胰腺神经内分泌肿瘤的影像学表现及其诊断进展

吉 帆,征 锦 (江苏省苏北人民医院,江苏扬州 225001)

[摘要] 介绍了胰腺神经内分泌肿瘤(NETP)的症状和现有的诊断状况,阐述了胰腺神经内分泌肿瘤的分类过程,从超声、多层螺旋 CT、MRI、功能成像 4 个方面分析了胰腺神经内分泌肿瘤的影像学表现及其新进展,最后指出未来可联合应用多种影像学检查技术来实现 NETP 的早期诊断。

[关键词] 磁共振成像;胰神经内分泌肿瘤;体层摄影术;X线计算机;功能成像

[中国图书资料分类号] R318;R730.4;R445 [文献标志码] A [文章编号] 1003-8868(2013)11-0091-04 DOI:10.7687/J.ISSN1003-8868.2013.11.091

Neuroendocrine Tumor of Pancreas: Imaging Findings and Diagnostic Progress

JI Fan, ZHENG Jin

(Northern Jiangsu People's Hospital, Yangzhou 225001, Jiangsu Province, China)

Abstract The signs and diagnosis of neuroendocrine tumors of the pancreas(NETP) are introduced, along with its classification. Its imaging findings and progress are also described from the aspects of ultrasound, multi-slice spiral CT, MRI and functional imaging. It's suggested that multi imaging means be combined to perform the early diagnosis of NETP in the future.[Chinese Medical Equipment Journal, 2013, 34(11):91-94]

Key words MRI; neuroendocrine tumors of the pancreas; tomography; X-ray computed; functional imaging

0 引言

胰腺神经内分泌肿瘤 (neuroendocrine tumors of the pancreas, NETP)较为少见,仅占胰腺肿瘤的 $1\%\sim2\%$,年发病率约为(0.2~2.0)/100万人。NETP可发生于任何年龄,但其发病高峰在 $20\sim60$ 岁^{\square}。近年来,随着影像技术的发展和诊断水平的提高,胰腺神经内分泌肿瘤的检出率越来越高。

根据有无临床症状,可将 NETP 分为功能性和无功能性 2 大类。功能性 NETP 约占 50%,主要包括胰岛素瘤、胃泌素瘤、胰高血糖素瘤、生长抑素瘤等,其中以胰岛素瘤发病率最高。功能性 NETP 有其特异的临床症状,如胰岛素瘤因分泌过多的胰岛素,常表现为反复发作的低血糖,胃泌素瘤因分泌较多的胃泌素,从而产生反复发作的难治性消化性溃疡等。因此,根据其特异的临床症状和实验室检查结果,功能性 NETP 临床上较易诊断,影像学检查的目的主要是术前定位。非功能性 NETP 通常不产生特异性的临床症状,可能是由于其分泌激素量过少,或所分泌物质无功能,或瘤细胞只合成但不释放激素所致,甚至是由于瘤细胞分泌多种功能拮抗的激素所致。因此,非功能性 NETP 早期发现较为困难,偶尔在体检时可发现,或患者因腹部包块或肿瘤侵犯周围组织器官引起症状而就诊。由于缺乏特异性的临床表现和实验室检查指标,非功能性 NETP 的正确诊断主要依靠影像学,因此其影像学表现值得我们深入研究。

1 胰腺神经内分泌肿瘤的分类

人们对于 NETP 的认识,经历了很长的阶段。NETP 曾被称作"APUD瘤"、"类癌"。2000年,世界卫生组织(WHO)最后将其统一命名为神经内分泌肿瘤,并按肿瘤分化程度和肿瘤有无分泌功能,将其分成高分化神经内分泌肿瘤(良性或恶性程度不明确)、高分化神经内分泌癌(低度恶性)和低分化神经内分泌癌(高度恶性)^[3] 3 大类。但由于 NETP 临床病理分类复杂,临床和病理医生不太能接受"恶性行为不确定"的说法等原因,

作者简介: 吉 帆(1987—), 女, 硕士研究生, 主要从事胰腺疾病的诊断与鉴别诊断方面的研究工作, E-mail: jifan1122@126.com。

通讯作者:征 锦,E-mail:zhj65220@163.com

欧洲神经内分泌肿瘤协会(ENETS)于 2006 年细化了 NETP 的 病理分级特点,按照肿瘤的组织学特点(细胞分裂指数及 Ki-67 指数)对肿瘤的恶性程度进行分级¹⁴,并同时对 NETP 进行 了分期,对 WHO 的分类系统做了进一步的补充。ENETS 的分 级和分期系统考虑了肿瘤的生存特点,并被一些临床研究证实 与患者的预后相关¹⁵。在这些分类的基础上, WHO 2010 年的 指南基于所有 NETP 都具有恶变潜能,不同的是发生转移的概 率这一观点,对 NETP 再次进行了分类,主要将胰腺神经内分 泌肿瘤分为:胰腺神经内分泌微腺瘤、胰腺神经内分泌肿瘤 (NET)、胰腺神经内分泌癌(NEC)、混合性腺神经内分泌癌 (MANEC)、肠亲铬细胞产生 5-羟色胺 NET(类癌)、胃泌素瘤、 胰高血糖素瘤、胰岛素瘤、生长抑素瘤、血管活性肠肽瘤(VIP 瘤)及其他少见的功能性 NET。其中 NET 又分为 NETG1、 NETG2、无功能性胰腺 NETG1、G2, NEC 又分为大细胞 NEC、 小细胞 NEC,并同时推荐 ENETS 的分级法(见表 1),二者互为 补充,弥补了彼此的不足。

2 胰腺神经内分泌肿瘤的影像学表现及其新进展 2.1 超声

由于胃肠气体的干扰,经腹部超声(transabdominal US, TAUS)对胰体、胰尾通常显示不清,并且 TAUS 易受操作医生的技术水平和主观因素及患者肥胖等因素的影响。McAuley等向研究表明,TAUS 对于胰腺 NET 的检出率在 60%以内。因此,TAUS 不能广泛应用于 NETP 的检查。目前,应用较为广泛的主要是内镜超声(EUS)。EUS 属有创检查,可以应用高频探头近距离地贴近胰腺及其毗邻结构,并显示其细微结构,因而对胰腺神经内分泌肿瘤的检出具有较高的敏感性。据国内外文献报道,EUS 的敏感性可达 80%~90%[6-14]。对于 CT 和 MRI检查均无法发现的 NETP,EUS 的检出率仍可达 80%。因此,当 CT 和 MRI 检查均为阴性,但临床仍高度怀疑 NETP 者应首选 EUS 检查。EUS 的影像表现通常为局限于胰腺内的圆形或类圆形、边缘清晰的低或等回声肿块,常位于胰体、尾部(如图 1 所示)。另外,还可根据影像特征对肿瘤的恶性程度作出

表 1 ENETS 指南分级标准

级别	分级标准
G1(低级别)	<2 个核分裂象/10HP 和(或)Ki-67 指数≤2%
G2(中等级别)	2~20 个核分裂象/10HP 和(或)Ki-67 指数为 3%~20%
G3(高级别)	≥21 个核分裂象/10HP 和(或)Ki-67 指数>20%

判断,若中央存在不规则回声区或有胰管阻塞现象时,则高度提示恶性。EUS 不仅可以获得形态学信息,还可借助细针穿刺活检获得病理学信息,从而对胰腺病变进行定性诊断。然而,应用 EUS 诊断时应注意多发病变的可能,因此,应对整个胰腺进行连续检查,以防漏诊。

注: 女,50 岁、胰恶性胃泌素瘤患者。临床上表现为多发性消化性溃疡,腹泻,抑酸治疗有效。EUS 显示;胰尾 3.0 cm×4.0 cm 的中等回声病灶(mass),内部回声不均,境界尚清

图 1 胰恶性胃泌素瘤 患者 EUS 影像图

另外,超声造影可明显 提高 NETP 的 检出率。 Rickes 等[13]对 138 例临床怀 疑并为病理证实的 NETP 患者进行超声造影检查,结 果显示其诊断灵敏度、特异 度、阳性预测值及阴性预测 值分别为 94%、96%、76%和 99%。而对于术前未发现和 术中无法触及的病灶,还可 采用术中超声(IOUS)检查。 腹腔镜超声(LUS)则将超声 检查与腹腔镜外科结合,在 超声引导下行 NETP 的摘 除,可避免开腹手术创伤 大、患者恢复慢等缺点。

2.2 多层螺旋 CT (multi-

detector row CT, MDCT)

目前,腹部 MDCT 已经成为腹部病变的首选检查方法。 Gouya 等时回顾分析病例显示,多期薄层增强扫描检出胰腺 NET 的敏感度为 94.4%,而肠道准备充足、患者配合好的图像 可显示胰腺和肝脏 1 cm 以下的病灶。

功能性 NETP 早期即有特征性的临床症状,故影像发现时体积一般较小,平均直径<2 cm,平扫呈均匀等或稍低密度,胰腺轮廓一般无明显改变,增强扫描动脉期,肿瘤常呈明显均匀强化。而非功能性 NETP 通常较大,直径>5 cm^[15-16],常发生坏死、囊变和钙化(如图 2 所示),故影像学表现较为复杂,平扫时呈不均匀的等或低密度,其内可见更低密度区或高密度的钙化灶,占位效应明显。增强扫描时,肿瘤坏死和囊变不明显者呈明显均匀的强化,肿瘤伴有坏死、囊变时,强化不均匀或呈环状强化[7-18]。有学者[17]认为,20%的非功能性 NETP 内可见钙化,故发现钙化灶有助于非功能性 NETP 的诊断。同时,有学者[16]认为,瘤体周边的环形薄壁(包膜)明显强化为 NETP 另一特征性的影像学表现(如图 3 所示)。

(a)CT 平扫显示胰头部位 不均匀稍低密度病灶,其内 可见点状钙化灶(见箭头)

(b)增强 CT 示病灶由边缘向中央呈明显不均匀强化,病灶中央可见无强化的囊变坏死(见照箭头),邻近胰管轻度扩张(见归箭头),绵近肤宁十二指肠分界欠清

图 2 49 岁高分化神经内分泌癌男患者的 MDCT 影像图

近年来,随着 MDCT 的各种商业软件包的开 发,CT 灌注成像技术逐渐 发展成熟,成为常规检查 的一部房。虽然目前对于 正常胰腺的灌注范围仍没 有统一的标准,但一般认 为胰腺 CT 灌注的绝对限, 其相对值的变化才具有重 要的临床提示意义。有研 究表明,CT 灌注能够评价 胰岛细胞瘤的血管生成。

注;CT增强扫描动脉期可见胰头部 位低密度病灶,呈明显不均匀强化, 境界清楚,周围可见包膜(见白箭头)

图 3 57 岁胰头高分化神经内分泌 癌女患者的 MDCT 影像图

一般来说,良性胰岛细胞瘤的血流量、血容量及强化峰值明显高于正常胰腺组织,但通透性及灌注达峰时间与正常组织无差异,提示良性胰岛细胞瘤是富血供的病变,并且其内皮通透性大致正常^[20]。而恶性胰岛细胞瘤的血管生成及灌注特点均与良性者不同。良性肿瘤的微血管密度值高于恶性,当肿瘤直径<2 cm、增殖系数<2%且没有血管坏死时,病变的血流量明显较高,而当肿瘤直径>2 cm及存在淋巴结转移和肝转移时,肿瘤灌注的平均通过时间则延长^[21-22]。虽然 CT 灌注对肿瘤良恶性的鉴别有一定的指导意义,但目前尚缺乏 CT 灌注参数与预后关系的相关研究。

目前,宝石 CT 能谱成像已经被广泛应用于临床,使 CT 由原来的单参数成像变为多参数成像,由原来的混合能量成像变为单能量的谱成像,提高了小病灶的检出率。通过对各种病变的 CT 能谱分析图(散点图、直方图)及能谱谱线对比分析,可以发现一些规律性的特征,可用于指导肿瘤定位、定性和分级。林晓珠等四人研究证明,宝石能谱 CT 能定位诊断胰岛细胞瘤。由于胰岛细胞瘤一般体积较小且常位于胰腺深部,因而导致许多小的病灶无法定位。而利用能谱碘基图可对富血供的小病灶起到放大和突显的作用,如小的胰岛细胞瘤(如图 4 所示)。但该技术目前还处于临床研究阶段,需要大量的临床试验及数据来证实其可靠性。

注;(a)、(b)为磁共振图像,未见明显异常;(e)为最佳对 比噪声比(CNR)单能量 48 keV 成像,示胰头部高密度病 灶。后患者行手术切除,送病理检查示胰头部胰岛细胞瘤

图 4 45 岁胰头部胰岛细胞瘤女患者的能谱典基图

2.3 MRI

MRI可以多参数、多序列、多体位成像,并且没有电离辐射,其造影剂钆螯合物的安全性也较高。对于 NETP,MRI 不仅可以定位,而且在定性诊断方面也有很高的价值。

在 MRI 图像上, NETP 一般呈长 T_1 长 T_2 信号, 含胶原和纤维组织较多时 T_2 WI 可呈低信号, 而脂肪抑制 T_1 WI 显示病灶则更清晰 $^{(24-25)}$ 。增强扫描与 CT 表现类似, 功能性肿瘤由于瘤体小, 囊变坏死机会少, 故动脉期强化明显且呈均匀强化。

非功能性肿瘤强化形式比较复杂,若纤维组织成分多,则强化 较轻或表现为延迟强化; 若肿瘤伴囊变坏死, 则囊变区无强 化,周围肿瘤组织明显强化;若肿瘤为实质性,多呈明显均一 强化。与CT相比,脂肪抑制T₁WI更有利于胰腺小病灶的检 出。Semelka 等[26]应用 MRI 对胰腺 NET 诊断,其阳性预测值可 达 96%。而 T₂WI 序列和动脉期 T₁WI 序列是检测 NETP 的最 佳脉冲序列。在临床怀疑 NETP 时, MRI 是一种敏感的检查方 法,与内镜超声类似,可作为首选影像检查方法[57]。有研究证 实,NETP的平均表观扩散系数(ADC)值显著低于正常胰腺 实质,虽然 DWI 的平均敏感度为 65%,但在 T₂ 加权成像的基 础上再行高 b 值的 DWI 成像,可更好地发现 NETP 病灶,尤 其是孤立性的小病灶[28](如图 5 所示)。Wang Y 等[29]人研究表 明,ADC 值与肿瘤的组织病理学特征有一定的相关性,肿瘤 的细胞结构和/或细胞外的纤维化产生不同的 ADC 值,并且 ADC 值与 Ki-67 指数呈负相关。因此, ADC 值可有效评估肿 瘤的生长程度,故定量评价 ADC 值有望成为显示胰腺病变特 征的技术。

信号结节,周围有正常胰腺组织环绕

(a)T, 脂肪抑制成像显示胰尾单发的低 (b)DWI(b=500 s/mm²)示胰尾部高信 号病灶,其 ADC 值为 1.86×10⁻³ mm²/s

图 5 39 岁高分化神经内分泌肿瘤女患者的 MRI 影像图

2.4 功能成像

功能成像是目前研究的一大热点。传统的影像学检查(超 声检查、CT或 MRI)是最常用的肿瘤定位和分期方法,但在 NETP 定位和分期中的价值有限,有时很难定位肿瘤的原发 灶或转移灶,尤其是在肿瘤体积很小时[30],并且传统的影像学 检查对 NETP 的检出缺乏特异性。因而,应寻求一种新的高度 敏感和特异性的检查方法。

2.4.1 生长抑素受体成像

近年来, 多项研究证实生长抑素受体显像探查神经内分 泌肿瘤的原发灶和转移灶具有高度敏感性和特异性[31-32],明 显优于其他显像技术。

NETP 细胞表面存在着高度表达的生长抑素受体。生长 抑素受体主要有 5 种亚型:SSTR1、SSTR2、SSTR3、SSTR4、 SSTR5。生长抑素受体显像即应用放射性核素标记的生长抑 素类似物作为显像剂,通过与肿瘤细胞表面的生长抑素受体 特异结合而使肿瘤显像。通常,放射性核素标记的生长抑素类 似物与 SSTR2 的亲和性最高。

有研究[3]表明,生长抑素受体显像在探查和定位 NETP 方面的敏感性极高,同时生长抑素受体成像还可全身成像,了 解肿瘤的转移情况。生长抑素受体显像联合应用 SPECT/CT 既能清晰显示生化功能异常的病灶,又能准确定位,因此被认 为是胰腺神经内分泌肿瘤首选的显像方法和最可靠的分期手 段,其诊断敏感性超过 MRI 和 CT。Gabriel 等[34]的研究结果显 示, 9hrTc-TOC 显像诊断 NETP 的敏感性、特异性和准确性分 别为80%、94.4%和82.9%。生长抑素受体显像对胃泌素瘤的 成像效果最佳,几乎能探查所有直径>2 cm 以及 30%~75%直 径<1 cm 的胃泌素瘤。与内镜超声联合应用时,也能探查 90% 以上的 NETP^[35]。而对于低度表达 SSTR2 的胰岛素瘤,生长抑

素受体显像的敏感性则较低。但在发现胰岛素瘤的转移灶方 面,生长抑素受体显像仍具有较高的敏感性,可能是由于胰岛 素瘤的转移灶仍高度表达 SSTR2 有关。

2.4.2 PET/CT 和 PET/MRI

PET/CT 和 PET/MRI 将解剖影像和功能影像结合,提高 了肿瘤的检出能力。

NETP 通常摄取胺前体物质, 因此, 11C 或 18F 标记的胺前 体物质(如 5-羟色胺、左旋多巴)能特异性地显示 NETP。有文 献报道, "C-5-HTP PET 检测 NETP 的敏感性超过 95%[36]。甚 至有报道,5-HTP 用于检出与胰岛细胞相关的肿瘤敏感度为 100%[37],显然,其较 SPECT 和传统的解剖影像方法优越,可 能是 NETP 的最佳检测手段。

在我国最常用的是 18F-FDG PET。但大多数 NETP 分化 良好且生长缓慢,它们的糖代谢水平通常很低因而 18F-FDG PET 难以显示,但对于快速生长或有侵袭行为的 NETP,PET 能显示较高的 FDG 摄取,且 FDG 摄取越高、预后越差[38]。虽然 18F-FDG 对 NETP 的诊断而言并不是理想的示踪剂, 尤其是 体积较小的功能性 NETP, 但它能判断 NETP 的良恶性和生 长行为,并能全面评估是否存在转移灶[39]。所以,18FDG-PET 可对 NETP 的进展和生存期进行预测[40]。

CT 辐射剂量较高,并且不能与 PET 同时采集图像,而 PET/MRI 的出现则克服了这些缺点。PET/MRI 不仅避免了 CT 的辐射损伤,同时还可利用磁共振波谱技术、功能磁共振成像 等技术提供功能性信息,并可改善软组织图像质量,较好地显 示组织器官的解剖结构。因此,PET/MRI 将在神经系统疾病、 肿瘤等疾病的早期诊断过程中起到相当积极的作用[41-42]。 NETP 最常发生转移的器官是肝脏,而有很多研究证明,PET/ MRI 在评价肝脏转移灶、区分肝癌与肝转移病灶方面有很大 的价值,明显优于 PET/CT[43]。

3 结语

CT 和 MRI 目前已广泛应用于临床,是 NETP 的主要检查 方法。灌注 CT 成像可有效评价瘤体内的血供情况,对肿瘤良、 恶性的判断有一定的指导意义。随着宝石 CT 逐渐应用于临 床,CT 能谱成像有望成为检测 NETP 的一种新型手段。MRI 对 显示胰腺、肝脏 NET 有较大价值,尤其是 CT 难以定性的,或临 床怀疑而 CT 未能检出病灶者可行 MRI 检查。在 CT、MRI 检查 无异常而仍疑为 NETP 时,应选择 EUS,尤其是当需要获得细 胞学证据时。术中超声及腹腔镜超声的出现,实现了超声由诊 断到治疗的飞跃。腹腔镜超声属微创手术,有很好的应用前景。 在功能成像方面,生长抑素受体成像可特异性地检出 NETP 病 灶,用以鉴别 NETP 和其他肿瘤,并可用于术前分期、治疗方案 选择、术后随访和治疗效果的评价,尤其是将其和 SPECT 联合 应用,即将功能成像和解剖定位相结合,可作为首选的检查方 法和可靠的分期手段。但由于 PET 设备昂贵、检查费用高,限 制了其在临床的广泛应用。PET/MRI 目前正处于临床试验阶 段,但多项研究已经证实其有很好的应用前景。相信在不久的 将来,我们将可联合应用多种影像学检查技术实现 NETP 的早 期诊断,准确定位,并且评价治疗效果及预后。

[参考文献]

- [1] 江新昌. 内分泌器官肿瘤病理学和遗传学[M]. 北京:人民卫生出 版社,2006:195-209.
- [2] 王冬青,曾蒙苏,饶圣祥,等. 胰腺内分泌肿瘤的 MRI 诊断[J]. 临 床放射学杂志,2006,25(1):45.
- [3] Solcia E, KlÖppel G, Sobin L H. Histological Typing of Endocrine Tumours (WHO. World Health Organization. Histological Classifica-

- tion of Tumours)[M]. 2nd ed. New York; Springer, 2000; 38-74.
- [4] Rindi G,Kl(o)ppel G,Alhman H,et al. TNM staging of foregut (neuro) endocrine tumors: a consensus proposal including a grading system[J]. Virchows Arch, 2006, 449:395-401.
- [5] Pape U F, Jann H, Müller-Nordhorn J, et al. Prognostic relevance of a novel TNM classification system for upper gastroenteropancreatic neuroendocrine tumors[J]. Cancer, 2008, 113(2):256-265.
- [6] McAuley G, Delaney H, Colville J, et al. Multimodality preoperative imaging of pancreatic insulinomas [J]. Clin Radiol, 2005, 60:1 039– 1 050.
- [7] Palazzo L, Roseau G, Salmeron M. Endoscopic uhrasonography in the preoperative localization of pancreatic endocrine tumors[J]. Endoscopy, 1992, 24(Suppl 1):350–353.
- [8] RÖsch T, Lightdale C J, Botet J F, et al. Localization of pancreatic endocrine tumors by endoscopic ultrasonography[J]. N Ensl J Med, 1992, 326(26):1721-1726.
- [9] Thompson N W, Czako P F, Fritts L L, et al. Role of endoscopic uhrasonography in the localization of insulinomas and gastrinomas[J]. Surgery, 1994, 116(6):1131-1138.
- [10] Zimmer T, Schertlbl H, Faiss S, et al. Endoscopic ultrasonography of neuroendocrine tumours[J]. Digestion, 2000, 62 (Suppl): 45–50.
- [11] Varas Lorenzo M J, Miquel Conch J M, Maluenda Colomer M D, et al. Preoperative detection of gastrointestinal neuroendocfine tumors using endoscopic ultrasonography[J]. Rev Esp Enferm Dig, 2006, 98 (11):828-836.
- [12] 杨爱明,陆星华,钱家鸣,等.超声内镜在胰岛细胞瘤定位诊断中的作用[J].中华消化内镜杂志,2006,23(3):169-171.
- [13] Rickes S, Monkemuller K, Malfertheiner P. Contrast-enhanced ultrasonograpic fidings in pancreatic tumors[J]. JOP, 2006, 7(6):584-592.
- [14] Gouya H, Vignaux O, Augui J, et al. CT, endoscopic sonography, and a combined protocol for preoperative evaluation of pancreatic insulinomas[J]. AJR, 2003, 181: 987–992.
- [15] 曾蒙苏,严福华,周康荣,等. 非功能性胰内分泌肿瘤的螺旋 CT 表现[J]. 中华放射学杂志,2003,37(6):528.
- [16] 史玉振,王中秋,卢光明,等. 胰腺神经内分泌肿瘤的影像学表现与临床病理对照分析[J]. 临床放射学杂志,2011,30(11):1618-1623.
- [17] Procacci C, Carbognin G, Accordini S, et al. Nonfunctioning endocrine tumors of the pancreas: possibility of spiral CT characterization[J]. Eur Radiol, 2001, 11:1 175.
- [18] Horton K M, Hruban R H, Yeo C, et al. Multi-detector row CT of pancreatic islet cell tumors[J]. RadioGraphics, 2006, 26:453.
- [19] 张蓓,汪登斌,宋琦,等. 胰腺无功能性内分泌肿瘤的螺旋 CT 诊断与鉴别诊断[J]. 中国医学计算机成像杂志,2006(3):179.
- [20] Inoue K, Hirota M, Beppu T, et al. Angiographic features in acute pancreatitis: the severity of abdominal vessel ischemic change reflects the severity of acute pancreatitis[J]. JOP, 2003, 4:207-213.
- [21] Marion-Audibert A M, Barel C, Gouysse G, et al. Low microvessel density is an unfavorable histoprognostic factor in diagnosis and localization[J]. Gastroenterology, 2003, 125:1 094-1 104.
- [22] Assignies G, Couvelard A, Bahrami S, et al. Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors[J]. Radiology, 2009, 250: 407-416.
- [23] 林晓珠,李卫侠.宝石 CT 在肿瘤诊断中的初步应用[J].诊断学理论与实践,2010,9(2):155-160.
- [24] Rha S E, Jung S E, Lee K H, et al. CT and MR imaging findings of endocrine tumor of the pancreas according to WHO classification[J]. European Journal of Radiology, 2007, 62(3):371.
- [25] Fidler J L, Daniel John son C. Imaging of Neuroendocrine Tumors of

- the Pancreas[J]. International Journal of Gastrointestinal Cancer, 2001.30(1):73.
- [26] Semelka R C, Custodio C M, Cem Balci N, et al. Neuroendocrine tumors of the pancreas; spectrum of appearances on MRI[J]. J Magn Reson Imaging, 2000, 11:141-148.
- [27] Caramella C, Dromain C, De Baere T, et al. Endocrine pancreatic tumours: which are the most useful MRI sequences [J]. Eur Radiol, 2010, 20(11):2618-2627.
- [28] Brenner R, Metens T, Bali M, et al. Pancreatic neuroendocrine tumor; added value of fusion of T2-weighted imaging and high b-value diffusion -weighted imaging for tumor detection[J]. Eur J Radiol, 2012,81(5):e746-749.
- [29] Wang Y, Chen Z E, Yaghmai V, et al. Diffusion-weighted MR imaging in pancreatic endocrine tumors correlated with histopathologic characteristics[J]. J Magn Reson Imaging, 2011, 33(5):1071-1079.
- [30] Oberg K. Neuroendocrine tumors of the gastrointestinal tract:recent advances in molecular genetics, diagnosis and treatment[J]. Curr Opin Oncol, 2005, 17(4):386–391.
- [31] Sundin A, Garske U, Odefors H. Nuclear imaging of neuroendocrine tumours[I]. Best Pratt Res Clin Endocrinol Metab, 2007, 21(1):69– 85.
- [32] Gotthardt M, Dijkgraaf I, Boerman O C, et al. Nuclear medicine imaging and therapy of neuroendocrine tumours[J]. Cancer Imaging, 2006,6:S178-S184.
- [33] Schillaci O, Spanti A, Scopinaro F, et al. Somatostatin receptor scintigraphy in liver memstasis detection from gastroenteropancreatic neuroendocrine tumors[J]. J Nucl Med, 2003, 44(3):359–368.
- [34] Gabriel M, Muehllechner P, Decristoforo C, et al. 99mTc ~EDDA/ HYNIC-Tyr(3)-octreotide for staging and follow up of patients witll neuroendocrine gastro-entero-pancreatic tumors[J]. Q J Nucl Med Mol Imaging, 2005, 49(3):237-244.
- [35] Jensen R T. Carcinoid and pancreatic endocrine tumors: recent advances in molecular pathogenesis, localization, and treatment[J]. Curt Opin Oncol, 2000, 12(4):368-377.
- [36] A lexakis N,N eop to lem os J P. Pancreatic neuroendocrine tumours [J]. Research Clinical Gastro-en terology, 2008, 22(1):183.
- [37] Orlefors H, Sundin A, Garske U, et al. Whole-body "C-5-hydrox-ytryptophan positron emission tomography as a Universal imaging technique for neuroendocrine tumors; comparison with somatostatin receptor scintigraphy and computed tomography[J]. J Clin Endocrinol Metab, 2005, 90; 3 392-3 400.
- [38] Mottaghy F M, Reske S N. Functional imaging of neuroendocrine tumours with PET[J]. Pituitary, 2006, 9(3);237.
- [39] 吴江,王中秋,朱虹.正电子药物在神经内分泌肿瘤显像中的应用[J]. 中华核医学杂志,2008,28(6):419.
- [40] Nakamoto Y, Higashi T, Sakahara H, et al. Evaluation of pancreatic islet cell tumors by fluorine -18 fluorodeoxyglucose positron emission tomography: comparison with other modalities[J]. Clin Nucl Med, 2000,25:115-119.
- [41] Sauter A W, Wehrl H F, Kolb A, et al. Combined PET/MRI: One step further in multimodality imaging[J]. Trends in Molecular Medicine, 2010,16(11):508-515.
- [42] Boss A, Bisdas S, Kolb A, et al. Hybrid PET/MRI of intracranial masses: Initial experiences and comparison to PET/CT[J]. Journal of Nuclear Medicine; Official Publication, Society of Nuclear Medicine, 2010, 51(8):1198-1205.
- [43] Schreiter N F, Nogami M, Steffen I, et al. Evaluation of the potential of PET-MRI fusion for detection of liver metastases in patients with neuroendocrine tumours[J]. Eur Radiol, 2012, 22(2):458-467.

(收稿:2012-11-27 修回:2013-02-18)