–121, 124, 126, 197
 – subdural edema/hemorrhage 64, 156–157
 – vasogenic 35, 87, 149
 – emboli/embolic
 – septic 132–133
 – thromboembolic infarction 40

embryonal tumors 171
emphyema, subdural 137
encephalitis 191–192
 – herpes simplex encephalitis (see there) 146, 191–192
 – listeria meningoencephalitis 134
 – HIV (human immunodeficiency virus) encephalopathy (see also AIDS) 146–147
 – hypertensive 87–89, 190
 – hypoxic ischemic 30, 184–185
 – mitochonidrial 125–126, 189–190
 – necrotizing encephalopathy, acute 190
 – syndrome (see also leukoencephalopathy syndrome) 15, 86–87
 – Wernicke encephalopathy 123–124
epidermoid 140
 – tumors 169–170
epidural hemorrhage 64, 156–157
epilepsy/epileptic
 – cytotoxic edema 101–103
 – excitotoxic mechanism 100, 154
 – magnetic resonance signal alterations 98–99
 – MRI 96–97
 – Rasmussen syndrome (epilepsia partialis continua) 103
 – seizures, epileptic 95
 – status epilepticus 31, 100
 – syndromes, epileptic 95
 – hemiplegic hemiconvulsion epilepsy syndrome 102–103
 – excitotoxic
 – brain injury 27–28, 154
 – mechanisms 28, 100, 154
 – exponential DW images 11

exponential DW images 11

F
b-factor 1–2, 4
ferritin 55, 57, 59, 61
fibrinolytic therapy 45
 – intraarterial 45
 – intravenous 45
field gradients 1–2
5-fluouroracil (5-FU) 119
free radicals 27

g
GABA (gamma-aminobutyric acid) 96
ganglia, AIDS-related bilateral basal ganglia lesions (see also HIV) 146–147
ganglioglioma 168
giant cell arteritis 75, 77–78
glioblastoma multiforme 66, 135, 162–164
glioma 161–168, 194
 – brain stem glioma 166
 – ganglioglioma 168
 – high-grade tumors 161–168
 – peritumoral infiltration 168
 – treatment response 168
gliosis, mesial temporal 102
glutamate 27–28, 95, 100
glutaric aciduria 127
ghosting artifacts 20
 – N/2 ghosting artifact (Nyquist ghost) 20
 – field gradient 1–2
gray matter 7, 9
 – ischemia, gray and white matter 45

H
hematoma
(see hemorrhage/hematoma) 55–71, 140
hemiplegia/hemiplegic
 – hemiplegic hemiconvulsion epilepsy syndrome 102–103
 – migraine 45
hemoglobin
 – deoxy-hemoglobin 17, 56–57, 59–60
 – met-hemoglobin (see there) 17, 55, 57, 59–60
 – oxy-hemoglobin 55–57
hemolytic uremic syndrome 91–92
hemorrhage, intracranial/hematoma 55–71, 140
 – chronic
 – – hematoma 62
 – – hemorrhage 57
 – epidural 64, 156–157
 – hyperacute (see there) 55–59
 – infarct 53
 – intratumoral 66
 – intraventricular 63, 65, 140
 – microangiopathy-related
 – microbleeds 92
 – subacute 59–63
 – subarachnoid 62–63, 156, 158
 – subdural 64, 156–157
 – transformation 53
 – trauma-related 68, 156–159
hemosiderin 55, 57, 59, 61
Henoch-Schönlein purpura 80
heroin 83
 – spongiform leukoencephalopathy, heroin-induced 119, 121
 – herpes simplex encephalitis 145, 191–192
 – type 1 191
 – type 2 191–192
hippocampus/hippocampal lesion
21, 100–101
HIV (human immunodeficiency virus)
– encephalopathy
 (see also AIDS) 146–147
– vasculitis 146
L-2 hydroxyglutaric aciduria 126
hyperacute
– hematoma 55–59
– – deoxy-hemoglobin 55–57, 59–60
– – hemosiderin/ferritin 57, 59–60
– – met-hemoglobin (see there) 17, 55, 57, 59–60
– – oxy-hemoglobin 55–57
– infarction 29, 41
hypertensive
– encephalopathy 87–89, 190
– vasculitis 80
hypoxic ischemic encephalopathy
30, 184–185
I
illicit drugs, vasculitis 83–84
image
– exponential DW images 11
– perfusion MR image 48
– perfusion-weighted image 46, 47
infantile neuronal dystrophy 126
injury of the brain
 (see trauma/injury) 27, 149–160, 186–189
interferon 88
internal capsule 9
interstitial edema 35–36
– vasogenic 36
intracranial hemorrhage 55–71
intramyelinic
– cleft 26, 30
– edema 25, 107, 120–121, 124, 126, 197
intratumoral hemorrhage 66
intraventricular hemorrhage 63, 65, 140
ischemia/ischemic 29–30, 40, 45–49, 182–185
– encephalopathy, hypoxic ischemic 30, 184–185
– gray and white matter ischemia 45
– penumbra 29, 40, 48
– reversible 46
– transient ischemic attack 45
– venous 36, 48–49
isotropic diffusion 3, 7, 11
K
van der Knaap disease 128
Krabbe disease 128
L
lactic acidosis (see also MELAS) 125
leptomeningitis, purulent 138
Leukoencephalopathy
– carmofur 120
– metabolic 196
– methotrexate 120
– posterior leukoencephalopathy syndrome 86
– – occipital parietal 86
– – reversible posterior 15, 86–87
– progressive multifocal (PML) 112
– spongiform leukencephalopathy, heroin-induced 119, 121
– toxic 196
– with vanishing white matter 128, 196
leukodystrophy 126
– adrenoleukodystrophy 126
– metachromatic 126
line scan 20
listeria meningoencephalitis 134
lupus erythematosus, systemic (SLE) 84–85
lymphoma 161, 194
– AIDS-related (see also HIV) 143
– large B-cell type 174
– malignant 174
– primary 174
M
magnetic resonance signal alterations in epilepsy 98–99
magnetization transfer ratio (MRT) 107
Marchiafava-Bignami disease 124
medulloepithelioma 171
medulloblastoma 171, 194
melanoma 177
MELAS (mitochondrial encephalopathy with lactic acidosis and stroke) 125
meningiomas 172–173
– atypical 173
– meningitis
– pneumococcal 80
– purulent leptomeningitis 138
– Streptococcus meningitis, group B 141
meningoencephalitis, listeria 134
mesial temporal
– gliosis 102
– sclerosis 97, 102
metabolic diseases 119–130
– leukoencephalopathy, metabolic 196
metachromatic leukodystrophy 126
metastasis of the brain 133, 176–177
met-hemoglobin 17, 55, 57, 59–60, 64–65
– extracellular 61, 64
– intracellular 17, 60, 65
methotrexate 119
– leukoencephalopathy 120
N-methyl-D-aspartate (NMDA) receptors 28, 95
microangiopathy-related microbleeds 92
microscopic polyangiitis 80
migraine, hemiplegic 45
mitochondrial encephalopathy 125–126, 189–190
– with lactic acidosis and stroke (MELAS) 125
motion
– artifacts 20–22
– Brownian motion 1
Moyamoya disease 86–87, 183–184
– probable 97
MRI, epilepsy 96–97
MRT (magnetization transfer ratio) 107
multi-directional 4
multiple sclerosis 12, 34, 91–112, 197
multi-shot echo-planar imaging 18
myelolysis 122–123
– central pontine 122–123
– extra pontine 122–123
– osmotic 122, 197–198
N
N/2 ghosting artifact (nyquist ghost) 20
navigator method 20
necrosis 28
– acute necrotizing encephalopathy 190
– coagulative necrosis 137
– tumor necrosis 133
neoplasms of the brain 161–179
neuroblastoma 171
neuroectodermal tumors, primitive 171, 194
neuronal
– delayed neuronal death 28
– infantile neuronal dystrophy 126
neurotoxicity, tacrolimus 90
NMDA (N-methyl-D-aspartate) receptors 28, 95
normal brain, diffusion-weighted imaging 7–10
nucleus, caudate 9
nyquist ghost (N/2 ghosting artifact) 20
Subject Index

228

O
oligoastrocytoma, low-grade 167, 195
osmotic myelinolysis 122, 197, 198
oxy-hemoglobin 55–57
P
paramagnetic 59
 – susceptibility artifacts 16
 – pediatric 181–199
 – battered child syndrome 186–188
 – pediatric brain 181
Pelizaeus-Merzbacher disease 128, 195
penumbra, ischaemic 29, 40, 48
 – peri-tumoral invasion 168
phase encoding 18
phencyclidine hydrochloride 119–121
phenylketonuria 35, 126–127, 196–197
pilocytic astrocytoma, juvenile 165, 195
pineoblastoma 171
PML (progressive multifocal leukoencephalopathy) 112
pneumococcal meningitis 80
polyarteritis nodosa 80
pontine myelinolysis
 – central pontine 122–123
 – extra pontine 122–123
postictal cerebral lesion 96–99
preeclampsia/eclampsia 88, 90
PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) 18, 20
proton-electron 62
pulse sequence 2
pulvinar sign 114
purpura
 – Henoch-Schönlein 80
 – thrombotic thrombocytopenic 92–93
purulent
 – leptomeningitis 138
 – ventriculitis 139
R
radiofrequency thalamotomy 133, 137
Rasmussen syndrome
 (epilepsia partialis continua) 103
 – relaxation, dipole-dipole 62
reversible ischemia 46
S
So (signal intensity) 1
scleroderma of rheumatoid arthritis 80
sclerosis
 – amyotrophic lateral sclerosis 116
 – mesial temporal sclerosis 97, 102
 – multiple sclerosis 12, 34, 91–112, 197
SENSE (sensitive encoding) 18, 20
septic
 – emboli 132–133
 – infarctions 132
sickle cell disease 86, 88, 184
single-shot 4
small vessel infarcts 50
 – pulvinar sign 114
 – Henoch-Schönlein 80
 – thrombotic thrombocytopenic 92–93
 – purpura, thrombotic thrombocytopenic 92–93
 – thrombolysis/thrombolytic treatment 39
time evolution (TE) 1
tonic-clonic seizure, generalized 100
toxic diseases 119–130
 – cytotoxic edema (see there) 25–27, 29–35, 46, 101–103, 123
 – excitotoxic injury of the brain 27–28, 154
 – leukoencephalopathy, toxic 196
 – neurotoxicity, tacrolimus 90
 – trans-synaptic 113
trauma/injury of the brain 149–160, 186–189
 – brain contusion 154–156, 189
 – children 185–189
 – diffuse axonal injury 32, 149–154
 – excitotoxic (see there) 27–28, 154
 – hemorrhage related to trauma (see there) 68, 156–159
tumor
 – arachnoid cysts 169–170
 – craniopharyngioma 175
 – embryonal 171
 – epidermoid 169–170
 – glioma (see there) 161–168, 194
 – intratumoral hemorrhage 66
 – lymphoma (see there) 143, 161, 174, 194
 – meningiomas 172–173
 – metastasis of the brain 133, 176–177
 – necrosis 133
 – neoplasms of the brain 161–179
 – neuroectodermal, primitive 171, 194
 – peritumoral invasion 168
two-point measurement 5
uremic
 – encephalopathy 91
 – hemolytic uremic syndrome 91–92
vanishing white matter disease 128, 196
vasculitis 73–94
 – bacterial 141
 – drug-induced 83–84
 – HIV (human immunodeficiency virus) vasculitis (see also AIDS) 146
 – hypertensive 80
 – infectious 82–83
vasculopathy/vascular 73–94
– of the CNS 84–92
– cocaine-induced 84
– collagen vascular disease 80
vasogenic edema 35–36, 87, 149
venous
– infarction 45
– ischemia 36, 48–49
ventricle
– intraventricular hemorrhage 63, 65, 140
– purulent ventriculitis 139

W

Wallerian degeneration 33, 113
watershed infarction 47–48
Wegener’s granulomatosis 80
Wernicke encephalopathy 123–124
white matter 7, 9
– ischemia, gray and white matter 45
– leukoencephalopathy with vanishing white matter 128, 196
– myelination 9
– subcortical 9